
Communications Toolbox™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Communications Toolbox™ User's Guide
© COPYRIGHT 2011–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
April 2011 First printing New for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 5.6 (Release 2014a)
October 2014 Online only Revised for Version 5.7 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release 2017a)
September 2017 Online only Revised for Version 6.5 (Release 2017b)
March 2018 Online only Revised for Version 6.6 (Release 2018a)
September 2018 Online only Revised for Version 7.0 (Release 2018b)
March 2019 Online only Revised for Version 7.1 (Release 2019a)
September 2019 Online only Revised for Version 7.2 (Release 2019b)
March 2020 Online only Revised for Version 7.3 (Release 2020a)
September 2020 Online only Revised for Version 7.4 (Release 2020b)
March 2021 Online only Revised for Version 7.5 (Release 2021a)
September 2021 Online only Revised for Version 7.6 (Release 2021b)
March 2022 Online only Revised for Version 7.7 (Release 2022a)
September 2022 Online only Revised for Version 7.8 (Release 2022b)
March 2023 Online only Revised for Version 8.0 (Release 2023a)

Communications Toolbox Featured Examples
1

SC-FDMA vs. OFDM Modulation . 1-2

OFDM Transmitter and Receiver . 1-12

Simulate and Verify Power Amplifier Backoff . 1-32

Indoor MIMO-OFDM Communication Link using Ray Tracing 1-39

Effect of a High-Power Interferer on ADC Performance 1-50

Impact of RF Effects on Communication System Performance 1-63

Interference Modeling . 1-69

Multiband Signal Generation . 1-73

Ship Tracking Using AIS Signals . 1-78

Link Budget Analysis . 1-85

Parallel Concatenated Convolutional Coding: Turbo Codes 1-89

Tail-Biting Convolutional Coding . 1-94

Log-Likelihood Ratio (LLR) Demodulation . 1-99

FBMC vs. OFDM Modulation . 1-103

F-OFDM vs. OFDM Modulation . 1-110

UFMC vs. OFDM Modulation . 1-118

P25 Spectrum Sensing with Synthesized and Captured Data 1-126

LLR vs. Hard Decision Demodulation in Simulink 1-136

Passband Modulation . 1-140

256-Channel ADSL . 1-144

Simultaneous Simulation of Multiple Fading Channels with WINNER II
Channel Model . 1-147

v

Contents

802.11ac Multiuser MIMO Precoding with WINNER II Channel Model
. 1-153

End-to-End QAM Simulation with RF Impairments and Corrections . . 1-161

HF Ionospheric Channel Models . 1-170

GSM, CDMA and WiMAX Channel Models . 1-178

GSM Multiframe Generation in Simulink . 1-189

Multipath Fading Channel . 1-193

Adjacent and Co-Channel Interference . 1-207

Multipath Fading Channel in Simulink . 1-210

RF Satellite Link . 1-222

Introduction to MIMO Systems . 1-230

Spatial Multiplexing . 1-240

OSTBC Transmission with Antenna Coupling . 1-245

Concatenated OSTBC with TCM . 1-253

Concatenated OSTBC with TCM in Simulink . 1-259

BER Performance of Different Equalizers . 1-266

OFDM Synchronization . 1-277

QPSK Transmitter and Receiver . 1-285

QPSK Transmitter and Receiver in Simulink . 1-292

Raised Cosine Filtering . 1-301

CORDIC-Based QPSK Carrier Synchronization . 1-309

Defense Communications: US MIL-STD-188-110A Receiver 1-320

cdma2000 Waveform Generation . 1-329

1xEV-DO Waveform Generation . 1-338

cdma2000 Physical Layer in Simulink . 1-343

Near Field Communication (NFC) . 1-349

NFC Application Layer . 1-357

DOCSIS Upstream TDMA Link Simulation . 1-364

vi Contents

ATSC Digital Television . 1-377

DVB-S.2 Link, Including LDPC Coding . 1-386

DVB-S.2 Link, Including LDPC Coding in Simulink 1-393

5G LDPC Block Error Rate Simulation Using the Cloud or a Cluster . . 1-398

Digital Video Broadcasting - Cable (DVB-C) . 1-404

Digital Video Broadcasting - Cable (DVB-C) in Simulink 1-411

Digital Video Broadcasting - Terrestrial . 1-418

Defense Communications: US MIL-STD-188-110B Baseband End-to-End
Link . 1-424

WCDMA End-to-End Physical Layer . 1-428

BER Simulations with Parallel Computing Toolbox 1-434

End to End System Simulation Acceleration Using GPUs 1-437

Simulation Acceleration Using MATLAB Coder and Parallel Computing
Toolbox . 1-445

Using GPUs to Accelerate Turbo Coding Bit Error Rate Simulations . . 1-454

DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System
Object . 1-458

HDL Code Generation for Viterbi Decoder . 1-464

Using HDL Optimized CRC Library Blocks . 1-470

Using HDL Optimized RS Encoder/Decoder Library Blocks 1-474

Frequency Offset Calibration for Receivers . 1-480

Spectrum Analysis of Signals . 1-484

Spectrum Analysis of Signals in Simulink . 1-487

Airplane Tracking Using ADS-B Signals . 1-489

Automatic Meter Reading . 1-497

Packetized Modem with Data Link Layer . 1-503

FM Broadcast Receiver . 1-515

RDS/RBDS and RadioText Plus (RT+) FM Receiver 1-519

RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink 1-529

vii

FRS/GMRS Walkie-Talkie Receiver . 1-539

Frequency Offset Calibration for Receivers in Simulink 1-544

Airplane Tracking Using ADS-B Signals in Simulink 1-549

Airplane Tracking Using ADS-B Signals with Raspberry Pi and RTL-SDR
. 1-555

Automatic Meter Reading in Simulink . 1-561

FM Broadcast Receiver in Simulink . 1-565

FM Reception with RTL-SDR Radio on Raspberry Pi Hardware with
Simulink . 1-568

FRS/GMRS Receiver in Simulink . 1-572

ALOHA and CSMA/CA Packetized Wireless Networks 1-577

Multicore Simulation of Comparing Demodulation Types 1-586

Shared comm_simrf Examples
2

Idealized Baseband Amplifier with Nonlinearity and Noise 2-2

Power Amplifier Characterization . 2-4

Top-Down Design of an RF Receiver . 2-16

Digital Predistortion to Compensate for Power Amplifier Nonlinearities
. 2-28

RF Noise Modeling . 2-36

Impact of Thermal Noise on Communication System Performance 2-39

Architectural Design of a Low IF Receiver System 2-43

Shared spc_channel Examples (comm/antenna/phased)
3

RF Propagation and Visualization . 3-2
Visualize Outdoor Wireless Coverage . 3-2
Visualize Indoor Propagation Paths . 3-7

Visualize Antenna Coverage Map and Communication Links 3-12

viii Contents

Urban Link and Coverage Analysis Using Ray Tracing 3-20

Shared deeplearning_shared Examples (comm/deeplearning)
4

OFDM Autoencoder for Wireless Communications 4-2

Train DQN Agent for Beam Selection . 4-14

CSI Feedback with Autoencoders . 4-21

Modulation Classification by Using FPGA . 4-49

Neural Network for Digital Predistortion Design - Online Training 4-61

Neural Network for Digital Predistortion Design - Offline Training 4-81

Neural Network for Beam Selection . 4-96

Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals
. 4-119

Autoencoders for Wireless Communications . 4-134

Training and Testing a Neural Network for LLR Estimation 4-151

Design a Deep Neural Network with Simulated Data to Detect WLAN
Router Impersonation . 4-162

Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation . 4-176

Modulation Classification with Deep Learning . 4-187

Shared phased_comm Examples (comm/phased)
5

Massive MIMO Hybrid Beamforming . 5-2

MIMO-OFDM Precoding with Phased Arrays . 5-18

HDL Coder Featured Examples
6

Airplane Tracking with ADS-B Captured Data . 6-2

ix

HDL QAM Transmitter and Receiver . 6-9

HDL QPSK Transmitter and Receiver . 6-29

Communications Toolbox Library for ZigBee and UWB -
Featured Examples

7
HRP UWB IEEE 802.15.4a/z Waveform Generation 7-2

End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY 7-16

UWB Localization Using IEEE 802.15.4z . 7-23

UWB Ranging Using IEEE 802.15.4z . 7-31

Recovery of IEEE 802.15.4z UWB Signals . 7-38

UWB Channel Models . 7-49

End-to-End IEEE 802.15.4 PHY Simulation . 7-60

Recovery of IEEE 802.15.4 OQPSK Signals . 7-64

IEEE 802.15.4 - MAC Frame Generation and Decoding 7-72

IEEE 802.15.4 - Asynchronous CSMA MAC . 7-76

ZigBee NET Frame Generation and Decoding . 7-90

ZigBee Home Automation Frame Generation and Decoding 7-93

ZigBee Light Link Frame Generation and Decoding 7-100

ZigBee Frame Generation and Decoding for General Commands 7-110

ZigBee Smart Energy Frame Generation and Decoding 7-116

Measure EVM for 802.15.4 (ZigBee) System . 7-122

Communications Toolbox Wireless Network Simulation
Library - Featured Examples

8
Generate and Visualize FTP Application Traffic Pattern 8-2

x Contents

Input, Output, and Display
9

Signal Terminology . 9-2
Matrices, Vectors, and Scalars . 9-2

Export Data to MATLAB . 9-3
Use a To Workspace Block . 9-3
Configure the To Workspace Block . 9-3
View Error Rate Data in Workspace . 9-4
Send Signal and Error Data to Workspace . 9-4
View Signal and Error Data in Workspace . 9-5
Analyze Signal and Error Data . 9-6

Sources and Sinks . 9-7
Data Sources . 9-7
Noise Sources . 9-9
Sequence Generators . 9-10
Scopes . 9-13
View a Sinusoid . 9-14
View a Modulated Signal . 9-16

Spreading Sequences . 9-21
Orthogonal Spreading for Multiuser System in Single-Path Channel 9-21
Orthogonal Spreading for Single-User System in Multipath Channel 9-22
PN Spreading for Single-User System in Multipath Channel 9-23
PN Spreading for Multiuser System in Multipath Channel 9-24
Benefits of Diversity Combining for Nonorthogonal Sequence Spreading

. 9-25
Kasami Spreading for Multiuser System in Multipath Channel 9-25

Data and Signal Management
10

Matrices, Vectors, and Scalars . 10-2
Processing Rules . 10-2

Sample-Based and Frame-Based Processing . 10-4

Floating-Point and Fixed-Point Data Types . 10-5
Access the Block Support Table . 10-5

Delays . 10-6
Section Overview . 10-6
Sources of Delays . 10-6
ADSL Example Model . 10-7
Punctured Coding Model . 10-8
Use the Find Delay Block . 10-10

xi

Digital Modulation
11

Digital Baseband Modulation . 11-2
Modulation Methods . 11-2
Modeling Concepts . 11-3
Signal Upsampling and Rate Changes . 11-6
Delays in Digital Demodulation . 11-8
Hard- vs. Soft-Decision Demodulation . 11-9
Accessing Digital Modulation Blocks . 11-11
References . 11-12

Symbol Mapping Examples . 11-14
Compare Error Rate for Gray- and Binary-Coded Ordering 11-14
Gray-Coded M-PSK Modulation Error Rate in AWGN Channel Using

Simulink . 11-17
Gray Encode Modulated Signal . 11-19

Demodulation Delay Examples . 11-21
Delays from OQPSK Demodulation Using Simulink 11-21

Modulation with Pulse Shaping and Filtering Examples 11-23
Rectangular Pulse Shaping . 11-23
Pulse Shaping Using a Raised Cosine Filter . 11-24

Hard- vs. Soft-Decision Demodulation Examples 11-29
Log-Likelihood Ratio (LLR) Demodulation . 11-29
LLR vs. Hard Decision Demodulation in Simulink 11-32

Amplitude Modulation . 11-36
PAM . 11-36
QAM . 11-36

Amplitude Modulation Examples . 11-38
Compute Symbol Error Rate . 11-38
Plot Noisy 16-QAM Constellation in Simulink . 11-39

Estimate Symbol Rate for General QAM Modulation in AWGN Channel
. 11-42

Amplitude and Phase Modulation . 11-45
APSK . 11-45
DVBS APSK . 11-46
MIL-STD-188-110 . 11-46

Amplitude and Phase Modulation Examples . 11-48
Apply APSK Modulation Modifying Symbol Ordering 11-48
Demodulate MIL-STD-188-110C Specific 64-QAM Signal 11-49
Plot Noisy DVB-S APSK Constellation using Simulink 11-50
Demodulate Noisy 16-APSK Signal Using Simulink 11-52

Continuous-Phase Modulation . 11-54
CPM . 11-54
CPFSK . 11-55

xii Contents

GMSK . 11-56
MSK . 11-56

Continuous Phase Modulation Examples . 11-57
Plot Phase Tree for Continuous Phase Modulation 11-57
View CPM Phase Tree Using Simulink . 11-58
Compare Filtered QPSK and MSK Signals in Simulink 11-63
Compare GMSK and MSK Signals in Simulink 11-66
Soft Decision GMSK Demodulator . 11-72

Frequency Modulation . 11-77
FSK . 11-77
Frequency Modulation Examples . 11-77

Orthogonal Frequency Division Multiplexing Modulation 11-86
OFDM . 11-86
OFDM Modulation Examples . 11-86

Apply OFDM in MIMO Simulation . 11-92

Phase Modulation . 11-95
BPSK . 11-95
QPSK . 11-96
Higher-Order PSK . 11-99
DPSK . 11-100
OQPSK . 11-100

Phase Modulation Examples . 11-104
Compare Phase Noise Effects on PSK and PAM Signals 11-104
Compare DQPSK Signal Constellation Points and Transitions 11-106
GPU-Based Convolutionally Encode and Viterbi Decode 8-PSK Modulated

Data . 11-108

Trellis-Coded Modulation . 11-110
General QAM TCM . 11-110
PSK TCM . 11-110
Rectangular QAM TCM . 11-110

Trellis Coded Modulation Examples . 11-112
Modulate and Demodulate Data Using QAM TCM 11-112
Demodulate Noisy PSK TCM Data . 11-113
Modulate and Demodulate Using Rectangular 16-QAM TCM 11-114

Analog Modulation
12

Analog Baseband Modulation . 12-2
Modulation Methods . 12-2
FM . 12-2
FM Broadcast . 12-3
Accessing Analog Baseband Modulation Blocks 12-6
References . 12-6

xiii

Analog Baseband Modulation Examples . 12-8
Modulate and Demodulate Sinusoidal Signal Using FM Method 12-8
Modulate and Demodulate Streaming Audio Signals Using FM Broadcast

Method . 12-10
Modulate and Demodulate FM Signals in Simulink 12-13

Analog Passband Modulation . 12-17
Modulation Methods . 12-17
Filter Design Decisions . 12-17
DSB AM . 12-18
DSB-SC AM . 12-18
SSB AM . 12-18
FM . 12-19
PM . 12-19
Accessing Analog Passband Modulation Blocks 12-20
References . 12-20

Analog Passband Modulation Examples . 12-21
Represent Analog Signals for Amplitude Modulation in MATLAB 12-21
Phase-Modulate Analog Signals in AWGN Channel 12-23
Analog Modulation Filtering Examples . 12-24

Equalization
13

Equalization . 13-2
Equalizer Structure Options . 13-2
Selected References for Equalizers . 13-3

Adaptive Equalizers . 13-5
Number of Taps . 13-5
Symbol Tap Spacing . 13-5
Linear Equalizers . 13-6
Decision-Feedback Equalizers . 13-7
Reference Signal and Operating Modes . 13-8
Error Calculation . 13-8
Updating Tap Weights . 13-9
Configuring Adaptive Equalizers . 13-10
Using Adaptive Equalizers in Simulink . 13-29
Adaptive Equalization with Filtering and Fading Channel 13-29

MLSE Equalizers . 13-35
Equalize a Vector Signal in MATLAB . 13-35
Equalizing Signals in Continuous Operation Mode 13-36
Use a Preamble or a Postamble . 13-39
Using MLSE Equalizers in Simulink . 13-40
MLSE Equalization with Dynamically Changing Channel 13-40

xiv Contents

Equalizer Examples (new & old)
14

DF Equalize QPSK-Modulated Signal in Simulink 14-2

Linearly Equalize QPSK-Modulated Signal in Simulink 14-5

Adaptive Equalization with Filtering and Fading Channel 14-8

MLSE Equalization with Dynamically Changing Channel 14-13

Equalize BSPK Signal . 14-16

Various User Guide Topic Examples
15

Create a Standalone GSM Waveform Explorer Application with MATLAB
Compiler . 15-2

GSM TDMA Frame Parameterization for Waveform Generation 15-5

Compensate for Frequency Offset Using Coarse and Fine Compensation
. 15-21

Correct Symbol Timing and Doppler Offsets . 15-25

Random Noise Generators in Simulink . 15-30

Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine
Synchronization . 15-33

Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset
. 15-37

Modulate and Demodulate 8-PSK Signal . 15-41

System Design
16

Source Coding . 16-2
Represent Partitions . 16-2
Represent Codebooks . 16-2
Determine Which Interval Each Input Is In . 16-3
Optimize Quantization Parameters . 16-3
Differential Pulse Code Modulation . 16-4
Optimize DPCM Parameters . 16-6
Compand a Signal . 16-7
Huffman Coding . 16-9

xv

Arithmetic Coding . 16-10
Quantize a Signal . 16-11

Error Detection and Correction . 16-14
Cyclic Redundancy Check Codes . 16-14
Block Codes . 16-17
Convolutional Codes . 16-30
Linear Block Codes . 16-54
Hamming Codes . 16-62
BCH Codes . 16-67
Reed-Solomon Codes . 16-72
LDPC Codes . 16-81
Galois Field Computations . 16-81
Galois Fields of Odd Characteristic . 16-105

Interleaving . 16-116
Block Interleaving . 16-116
Convolutional Interleaving . 16-120
Selected Bibliography for Interleaving . 16-128

Phase-Locked Loops . 16-130
Voltage-Controlled Oscillator Blocks . 16-130
Overview of PLL Simulation . 16-130
Implementing an Analog Baseband PLL . 16-131
Implementing a Digital PLL . 16-131
Selected Bibliography for Synchronization . 16-131

Multiple-Input Multiple-Output (MIMO) . 16-133
Orthogonal Space-Time Block Codes (OSTBC) 16-133
MIMO Fading Channel . 16-134
Spherical Decoding . 16-134
Selected Bibliography for MIMO Systems . 16-134

Differential Pulse Code Modulation . 16-135
Section Overview . 16-135
DPCM Terminology . 16-135
Represent Predictors . 16-135
Example: DPCM Encoding and Decoding . 16-136
Optimize DPCM Parameters . 16-137

Quantize and Compand an Exponential Signal 16-139

Quantization . 16-141
Represent Partitions . 16-141
Represent Codebooks . 16-141
Determine Which Interval Each Input Is In . 16-141
Optimize Quantization Parameters . 16-142
Quantize a Signal . 16-143

xvi Contents

MSK
17

MSK Signal Recovery . 17-2

MSK Signal Recovery . 17-7
Exploring the Model . 17-7
Results and Displays . 17-8
Experimenting with the Example . 17-11

Reed-Solomon Coding
18

Reed-Solomon Coding with Erasures, Punctures, and Shortening in
Simulink . 18-2

Representation of Polynomials in Communications Toolbox 18-11

Estimate BER of QPSK in AWGN with Reed-Solomon Coding 18-13

Transmit and Receive Shortened Reed-Solomon Codes 18-15

Galois Fields
19

Working with Galois Fields . 19-2

ElGamal Public Key Cryptosystem . 19-6

Error Detection and Correction
20

High Rate Convolutional Codes for Turbo Coding 20-2

Punctured Convolutional Coding . 20-6

Punctured Convolutional Coding in Simulink . 20-11

Rate 2/3 Convolutional Code in AWGN . 20-14

Estimate BER for Hard and Soft Decision Viterbi Decoding 20-17

Creation, Validation, and Testing of User Defined Trellis Structure . . . 20-20
Create User Defined Trellis Structure . 20-20

xvii

Convolutional Encoder with Uncoded Bits and Feedback 20-24

Channel Modeling and RF Impairments
21

AWGN Channel . 21-2
Section Overview . 21-2
AWGN Channel Noise Level . 21-2

Configure Eb/No for AWGN Channels with Coding 21-5

Using AWGN Channel Block for Coded Signals . 21-7

Fading Channels . 21-8
Overview of Fading Channels . 21-8
Methodology for Simulating Multipath Fading Channels 21-10
Specify Fading Channels . 21-13
Specify Doppler Spectrum of Fading Channel . 21-16
Configure Channel Objects . 21-23
Use Fading Channels . 21-25
Rayleigh Fading Channel . 21-26
Rician Fading Channel . 21-32

Using Channel Visualization . 21-35

WINNER II Channel . 21-36

Mapping of WINNER II Open Source Download to WINNER II Channel
Model for Communications Toolbox . 21-38

Measurements
22

Bit Error Rate Analysis Techniques . 22-2
Computation of Theoretical Error Statistics . 22-2
Theoretical Performance Results . 22-2
Performance Results via Simulation . 22-5
Performance Results via Semianalytic Technique 22-8
Error Rate Plots . 22-8

Analyze Performance with Bit Error Rate Analysis App 22-12
Open Bit Error Rate Analysis App . 22-12
Bit Error Rate Analysis App Environment . 22-13
Compute Theoretical BERs Using Bit Error Analysis App 22-15
Run MATLAB Simulations in Monte Carlo Tab . 22-19
Requirements for Using MATLAB Functions with Bit Error Rate Analysis

App . 22-25
Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis App

. 22-28

xviii Contents

Run Simulink Simulations in Monte Carlo Tab . 22-33
Requirements for Using Simulink Models with Bit Error Rate Analysis App

. 22-38
Manage BER Data . 22-39

Mathematical Expressions and Notations Used in BER Analysis 22-45
Common Notation . 22-45

Analytical Expressions Used in BER Analysis . 22-47

Analytical Expressions Used in berawgn Function and Bit Error Rate
Analysis App . 22-48

M-PSK . 22-48
DE-M-PSK . 22-49
OQPSK . 22-49
DE-OQPSK . 22-49
M-DPSK . 22-49
M-PAM . 22-50
M-QAM . 22-50
Orthogonal M-FSK with Coherent Detection . 22-51
Nonorthogonal 2-FSK with Coherent Detection 22-51
Orthogonal M-FSK with Noncoherent Detection 22-52
Nonorthogonal 2-FSK with Noncoherent Detection 22-52
Precoded MSK with Coherent Detection . 22-52
Differentially Encoded MSK with Coherent Detection 22-52
MSK with Noncoherent Detection (Optimum Block-by-Block) 22-53
CPFSK Coherent Detection (Optimum Block-by-Block) 22-53

Analytical Expressions Used in berfading Function and Bit Error Rate
Analysis App . 22-54

Notation . 22-54
M-PSK with MRC . 22-55
DE-M-PSK with MRC . 22-56
M-PAM with MRC . 22-56
M-QAM with MRC . 22-56
M-DPSK with Postdetection EGC . 22-57
Orthogonal 2-FSK, Coherent Detection with MRC 22-57
Nonorthogonal 2-FSK, Coherent Detection with MRC 22-58
Orthogonal M-FSK, Noncoherent Detection with EGC 22-58
Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity 22-58

Analytical Expressions Used in bercoding Function and Bit Error Rate
Analysis App . 22-60

Common Notation . 22-60
Block Coding . 22-60
Convolutional Coding . 22-62

Analytical Expressions Used in bersync Function and Bit Error Rate
Analysis App . 22-64

Timing Synchronization Error . 22-64
Carrier Synchronization Error . 22-64

Measure Modulation Accuracy . 22-65
Modulation Accuracy Examples . 22-65

xix

Adjacent Channel Power Ratio (ACPR) . 22-72
Obtain ACPR Measurements . 22-72

Complementary Cumulative Distribution Function CCDF 22-78

Selected Bibliography for Measurements . 22-79

Filtering Section
23

Filtering . 23-2
Filter Features . 23-2
Selected Bibliography Filtering . 23-3

Group Delay . 23-4
Implications of Delay for Simulations . 23-4

Pulse Shaping Using a Raised Cosine Filter . 23-6

Design Raised Cosine Filters Using MATLAB Functions 23-10
Section Overview . 23-10
Example Designing a Square-Root Raised Cosine Filter 23-10

Filter Using Simulink Raised Cosine Filter Blocks 23-12
Combining Two Square-Root Raised Cosine Filters 23-12

Design Raised Cosine Filters in Simulink . 23-16

Reduce ISI Using Raised Cosine Filtering . 23-21

Find Delay for Encoded and Filtered Signal . 23-25

Visual Analysis
24

View Constellation of Modulator Block . 24-2

Plot Signal Constellations . 24-6
Create 16-PSK Constellation Diagram . 24-6
Create 32-QAM Constellation Diagram . 24-8
Create 8-QAM Gray Coded Constellation Diagram 24-11
Plot a Triangular Constellation for QAM . 24-12

Eye Diagram Analysis . 24-14
Amplitude Measurements . 24-15
Time Measurements . 24-19

xx Contents

Scatter Plots and Constellation Diagrams . 24-25
View Signals Using Constellation Diagrams . 24-25

Channel Visualization . 24-31
Impulse Response Plot . 24-31
Frequency Response Plot . 24-33
Impulse and Frequency Responses Plot . 24-34
Doppler Spectrum Plot . 24-36
Channel Visualization Examples . 24-38

Visualize RF Impairments . 24-53

C Code Generation
25

What is C Code Generation from MATLAB? . 25-2
Using MATLAB Coder . 25-2
C/C++ Compiler Setup . 25-2
Functions and System Objects That Support Code Generation 25-3

Generate C Code from MATLAB Code . 25-4
Set Up the Compiler . 25-4
Break Out the Computational Part of the Algorithm into a MATLAB Function

. 25-4
Make Code Suitable for Code Generation . 25-5
Compare the MEX Function with the Simulation 25-7
Generate a Standalone Executable . 25-7
Read and Verify the Binary File Data . 25-9
Relocate Code to Another Development Environment 25-10

Generate C Code from Simulink Model . 25-11
Open the Model . 25-11
Configure Model for Code Generation . 25-11
Simulate the Model . 25-12
Generate Code from the Model . 25-13
Build and Run the Generated Code . 25-14

HDL Code Generation
26

Find Blocks That Support HDL Code Generation 26-2
Blocks . 26-2
System Objects . 26-3

Wireless Communications Design for ASICs, FPGAs, and SoCs 26-4
From Mathematical Algorithm to Hardware Implementation 26-4
HDL-Optimized Blocks . 26-6
Reference Applications . 26-6
Generate HDL Code and Prototype on FPGA . 26-6

xxi

Simulation Acceleration
27

Accelerate Simulation Using GPUs . 27-2
GPU-Based System Object Construction . 27-2
Process Multiple Data Frames Using GPU-Based System Objects 27-3
Pass Data to GPU-Based System Objects Using gpuarray Input 27-4
MATLAB System Block Support for GPU-Based System Objects 27-5

Wireless Waveform Generator App
28

Create Waveforms Using Wireless Waveform Generator App 28-2
Waveform Type . 28-3
Add Impairments . 28-3
Visualization Options . 28-4
Export Waveform . 28-4
Transmit Signals at Full Radio Device Rates . 28-4
Transmit Using SDR . 28-5
Transmit Using Lab Test Instrument . 28-6
Waveform Generator Session . 28-7

Generate Wireless Waveform in Simulink Using App-Generated Block
. 28-8

RF Propagation
29

Troubleshooting Site Viewer . 29-2
Internet Connection Failure . 29-2
Graphics Environment . 29-2

Access Basemaps and Terrain in Site Viewer . 29-3
Use Installed Basemap . 29-3
Download Basemaps . 29-3
Add Custom Basemaps . 29-3
Access Terrain . 29-4

Access TIREM Software . 29-5

Choose a Propagation Model . 29-6
Atmospheric . 29-6
Empirical . 29-6
Terrain . 29-7
Ray Tracing . 29-7

Ray Tracing for Wireless Communications . 29-12
Introduction . 29-12

xxii Contents

Ray Tracing Methods . 29-13
Propagation Loss . 29-15

Guidance for Discouraged Features
30

Source blocks output frames of contiguous time samples but do not use
frame attribute . 30-2

AGC object and block have simplified interfaces, better dynamic range,
and faster convergence times . 30-3

xxiii

Communications Toolbox Featured
Examples

1

SC-FDMA vs. OFDM Modulation

This example compares Orthogonal Frequency Division Multiplexing (OFDM) with Single-Carrier
Frequency Division Multiple Access (SC-FDMA). It highlights the merits of the latter modulation
scheme in Long-Term Evolution (LTE) and Fifth Generation (5G) communication systems.

Introduction

LTE [1 on page 1-10] and 5G New Radio (NR) [2 on page 1-10] wireless systems for uplink
transmissions from the mobile units to the base station. SC-FDMA has potential for sub-THz
communications in Beyond 5G (B5G) [3 on page 1-10]. Terms that define SC-FDMA include Discrete
Fourier Transform spread OFDM (DFT-s-OFDM), Single-Carrier OFDM (SC-OFDM), and Linearly-
Precoded OFDM Access (LP-OFDMA).

The premise behind SC-FDMA is to use the concept of OFDM, but precode the input signal such that
the OFDM output mimics the characteristics of a single-carrier modulated signal within the same
transmission bandwidth. Because SC-FDMA uses OFDM as the main transmission modulation
scheme, the communications system preserves advantages of OFDM, such as time-frequency user
multiplexing, resistance to frequency-selective fading, and frequency-domain equalization, which
tends to be easier to implement than time-domain filter-based equalization.

The primary advantage of SC-FDMA is a lower peak-to-average power ratio (PAPR) in the transmit
signal relative to that found in OFDM. One OFDM symbol contains many sinusoids with different
frequencies and phases. The superposition of the many sinusoids occasionally results in constructive
interference between sinusoids, which produces a very high peak amplitude relative to the average
power of the signal. The problem with high PAPR occurs in both the digital and analog domains. In
the digital domain, a high PAPR means that the output signal occasionally exceeds the dynamic range
of the digital-to-analog converter (DAC) when the digital signal converts to an analog signal. This
exceedance saturates the digital output, a type of distortion called clipping. In the analog domain, the
output signal occasionally enters the nonlinear amplification region in the power amplifier of the
transmitter. Nonlinear distortion creates undesirable out-of-band emissions in the form of high-order
harmonics.

Another advantage of SC-FDMA is its robustness against spectral nulls from frequency-selective
fading. In OFDM, a null in a subcarrier results in loss of data in that subcarrier. In SC-FDMA, the
input signal spreads across subcarriers, so a null in a subcarrier also spreads across the subcarriers
(hence the spreading effect in the DFT-s-OFDM name).

This example shows the similarity in the implementations of the two schemes and the difference in
the impact of PAPR and spectral nulling.

System Parameters

Configure the simulation parameters for the system and transmitter. A larger number of simulated
symbols (controlled by numSym) gives smoother performance curves, and a higher oversampling
factor (controlled by osf) improves accuracy to catch peak amplitudes.

s = rng(11); % Set RNG state for repeatability

% Simulation parameters
numSym = 6000; % Number of OFDM symbols to modulate
osf = 8; % Oversampling factor

1 Communications Toolbox Featured Examples

1-2

% OFDM parameters
N = 256; % FFT length
cpLen = 16; % Cyclic prefix length

modOrder = ; % QAM modulation order

Vary modOrder to show how the modulation order impacts PAPR and the bit error rate (BER).

SC-FDMA Design and Transmit Mapping

The wireless digital communications standards use SC-FDMA in the upstream link (user to base
station). SC-FDMA assigns a subset of M available subcarriers to each user for transmission in an
OFDM symbol.

Before OFDM modulation, a DFT precodes the input data. The DFT outputs map to the OFDM
subcarrier grid in one of two ways:

• Localized mapping, where the data are arranged in consecutive subcarriers
• Distributed (interleaved) mapping, where the data are spread L subcarriers apart for improved

frequency diversity

Use L=1 for localized mapping. Otherwise, choose a value of L such that M*L < N.

% SC-FDMA parameters
M = 48; % Number of subcarriers
L = 1; % Subcarrier mapping interval (L=1 for localized)

% Create a random stream of bits, encode them in the desired baseband
% modulation, and map onto an OFDM grid
bitsPerSubcarrier = log2(modOrder);
dataIn = randi([0 1],bitsPerSubcarrier*M, numSym); % Create a random data stream
ofdmDataGrid = qammod(dataIn,modOrder, ... % Map the bits into the complex domain
 InputType='bit', ...
 UnitAveragePower=true);
ofdmDataGrid = cat(1,ofdmDataGrid,zeros(N-M,numSym)); % Zero-pad the unused subcarriers

% Take the same data used for OFDM, perform the DFT to precode the
% data, and form an SC-FDMA grid
scfdmaData = fft(ofdmDataGrid(1:M,:),M); % Precode the data in the M subcarriers

% Map the precoded data via localized (L=1) or distributed (other L) mapping

 SC-FDMA vs. OFDM Modulation

1-3

scfdmaDataGrid = zeros(N,numSym);
scfdmaDataGrid(1:L:M*L,:) = scfdmaData;

OFDM Modulation

Modulate the uncoded input and the precoded input to create the OFDM and SC-FDMA signals,
respectively. Note that both signals are modulated using the same OFDM modulation parameters, so
that only the precoding distinguishes SC-FDMA from OFDM.

% Modulate with OFDM
xOFDM = ofdmmod(ofdmDataGrid,N,cpLen,OversamplingFactor=osf);
xSCFDMA = ofdmmod(scfdmaDataGrid,N,cpLen,OversamplingFactor=osf);

PAPR Measurements

The Complimentary Cumulative Distribution Function (CCDF) computes the probability that the PAPR
is higher than a reference power. Plot the CCDF of each transmitter output to show the differences
between OFDM and SC-FDMA PAPR.

% Normalize the signal powers for measurements
sOFDM = xOFDM * (length(xOFDM)/sum(abs(xOFDM)));
sSCFDMA = xSCFDMA * (length(xSCFDMA)/sum(abs(xSCFDMA)));

% Compute and plot the CCDF
ccdf = powermeter(ComputeCCDF=true,Measurement="Peak-to-average power ratio");
paprs = ccdf([sOFDM sSCFDMA]);

plotCCDF(ccdf);
legend('OFDM','SC-FDMA');

1 Communications Toolbox Featured Examples

1-4

disp(['The PAPR for OFDM is ' num2str(paprs(1)) ' dB']);

The PAPR for OFDM is 11.1869 dB

disp(['The PAPR for SC-FDMA is ' num2str(paprs(2)) ' dB']);

The PAPR for SC-FDMA is 8.0823 dB

disp(['The improvement in PAPR from OFDM to SC-FDMA is ' num2str(paprs(1)-paprs(2)) ' dB']);

The improvement in PAPR from OFDM to SC-FDMA is 3.1045 dB

The CCDF for the default example parameters shows that OFDM has a 10e-5 percent probability that
the output signal will exceed the average power by 11.2 dB, while SC-FDMA has only a 8.0 dB PAPR
at the same probability. Likewise, the OFDM signal will exceed 6.5 dB of the average power 1% of the
time, vs. 0.01% of the time for SC-FDMA.

SC-FDMA Receiver

The SC-FDMA receiver is the inverse of the transmitter, with OFDM demodulation followed by an
inverse DFT applied to the SC-FDMA subcarriers.

 SC-FDMA vs. OFDM Modulation

1-5

To demonstrate resiliency against frequency-selective fading, null the fifth subcarrier of the OFDM
demodulator output, despread the SC-FDMA signal, decode the signal, and then compute the BER of
both OFDM and SC-FDMA signals.

% Demodulate using OFDM
yOFDM = ofdmdemod(xOFDM,N,cpLen,OversamplingFactor=osf);
ySCFDMA = ofdmdemod(xSCFDMA,N,cpLen,OversamplingFactor=osf);

% Simulate a notch in the spectrum by nulling the 5th subcarrier
yOFDM(5,:) = 0;
ySCFDMA(5*L+1,:) = 0;
figure;
plot(abs(yOFDM));
xlim([0 M]);
title('Spectral Notch');
xlabel('Subcarrier');
ylabel('Magnitude');

1 Communications Toolbox Featured Examples

1-6

Show the effect of a frequency null on the received constellation of the OFDM signal.

figure;
plot(yOFDM(:),'x');
title('OFDM Constellation After Spectral Notch');

 SC-FDMA vs. OFDM Modulation

1-7

While the OFDM constellation is clean, the notched subcarrier creates a subcarrier with no energy,
which appears as a constellation point at (0,0).

% Despread the SC-FDMA subcarriers
sSCFDMA = ifft(ySCFDMA(1:L:M*L,:),M);

Show the effect of a frequency null on the received constellation of the SC-FDMA signal. Try varying
the modulation index and observe the BER as the number of bits per symbol increases.

figure;
plot(sSCFDMA(:),'x');
title('SC-FDMA Constellation After Spectral Notch');

1 Communications Toolbox Featured Examples

1-8

The effect of the frequency notch has spread across the SC-FDMA subcarriers due to the IDFT
operation after the OFDM demodulation, rather than concentrating on a single subcarrier as in
OFDM. While the constellation is noisier than OFDM, all subcarriers retain energy, and the original
signal can be decoded without error.

Decode the two signals and compute the bit error rates.

% Hard decision decoding
decOFDM = qamdemod(yOFDM(1:M,:), modOrder, OutputType='bit',UnitAveragePower=true);
decSCFDMA = qamdemod(sSCFDMA, modOrder, OutputType='bit',UnitAveragePower=true);

% BER of notched signal
BER = comm.ErrorRate(ResetInputPort=true);
berOFDM = BER(dataIn(:),decOFDM(:),true);
berSCFDMA = BER(dataIn(:),decSCFDMA(:),true);

disp(['BER for OFDM with spectral null = ' num2str(berOFDM(1))]);

BER for OFDM with spectral null = 0.010425

disp(['BER for SC-FDMA with spectral null = ' num2str(berSCFDMA(1))]);

BER for SC-FDMA with spectral null = 0

Clearly, nulling a subcarrier of the OFDM signal creates an irrecoverable BER. However, SC-FDMA
spreads the input data over M subcarriers, so nulling one of the M SC-FDMA subcarriers does not
directly affect the entire user signal. Instead, it effectively creates impulse noise on the spread signal.

 SC-FDMA vs. OFDM Modulation

1-9

Conclusions

This example shows how to implement SC-FDMA transmission by adding a DFT operation before
OFDM modulation and performing the inverse operation for SC-FDMA reception. The powermeter
function calculates the CCDF curve and PAPR for both modulations to show the improved power
distribution of SC-FDMA over OFDM. BER analysis shows that frequency-selective fading is robust
with placement of a spectral null for SC-FDMA.

The lower PAPR makes SC-FDMA suitable for mobile devices because the reduced probability of
nonlinear distortion allows for low-cost RF power amplifiers. Also, amplifier power consumption is
lower because the power back-off can be smaller than that needed for OFDM to avoid saturation.

The table below shows other PAPR values for different values of FFT length, number of input
subcarriers, and modulation types. CP length is 1/16 of the FFT length.

In general, higher values of M (the number of modulated subcarriers) yields higher PAPR, reflecting
the law of large numbers in contributing to the higher peak probabilities when combining many
sinusoids with different phases. A higher modulation index tends to reduce the PAPR advantage of
SC-FDMA over OFDM.

References

[1] 3GPP TR 25.141 V7.0.0 "Physical layer aspects for evolved Universal Terrestrial Radio Access
(UTRA)." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

[3] Tervo, Oskari, Ilmari Nousiainen, Ismael Peruga Nasarre, Esa Tiirola, and Jari Hulkkonen. “On the
Potential of Using Sub-THz Frequencies for Beyond 5G.” In 2022 Joint European Conference on
Networks and Communications & 6G Summit (EuCNC/6G Summit), 37–42. Grenoble, France: IEEE,
2022.

See Also
Functions
ofdmmod | ofdmdemod | qammod | qamdemod

1 Communications Toolbox Featured Examples

1-10

Objects
powermeter

Related Examples
• “FBMC vs. OFDM Modulation” on page 1-103
• “F-OFDM vs. OFDM Modulation” on page 1-110
• “UFMC vs. OFDM Modulation” on page 1-118

 SC-FDMA vs. OFDM Modulation

1-11

OFDM Transmitter and Receiver

This example shows how to run a complete end-to-end OFDM transmission system for a single-input
single-output (SISO) channel. The physical-layer transmission protocol mimics typical synchronization
signals, reference symbols, control channels, and data channels popular across standardized
transmission schemes such as LTE, 5G NR, and WLAN. The example can be used to test different
transmission signals and receiver algorithms across various channels and radio impairments. This
processing includes scrambling, convolutional encoding, modulation, filtering, channel distortion,
demodulation, maximum likelihood decoding, and more.

The transmitter models control channels and data channels in this example. Transmitted data bits are
split into transport blocks and OFDM-modulated. Control signals are multiplexed in with the data
signals for synchronization, signaling, and estimation of impairments. Channel impairments distort
the transmitted signal in the time domain. The impairments include multipath fading and noise, and
carrier frequency offset is modeled as a receiver impairment. The receiver models sample buffering
for timing adjustment, filtering, carrier frequency adjustment, and OFDM demodulation and
decoding.

The example allows exploration of different system parameters, channel impairments, and receiver
operations through editor controls. Visualization aids are also enabled or disabled through editor
controls to see the effects of the different combinations of parameters, impairments, and receiver
algorithms.

System Parameters

Select the system parameters from a set of allowed values. These parameters are transmitted within
the frame header and decoded by the receiver. The entries are representative of typical LTE, WLAN,
and 5G NR transmission parameters. More entries may be added as desired, taking note that most
parameters have interdependencies on other parameters.

BWIndex = {FFT length, CP length, number of occupied subcarriers, subcarrier spacing, pilot
subcarrier spacing, channel BW}:

• 1 = {128, 32, 72, 15e3, 9, 1.4e6}
• 2 = {256, 64, 180, 15e3, 20, 3e6}
• 3 = {512, 128, 300, 15e3, 20, 5e6}
• 4 = {1024, 256, 600, 15e3, 20, 10e6} (default)
• 5 = {2048, 512, 1200, 15e3, 24, 20e6}
• 6 = {128, 32, 112, 312.5e3, 14, 35.6e6}
• 7 = {4096, 1024, 3276, 30e3, 36, 98.28e6}

Modulation order for all data subcarriers:

• 2 = BPSK
• 4 = QPSK
• 16 = 16-QAM
• 64 = 64-QAM (default)
• 256 = 256-QAM

1 Communications Toolbox Featured Examples

1-12

• 1024 = 1024-QAM

Code rate:

• 0 = 1/2 (default)
• 1 = 2/3
• 2 = 3/4
• 3 = 5/6

Several controls are available to enable or disable receiver impairments and scopes for transceiver
visualization. It is recommended that visualizations be disabled for long simulations and/or
simulations over multiple SNRs. Controls are also available to enable or disable certain receiver
algorithms.

Change the output verbosity to control the diagnostic output text. The "Low" setting suppresses
diagnostic output during frame processing. The "High" setting enables all output.

% Clear persistent state variables and buffers, and close all figures
clear helperOFDMRx helperOFDMRxFrontEnd helperOFDMRxSearch helperOFDMChannel helperOFDMFrequencyOffset
close all;

userParam = struct(...

 'BWIndex', , ... % Index corresponding to desired bandwidth

 'modOrder', , ... % Subcarrier constellation modulation order

 'codeRateIndex', , ... % Code rate index corresponding to desired rate

 'numSymPerFrame', , ... % Number of OFDM symbols per frame

 'numFrames', , ... % Number of frames to be generated for simulation (12-500)

 'fc', , ... % Carrier frequency (Hz)

 'enableFading', , ... % Enable/disable channel fading

 'chanVisual', , ... % Channel fading visualization option

 'enableCFO', , ... % Enable/disable carrier frequency offset compensation

 'enableCPE', , ... % Enable/disable common phase error compensation

 'enableScopes', , ... % Enable/disable scopesor

 'verbosity',); % Diagnostic output verbosity

Mobile Environment and Impairments

Specify the impairments and the desired signal-to-noise ratio (SNR) assuming no channel loss or
fading. Specify the SNR as a scalar value or create a vector of SNR values to run multiple simulations
at different SNRs, and then create a BER plot. Note that sync symbol detection at low SNRs may not
be possible.

The velocity inversely affects the channel coherence time (specifically, the amount of time the channel
distortion is roughly constant). Since the beginning of each frame contains a reference signal to
measure the channel distortion, set the velocity so that the coherence time is sufficiently greater than

 OFDM Transmitter and Receiver

1-13

the frame period (controlled by the number of symbols per frame). To select a velocity, consider a
generally accepted estimate of the coherence time Tc = c/(v * f), where c is the speed of light, v is the
velocity, and f is the carrier frequency.

The frequency offset is the difference between the transmitter and receiver at the baseband
frequency. This parameter is commonly expressed in parts per million (ppm). For example, a 100 Hz
offset with respect to a sampling frequency of 30.72 MHz yields an offset of 3.25 ppm.

The fading path delays and gains control the number of paths and average gain in dB of each path. A
scalar entry for each constitutes a flat fading channel, and a vector specifies multi-path fading. You
can see the effects of flat vs. multi-path fading by enabling the scopes and comparing the spectrum
plots. Multipath fading causes nulls in some parts of the transmitted spectrum; interleaving helps to
spread user data across all frequencies, so that some of the redundant bits are received on unaffected
subcarriers. Decreasing the coding rate in the system parameters also helps to generate more
redundant bits and increase the chances of error correction, but at the cost of lower user data
throughput.

SNRdB = ; % SNR in dB

v = ; % mobile velocity (km/h)

foff = ; % frequency offset (ppm)

fadingPathDelays = ;

fadingPathGains = ;

BERResults = zeros(size(SNRdB));

Populate Parameter Structure

The helper function helperOFDMSetParameters configures the system parameters common to the
transmitter and receiver.

Coding parameters specify the channel coding parameters that are applied to the data payload for
scrambling, interleaving, and convolutional encoding purposes. These parameters are shared
between the transmitter and receiver. The system uses a 7th-degree scrambler polynomial,
interleaving depth of 12 for header data and 18 for payload data, a base convolutional coding rate of
1/2, and a 32-bit CRC.

[sysParam, txParam] = helperOFDMSetParameters(userParam);

[~,codeParam] = helperOFDMGetTables(userParam.BWIndex,userParam.codeRateIndex);
codeRate = codeParam.codeRate; % Coding rate

fprintf('\nTransmitting at %d MHz with an occupied bandwidth of %d MHz\n', ...
 sysParam.fc/1e6,sysParam.scs*sysParam.usedSubCarr/1e6);

Transmitting at 1900 MHz with an occupied bandwidth of 9 MHz

% Calculate fading channel impairments
KPH_TO_MPS = (1000/3600);
fsamp = sysParam.scs*sysParam.FFTLen; % sample rate of signal
T = (sysParam.FFTLen+sysParam.CPLen)/fsamp; % symbol duration (s)
fmax = v * KPH_TO_MPS * sysParam.fc / physconst('LightSpeed'); % Maximum Doppler shift of diffuse components (Hz)

1 Communications Toolbox Featured Examples

1-14

% Set up scopes
if userParam.enableScopes
 % Set up constellation diagram object
 refConstHeader = qammod(0:1,2,UnitAveragePower=true); % header is always BPSK
 refConstData = qammod(0:txParam.modOrder-1,txParam.modOrder,UnitAveragePower=true);
 constDiag = comm.ConstellationDiagram(2, ...
 "ChannelNames",{'Header','Data'}, ...
 "ReferenceConstellation",{refConstHeader,refConstData}, ...
 "ShowLegend",true, ...
 "EnableMeasurements",true);

 % Set up spectrum analyzer visualization object
 sa = spectrumAnalyzer(...
 'Name', 'Signal Spectra', ...
 'Title', 'Transmitted and Received Signal', ...
 'SpectrumType', 'Power', ...
 'FrequencySpan', 'Full', ...
 'SampleRate', fsamp, ...
 'ShowLegend', true, ...
 'Position', [100 600 800 500], ...
 'ChannelNames', {'Transmitted','Received'});
end

Initialize States and Process Data Frames

For each SNR specified in the user settings, the receiver begins in an unsynchronized, unassociated,
and unconnected state. The receiver must detect the start of a frame through sync symbol detection
and synchronize the receive sample buffers to begin storing samples when the beginning of the
transmit frame is received. The receiver must then estimate the frequency offset and align its internal
clock to match the transmitter clock; it is then considered "camped" (associated) with the base
station. Finally, after header information is received and decoded, the receiver transitions to a
connected state and begins decoding data.

Once connected, the simulation loops though the frame processing to generate a transmit frame,
distort the output samples through a channel filter, and process the received samples to produce the
transport block bitstream.

% Initialize transmitter
txObj = helperOFDMTxInit(sysParam);

 OFDM Transmitter and Receiver

1-15

% Initialize receiver
rxObj = helperOFDMRxInit(sysParam);

for simLoopIdx = 1:length(SNRdB)
 % Configure the channel
 chanParam = struct(...
 'SNR', SNRdB(simLoopIdx), ...
 'foff', foff, ... % normalized frequency offset (ppm)
 'doppler', fmax*T, ... % normalized Doppler frequency
 'pathDelay', fadingPathDelays, ...
 'pathGain', fadingPathGains);
 fprintf('Configuring the fading AWGN channel at %d dB SNR and %d kph...\n', SNRdB(simLoopIdx), v);

 sysParam.txDataBits = []; % clear tx data buffer

 sysParam.timingAdvance = (sysParam.FFTLen + sysParam.CPLen) * ...
 sysParam.numSymPerFrame; % set sample buffer timing advance

 % Instantiate an ErrorRate object to cumulatively track BER
 errorRate = comm.ErrorRate();

 fprintf('Transmitting %d frames with transport block size of %d bits per frame...\n', ...
 sysParam.numFrames,sysParam.trBlkSize);
 fprintf('Searching for synchronization symbol...');

 % Loop through all frames. Generate one extra frame to obtain the

1 Communications Toolbox Featured Examples

1-16

 % reference symbol for channel estimates of the last frame.
 for frameNum = 1:sysParam.numFrames+1
 sysParam.frameNum = frameNum;

Configuring the fading AWGN channel at 20 dB SNR and 40 kph...

Transmitting 100 frames with transport block size of 20482 bits per frame...

Searching for synchronization symbol...

Configuring the fading AWGN channel at 25 dB SNR and 40 kph...

Transmitting 100 frames with transport block size of 20482 bits per frame...

Searching for synchronization symbol...

Configuring the fading AWGN channel at 30 dB SNR and 40 kph...

Transmitting 100 frames with transport block size of 20482 bits per frame...

Searching for synchronization symbol...

Payload Generation

User data is packed into a transport block, which is transmitted once per frame. The size of the
transport block depends on the number of active subcarriers, number of pilot subcarriers that occupy
active subcarriers, modulation order, coding rate, CRC length, encoder constraint length, and number
of data symbols per frame.

Randomly generated data is used to pack the transport blocks, but custom data can be sent if
desired. The data must be split into transport blocks, with the last block padded with zeros if
necessary.

 % Generate random data to transmit. Replace with user data if desired.
 txParam.txDataBits = randi([0 1],sysParam.trBlkSize,1);

 % Store data bits for BER calculations
 sysParam.txDataBits = [sysParam.txDataBits; txParam.txDataBits];
 sysParam.txDataBits = sysParam.txDataBits(max(1,end-2*sysParam.trBlkSize):end);

Transmitter Processing

The transmission grid populates signals and channels on a per-frame basis. The figure below shows
one transmission frame of 24 OFDM symbols with FFT length of 256.

 OFDM Transmitter and Receiver

1-17

Synchronization Symbol (SS)

A synchronization (sync) signal is transmitted as the first symbol in the frame and consists of a 62-
subcarrier signal centered at DC. This signal is designed to be bandwidth agnostic, meaning that all
transmitters can transmit this signal regardless of the allocated bandwidth for that cell. The signal is
meant to be detected by receivers to positively detect the cell signal and identify the frame boundary
(the start of the frame).

Reference Symbol (RS)

A reference symbol is transmitted next. The reference symbol provides the receiver with a known
reference to measure the channel distortion between the transmitter and receiver. The receiver
processing can compensate for that distortion to recover the original signal as much as possible.

Header Symbol

The header conveys the bandwidth, subcarrier modulation scheme, and code rate of the OFDM data
symbols to the receiver so that the receiver can properly decode the remainder of the frame. The

1 Communications Toolbox Featured Examples

1-18

information is important enough that it is transmitted with large signaling and coding margins to
maximize correct decoding. Therefore, the symbol is coded at 1/2 rate with wide interleaving and
modulated using BPSK. Since the channel distortion may change over time, the header symbol is
transmitted immediately after the reference symbol to maximize the probability of correct reception.
Because the bandwidth is not yet known, the header is always transmitted with a 72-subcarrier signal
centered at DC.

Pilot Signals

Finally, to combat phase jitter seen at higher transmission frequencies, a pilot is transmitted at fixed
subcarrier intervals within the data symbols to provide a phase reference to the receiver.

DC and Guard Subcarriers

Null subcarriers at the edge of the transmission spectrum are used to constrain spectral energy to a
specified bandwidth. The subcarrier at DC is also nulled to keep the signal energy to within the linear
range of the power amplifier.

Transmitter Architecture

The transmitter generates both control signals (sync, reference, header, and pilots) and data signals
(transport block). The sync, reference, and header symbols are generated separately and time-
multiplexed with the data symbols.

The data symbols comprise a single user populating a single transport block of data transmitted once
per frame. A comm.CRCGenerator object computes the CRC for the transport block payload and
appends it to the payload. The data is additively scrambled using a comm.PNSequence object to
distribute the data power evenly across the transmission spectrum. Interleaving is done with the
reshape function to resist burst errors caused by deep fades. Convolutional encoding adds

 OFDM Transmitter and Receiver

1-19

redundant bits for forward error correction and is done with the convenc function. Puncturing of the
data increases data throughput by reducing the number of redundant bits. The transport block is
modulated using the qammod function and is ready for transmission in an OFDM frame. All signals are
OFDM-modulated using the ofdmmod function. The signal is filtered to reduce out-of-band emissions
using dsp.FIRFilter, with coefficients generated using the firpmord and firpm filter design
functions.

 % Transmit data
 [txOut,txGrid,txDiagnostics] = helperOFDMTx(txParam,sysParam,txObj);

Apply Channel and Hardware Impairments

Introduce impairments to corrupt the transmitted signal, including fading, additive white Gaussian
noise (AWGN), and carrier frequency offset. The impulse response of the channel is optionally shown
to visualize potential inter-symbol interference leaking out of the cyclic prefix region of the OFDM
symbol.

Fading

A comm.RayleighChannel object is used to apply Rayleigh fading to the transmitted output. Using
an object allows for channel statistics to be retained internally between calls to the object. Because
the Doppler frequency is a function of transmission frequency, the normalized Doppler parameter is
used to convey the Doppler frequency and more easily show the impact of mobile speed independent
of the carrier frequency.

Additive Noise

The awgn function is used to apply AWGN to the faded signal. The input power into the awgn function
is calculated as a function of per-subcarrier constellation power and number of occupied subcarriers.
This input power is passed to the awgn function, along with the target SNR, to get the desired signal
SNR.

Carrier Frequency Offset

Finally, the frequency offset is applied within the channel block. By using the
comm.PhaseFrequencyOffset function to rotate the time-domain signal by the desired frequency.

 % Process one frame of samples through channel
 chanOut = helperOFDMChannel(txOut,chanParam,sysParam);

Channel Visualization

Use the spectrumAnalyzer function to visualize the received spectrum after fading and noise are
added to the transmitted signal. As the simulation runs, you can see how the received signal
constellation is negatively affected by the spectral nulls caused by multipath fading.

1 Communications Toolbox Featured Examples

1-20

 if userParam.enableScopes
 sa(txOut,chanOut);
 end

Receiver Processing

The receiver reverses the transmitter processing. It also must detect and correct distortions caused
by asynchronous timing, frequency offset, noise, time-varying fading, frequency-selective fading, and
phase jitter.

The signal is lowpass filtered to remove out-of-band energy that could introduce noise. At the start of
the receiver simulation, sync signal detection is performed by time-domain correlation and
thresholding to determine the start of the frame. Until the sync symbol is detected, the receiver is not
"camped" to any base station.

 OFDM Transmitter and Receiver

1-21

Following successful sync detection, 144 symbols are used by the automatic frequency correction
(AFC) to estimate the frequency offset by detecting the phase shift between the cyclic prefix (a copy
of the end of the symbol's samples that is transmitted at the beginning of an OFDM symbol) and the
end of the symbol. Six symbols are used to obtain one frequency offset estimate, and the last 24
estimates are averaged to obtain the final filtered CFO estimate. Combined with knowledge of the
duration of an OFDM symbol, the frequency offset can be estimated using inner product calculation.
The frequency offset is then corrected with a numerically controlled oscillator using the
comm.PhaseFrequencyOffset object. Once the signal is stable with respect to the timing offset
and frequency offset, the receiver is considered camped and connected, and a complete frame is
demodulated into OFDM subcarriers using ofdmdemod.

1 Communications Toolbox Featured Examples

1-22

To combat time-varying fading, two reference symbols from adjacent frames are used to estimate the
channel at different points in time, and then the channel estimates in between the two reference
symbols are linearly interpolated to provide the channel estimates for the header and data symbols.
The symbols are then equalized using the channel estimates with ofdmEqualize.

The header is extracted and decoded to obtain the data symbol parameters such as FFT length,
subcarrier modulation scheme, and code rate. The data symbols are then demodulated according to
the header parameters.

The pilots within the data symbols are used to estimate the common phase error (CPE) typically
caused by phase jitter in mmWave transmissions. CPE affects all subcarriers equally. The error is
derotated to remove the CPE from the data symbols, and the data subcarriers are soft-decoded into
log-likelihood ratios (LLRs) using the qamdemod function.

Once the bitstream is available, the bits are deinterleaved before maximum-likelihood decoding is
performed using the vitdec function which implements the Viterbi algorithm. The bits are then
descrambled, and the comm.CRCDetector object computes the CRC and compares it with the
appended CRC within the payload for transport block verification.

 % Run the receiver front-end
 rxIn = helperOFDMRxFrontEnd(chanOut,sysParam,rxObj);

 % Run the receiver processing
 [rxDataBits,isConnected,toff,rxDiagnostics] = helperOFDMRx(rxIn,sysParam,rxObj);

Sync symbol found.
Estimating carrier frequency offset

 OFDM Transmitter and Receiver

1-23

Receiver camped.
..
.....................

Sync symbol found.
Estimating carrier frequency offset
Receiver camped.
..
.....................

Sync symbol found.
Estimating carrier frequency offset
Receiver camped.
..
....................

.

 sysParam.timingAdvance = toff;

 % Collect bit and frame error statistics
 if isConnected
 % Continuously update the bit error rate using the |comm.ErrorRate|
 % system object
 BER = errorRate(...
 sysParam.txDataBits(end-(2*sysParam.trBlkSize)+(1:sysParam.trBlkSize)), ...
 rxDataBits);
 end

Receiver Performance Visualization

Use the comm.ConstellationDiagram object to display the header constellation and data
constellation in one plot. By varying the channel impairments, you can visualize the noise after
receiver impairment compensation for all subcarriers superimposed on the plot. EVM and MER can
be measured with respect to the reference constellation for each data modulation.

 if isConnected && userParam.enableScopes
 constDiag(complex(rxDiagnostics.rxConstellationHeader(:)), ...
 complex(rxDiagnostics.rxConstellationData(:)));
 end

1 Communications Toolbox Featured Examples

1-24

 end % frame loop

Clear Simulation and Compute Statistics

Following frame processing, clear out state information stored in persistent variables with the clear
command. Accumulated bit error rate and frame error rate statistics are calculated and displayed at
the simulated SNR. The simulation loads the next SNR and executes another run.

 % Clear out the |persistent| variables for the sync detection flag and
 % camped flag
 clear helperOFDMRx;
 clear helperOFDMRxSearch;

 % Compute data diagnostics
 if isConnected

 OFDM Transmitter and Receiver

1-25

 FER = sum(rxDiagnostics.dataCRCErrorFlag) / length(rxDiagnostics.dataCRCErrorFlag);
 fprintf('Simulation completed at %d SNR: BER = %d, FER = %d\n',SNRdB(simLoopIdx),BER(1),FER);
 BERResults(simLoopIdx) = BER(1);
 else
 fprintf('Simulation completed at %d SNR: Base station not detected.\n',SNRdB(simLoopIdx));
 fprintf('\n');
 BERResults(simLoopIdx) = 0.5; % default to high BER for plotting purposes
 end

Simulation completed at 20 SNR: BER = 3.178510e-02, FER = 4.719101e-01

Simulation completed at 25 SNR: BER = 9.162882e-03, FER = 3.370787e-01

Simulation completed at 30 SNR: BER = 1.465249e-03, FER = 2.808989e-01

 % Release object to reconfigure for the next simulation run
 release(errorRate);

% SNR loop end
end

Diagnostics

A diagnostic structure captures various parameters for analysis during the simulation. Receiver
performance can be recorded and plotted, such as the last frame's frequency offset tracking and
channel estimation tracking. Error metrics like BER and FER/BLER can also be calculated and
displayed.

% Plot the transmission grid
helperOFDMPlotResourceGrid(txGrid,sysParam);

1 Communications Toolbox Featured Examples

1-26

% Plot the frequency offset estimator output
figure;
plot(rxDiagnostics.estCFO*sysParam.scs);
hold on;
plot(foff*fsamp*ones(length(rxDiagnostics.estCFO),1)/1e6,'--');
title('Frequency estimate');
xlabel('Sample');
ylabel('Offset (Hz)');
grid on;
legend('Estimated','Actual');

 OFDM Transmitter and Receiver

1-27

% Plot the channel estimate for one subcarrier
figure;
plot(real(rxDiagnostics.estChannel(3,:)));
hold on;
plot(imag(rxDiagnostics.estChannel(3,:)));
title('Channel estimate, subcarrier 3');
xlabel('Symbol');
ylabel('Magnitude');
grid on;
legend('Real','Imag');

1 Communications Toolbox Featured Examples

1-28

% Plot a BER curve if more than one SNR was specified
if length(SNRdB) > 1
 figure;
 semilogy(SNRdB,BERResults+eps,'-*'); % add eps if no errors found
 title('BER curve');
 xlabel('SNR (dB)');
 ylabel('BER');
 grid on;
end

 OFDM Transmitter and Receiver

1-29

Summary

This example utilizes several MATLAB System objects and functions to perform DSP and digital
communications operations common within an OFDM transmission system. Various scopes and plots
help visualize the signal in both time and frequency domains to evaluate receiver performance.

Appendix

The following helper functions are used in this example:

Setup:

• helperOFDMTxInit.m
• helperOFDMRxInit.m
• helperOFDMSetParameters.m

Common tx/rx helpers:

• helperOFDMGetTables.m
• helperOFDMFrontEndFilter.m

Transmitter:

• helperOFDMTx.m

Channel:

1 Communications Toolbox Featured Examples

1-30

• helperOFDMChannel.m

Receiver:

• helperOFDMRx.m
• helperOFDMRxFrontEnd.m
• helperOFDMRxSearch.m
• helperOFDMChannelEstimation.m
• helperOFDMFrameSync.m
• helperOFDMFrequencyOffset.m

Visualization:

• helperOFDMPlotResourceGrid.m

The following helper functions can be modified to generate custom signals:

• helperOFDMPilotSignal.m
• helperOFDMRefSignal.m
• helperOFDMSyncSignal.m

 OFDM Transmitter and Receiver

1-31

Simulate and Verify Power Amplifier Backoff

This example shows how to use backoff to scale a signal prior to inputting it to a table-based power
amplifier. It also shows how to examine the power distribution of the signal input to the amplifier, and
to verify that the actual behavior of the amplifier matches the specification. The Appendix on page 1-
37 lists helper functions used in the example.

System Setup

M = 16; % Modulation order
fs = 1e6; % Sample rate in Hz & measurement bandwidth
sigDuration = 0.01; % sec
msgLen = round(sigDuration*fs); % Number of samples
totalTime = 0;

Specify the amplifier as a table-based object. Using measured amplifier data stored in an Excel
spreadsheet, read the output power vs. input power and phase change vs. input power. The powers
are given in dBm, and the phase change in degrees. The reference impedance is used to convert the
signal's voltage values to power values.

table = table2array(readtable(...
 "PACharacteristic.xlsx", ...
 PreserveVariableNames=true));
mnl = comm.MemorylessNonlinearity(...
 Method="Lookup table", ...
 Table=table, ...
 ReferenceImpedance=1);

Determine the input power that results in the peak output power. That input power is the point from
which the signal will be backed off. Use the input backoff to determine the required signal power at
the input to the amplifier.

[pkOpPwr, idxPk] = max(mnl.Table(:,2)); % dBm
ipPwrAtPkOut = mnl.Table(idxPk,1); % dBm
IBO = 6; % input backoff set point, dB
rqdIpPwr = ipPwrAtPkOut - IBO; % dBm

Plot AM/AM and AM/PM amplifier characteristics. The plotted values match those in the spreadsheet.

plot(mnl);

1 Communications Toolbox Featured Examples

1-32

System Simulation and Verification

Create a raised cosine transmit filter System object™ for pulse shaping.

txFilt = comm.RaisedCosineTransmitFilter(...
 Shape='Square root', ...
 RolloffFactor=0.2, ...
 FilterSpanInSymbols=10, ...
 OutputSamplesPerSymbol=4);

Create a power meter System object to measure power at multiple points in the processing chain. Set
the measurement window of the power meter to 10 ms.

pm = powermeter(...
 Measurement="Average power", ...
 WindowLength=round(sigDuration*fs), ...
 ReferenceLoad=mnl.ReferenceImpedance, ...
 PowerUnits="dBm");

Generate a modulated signal, filter it, scale it to -10 dBm, and measure powers. The filtered signal is
roughly constant amplitude throughout its duration, so the power measurement window can extend
over the entire duration.

filtTransient = ...
 txFilt.FilterSpanInSymbols*txFilt.OutputSamplesPerSymbol;
msg = randi([0 M-1],msgLen+filtTransient,1);
modOut = qammod(msg,M, ...
 UnitAveragePower=true); % 0 dBW (30 dBm)

 Simulate and Verify Power Amplifier Backoff

1-33

filtOut = txFilt(modOut);
filtOut = filtOut(1+filtTransient:end); % Truncate beginning transient
PFiltOutdBm = pm(filtOut);
Pdesired = -10; % dBm
scaleFactor = 10.^((Pdesired - PFiltOutdBm(end))/20);
filtOut = scaleFactor * filtOut;
reset(pm);
PFiltOutdBm = pm(filtOut);
fprintf('The filtered, scaled signal power is %4.2f dBm.\n', ...
 PFiltOutdBm(end))

The filtered, scaled signal power is -10.00 dBm.

PFiltOutdBW = PFiltOutdBm(end) - 30;

Scale the amplifier input power to the desired backoff. The measured power of the backed off signal
must be equal to the input power at peak output (5 dBm) less the input backoff (6 dB). The power
meter verifies that the signal has been properly backed off.

gain = helperBackoffGain(ipPwrAtPkOut,PFiltOutdBm(end),IBO);
ampIn = gain * filtOut;
reset(pm);
PAmpIndBm = pm(ampIn);
fprintf('The backed off signal power is %4.2f dBm.\n', ...
 PAmpIndBm(end))

The backed off signal power is -1.00 dBm.

Plot a histogram of instantaneous input power into the amplifier. The following figure shows that a
significant percentage of the amplifier input samples have a power that should cause gain
compression at the amplifier output. Many signal samples have powers above 0 dBm, where the
amplifier behaves nonlinearly.

PAmpInInst = abs(ampIn).^2 / mnl.ReferenceImpedance;
PAmpInInstdBm = 10*log10(PAmpInInst) + 30;
edges = -29:9;
histogram(PAmpInInstdBm,edges,Normalization="probability")
title("Instantaneous Power Probability");
xlabel("Instantaneous P_i_n (dBm)");
ylabel("Probability");
xlim([-30 10]);
grid on;

1 Communications Toolbox Featured Examples

1-34

Pass the signal through the amplifier. The measured average power at the amplifier output closely
corresponds to the expected instantaneous power illustrated by the previous figure.

ampOut = mnl(ampIn);
PAmpOutdBm = pm(ampOut);
fprintf('The amplifier output power is %4.2f dBm.\n', ...
 PAmpOutdBm(end))

The amplifier output power is 40.63 dBm.

Calculate average amplifier gain.

ampGaindB = PAmpOutdBm(end) - PAmpIndBm(end);
fprintf('The amplifier gain is %4.2f dB.\n', ...
 ampGaindB)

The amplifier gain is 41.63 dB.

Plot the specified and actual instantaneous Pout vs. Pin to show that the actual behavior of the
amplifier matches the behavior specified by the table-based object.

figure;
hFig = helperPlotAMAM(mnl); % Specified Pout vs. Pin
hold on;
pAmpOutInst = abs(ampOut).^2 / mnl.ReferenceImpedance;
pAmpOutInstdBm = 10*log10(pAmpOutInst) + 30; % Actual Pout vs Pin
plot(PAmpInInstdBm,pAmpOutInstdBm,'r*');
grid on;

 Simulate and Verify Power Amplifier Backoff

1-35

lines = hFig.Children.Children;
legend(lines([2 1]),Specified="Actual",Location="Northwest");

Create a constellation diagram to illustrate the amplifier input and output signals. The constellation
diagram of the 16QAM constellation shows the amplifier output has been slightly rotated (AM/PM
distortion), and the corner points have incurred some gain compression (AM/AM distortion).

constDiag = comm.ConstellationDiagram(...
 ShowReferenceConstellation=false, ...
 SamplesPerSymbol=txFilt.OutputSamplesPerSymbol, ...
 ShowLegend=true, ...
 ChannelNames={'Amp Input','Amp Output'});

% Set plot limits
maxLim = 2 * max(real(filtOut));
constDiag.XLimits = [-maxLim maxLim];
constDiag.YLimits = [-maxLim maxLim];

magFiltOut = sqrt(mean(abs(filtOut).^2));
magAmpOut = sqrt(mean(abs(ampOut).^2));
gain = magAmpOut / magFiltOut;
constDiag([filtOut,ampOut/gain]); % Scale amp output for plotting ease

1 Communications Toolbox Featured Examples

1-36

Exploring the Example

You can experiment with the example by trying different backoff levels or modulated signals (for
example, 64QAM or OFDM). You can load a spreadsheet with your own table-based Pout vs. Pin
characteristics to apply this backoff technique to your PA characterization.

Summary

This example demonstrated how to apply backoff to the input signal of a nonlinear amplifier. The
technique was verified by comparing Pout vs. Pin behavior of the specified and actual data.

Appendix

These helper files are used in the example:

 Simulate and Verify Power Amplifier Backoff

1-37

• helperBackoffGain.m
• helperPlotAMAM.m

1 Communications Toolbox Featured Examples

1-38

Indoor MIMO-OFDM Communication Link using Ray Tracing

This example shows how to perform ray tracing in an indoor environment and use the results to build
a channel model for a link level simulation with the MIMO-OFDM technique.

Introduction

Ray tracing [1] on page 1-49 has become a popular technique for radio frequency (RF) analysis, site
planning, channel modelling, and link level analysis due to the trend for modern communications
systems to operate at RF frequencies in the tens of GHz range. Unlike stochastic models, the ray
tracing method is 3-D environment and transceiver sites specific and can have high sensitivity in the
surrounding environment. Without a simple formula to calculate distance-based path losses, the ray
tracing method relies on numeric simulations, and is typically less costly than field measurements.
Results from ray tracing can be used to build multipath channel models for communication systems.
For example, a ray tracing based channel model has been specified in Section 8 of TR 38.901 [2] on
page 1-49 for 5G and in IEEE 802.11ay for WLAN [3] on page 1-49.

This example starts with ray tracing analysis between one transmitter site and one receiver site in a
3-D conference room. Computed rays are used to construct a deterministic channel model which is
specific for the two sites. The channel model is used in the simulation of a MIMO-OFDM
communication link. This diagram characterizes the communication link.

The ray tracing is performed in an indoor environment. The same ray tracing methods can be applied
to build channel models for indoor or outdoor environments. For ray tracing analysis in an outdoor
urban setting, refer to the “Urban Link and Coverage Analysis Using Ray Tracing” on page 3-20
example.

 Indoor MIMO-OFDM Communication Link using Ray Tracing

1-39

3-D Indoor Scenario

Specify the indoor 3-D map in STL format for a small conference room with one table and four chairs.
The STL format is one of the most common 3-D map formats and can often be converted from other 3-
D map formats in a variety of 3-D software.

mapFileName = "conferenceroom.stl";

Define carrier frequency at 5.8 GHz and calculate wavelength

fc = 5.8e9;
lambda = physconst("lightspeed")/fc;

The transmit antenna is a 4-element uniform linear array (ULA) which has twice of the wavelength
between the elements. The receive antenna is a 4x4 uniform rectangular array (URA) which has one
wavelength between the elements. Both antennas are specified by an arrayConfig object.

txArray = arrayConfig("Size",[4 1],"ElementSpacing",2*lambda);
rxArray = arrayConfig("Size",[4 4],"ElementSpacing",lambda);

Use the helperViewArray function to visualize the ULA and URA geometries where antenna elements
are numbered for input/output streams.

helperViewArray(txArray);

helperViewArray(rxArray);

1 Communications Toolbox Featured Examples

1-40

Specify a transmitter site close to the upper corner of the room, which can be a Wi-Fi access point.
Specify a receiver site slightly above the table and in front of a chair to represent a laptop or mobile
device.

tx = txsite("cartesian", ...
 "Antenna",txArray, ...
 "AntennaPosition",[-1.46; -1.42; 2.1], ...
 'TransmitterFrequency',5.8e9);

rx = rxsite("cartesian", ...
 "Antenna",rxArray, ...
 "AntennaPosition",[.3; .3; .85], ...
 "AntennaAngle",[0;90]);

Use the siteviewer function with the map file specified to view the scene in 3-D in Site Viewer. Use
the show function to visualize the transmitters and receivers.

siteviewer("SceneModel",mapFileName);
show(tx,"ShowAntennaHeight",false)
show(rx,"ShowAntennaHeight",false)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.

 Indoor MIMO-OFDM Communication Link using Ray Tracing

1-41

Ray Tracing

Perform ray tracing analysis between the transmitter and receiver sites and return the comm.Ray
objects, using the shooting and bouncing rays (SBR) method. Specify the surface material of the
scene as wood and search for rays with up to 2 reflections. The SBR method supports up to 10 order
of reflections.

pm = propagationModel("raytracing", ...
 "CoordinateSystem","cartesian", ...
 "Method","sbr", ...
 "AngularSeparation","low", ...
 "MaxNumReflections",2, ...
 "SurfaceMaterial","wood");

rays = raytrace(tx,rx,pm);

Extract the computed rays from the cell array return.

rays = rays{1,1};

Examine the ray tracing results by looking at the number of reflections, propagation distance and
path loss value of each ray. There are 24 rays found (one line-of-sight ray, 6 rays with one reflection,
and 17 rays with two reflections).

[rays.NumInteractions]

ans = 1×24

1 Communications Toolbox Featured Examples

1-42

 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[rays.PropagationDistance]

ans = 1×24

 2.7602 2.8118 2.8487 2.8626 3.2029 4.6513 4.6719 2.8988 2.9125 2.9481 3.2475 3.2916 3.3243 4.6821 4.7247 4.7331 4.7433 4.7936 4.9269 4.9464 5.9869 6.7170 8.0161 8.0460

[rays.PathLoss]

ans = 1×24

 56.5350 68.2594 70.1109 68.4824 73.3105 75.0911 75.1708 83.0074 83.4028 82.9619 84.6714 84.9932 85.7742 85.0379 83.0395 85.2208 89.4165 89.5028 85.6436 85.6669 90.3408 94.8430 95.6098 95.6684

Use the plot function to plot the rays in the 3-D scene in Site Viewer. Each ray is colored based on
its path loss value. Click on a ray to view information about that ray.

plot(rays,"Colormap",jet,"ColorLimits",[50, 95])

Deterministic Channel Model from Ray Tracing

Create a deterministic multipath channel model using the above ray tracing results. Specify the
instantaneous velocity of the receiver to reflect typical low mobility of a device in an indoor
environment.

rtChan = comm.RayTracingChannel(rays,tx,rx);
rtChan.SampleRate = 300e6;
rtChan.ReceiverVirtualVelocity = [0.1; 0.1; 0]

 Indoor MIMO-OFDM Communication Link using Ray Tracing

1-43

rtChan =
 comm.RayTracingChannel with properties:

 SampleRate: 300000000
 PropagationRays: [1×24 comm.Ray]
 MinimizePropagationDelay: true
 TransmitArray: [1×1 arrayConfig]
 TransmitArrayOrientationAxes: [3×3 double]
 ReceiveArray: [1×1 arrayConfig]
 ReceiveArrayOrientationAxes: [3×3 double]
 ReceiverVirtualVelocity: [3×1 double]
 NormalizeImpulseResponses: true
 NormalizeChannelOutputs: true
 ChannelFiltering: true

Use the showProfile object function to visualize the power delay profile (PDP), angle of departure
(AoD) and angle of arrival (AoA) of the rays in the channel. In the visualization, the PDP has taken
into account the transmit and receive array pattern gains in addition to the path loss for each ray.

showProfile(rtChan);

Use the info object function to obtain the number of transmit and receive elements.

rtChanInfo = info(rtChan)

rtChanInfo = struct with fields:
 CarrierFrequency: 5.8000e+09
 CoordinateSystem: 'Cartesian'
 TransmitArrayLocation: [3×1 double]

1 Communications Toolbox Featured Examples

1-44

 ReceiveArrayLocation: [3×1 double]
 NumTransmitElements: 4
 NumReceiveElements: 16
 ChannelFilterDelay: 7
 ChannelFilterCoefficients: [24×21 double]
 NumSamplesProcessed: 0
 LastFrameTime: 0

numTx = rtChanInfo.NumTransmitElements;
numRx = rtChanInfo.NumReceiveElements;

System Parameters

Configure a communications link that uses LDPC coding, 64-QAM and OFDM with 256 subcarriers.
Specify 4 LDPC codewords per frame, which results in 50 OFDM symbols per frame.

% Create LDPC encoder and decoder configuration objects
cfgLDPCEnc = ldpcEncoderConfig(dvbs2ldpc(1/2));
cfgLDPCDec = ldpcDecoderConfig(cfgLDPCEnc);
numCodewordsPerFrame = 4;
codewordLen = cfgLDPCEnc.BlockLength;

% Parameters for QAM modulation per subcarrier
bitsPerCarrier = 6;
modOrder = 2^bitsPerCarrier;
codeRate = cfgLDPCEnc.CodeRate;

% Create OFDM modulator and demodulator objects
fftLen = 256;
cpLen = fftLen/4;
numGuardBandCarriers = [9; 8];
pilotCarrierIdx = [19:10:119, 139:10:239]';
numDataCarriers = ...
 fftLen - sum(numGuardBandCarriers) - length(pilotCarrierIdx) - 1;
numOFDMSymbols = ...
 numCodewordsPerFrame * codewordLen / ...
 bitsPerCarrier / numDataCarriers / numTx;
ofdmMod = comm.OFDMModulator(...
 "FFTLength",fftLen,
 "NumGuardBandCarriers",numGuardBandCarriers, ...
 "InsertDCNull",true, ...
 "PilotInputPort",true, ...
 "PilotCarrierIndices",pilotCarrierIdx, ...
 "CyclicPrefixLength",cpLen, ...
 "NumSymbols",numOFDMSymbols, ...
 "NumTransmitAntennas",numTx);
ofdmDemod = comm.OFDMDemodulator(ofdmMod);
ofdmDemod.NumReceiveAntennas = numRx;
cd = comm.ConstellationDiagram(...
 "ReferenceConstellation", qammod(0:modOrder-1, modOrder, 'UnitAveragePower', true), ...
 "XLimits", [-2 2], ...
 "YLimits", [-2 2]);

Create an error rate calculation object to compute bit error rate (BER).

errRate = comm.ErrorRate;

Assign Eb/No value and derive SNR value from it for AWGN.

 Indoor MIMO-OFDM Communication Link using Ray Tracing

1-45

EbNo = 30; % in dB
SNR = convertSNR(EbNo,"ebno", ...
 "BitsPerSymbol",bitsPerCarrier, ...
 "CodingRate",codeRate);
SNRLin = 10^(SNR/10); % Linear

Link Simulation

The helperIndoorRayTracingWaveformGen function generates a waveform consisting of one frame at
the transmitter site by performing these following steps:

1 Encode randomly generated bits by LDPC
2 Modulate encoded bits by 64-QAM
3 Apply OFDM modulation to convert signals from frequency domain to time domain

rng(100); % Set RNG for repeatability
[txWave,srcBits] = ...
 helperIndoorRayTracingWaveformGen(...
 numCodewordsPerFrame,cfgLDPCEnc,modOrder,ofdmMod);

Pass the waveform through the ray tracing channel model and add white noise. To account for
channel filtering delay, append an additional null OFDM symbol to the end of the waveform.

chanIn = [txWave; zeros(fftLen + cpLen,numTx)];
[chanOut,CIR] = rtChan(chanIn);
rxWave = awgn(chanOut,SNRLin,numTx/numRx,'linear');

The helperIndoorRayTracingRxProcessing function decodes the channel-impaired waveform at the
receiver site by performing these following steps:

1 Perfect channel estimation using the channel impulse response (CIR) output and the channel
filter coefficients from the channel object's info method.

2 OFDM demodulation to bring the signals back into frequency domain
3 Symbol equalization on each subcarrier
4 Soft 64-QAM demodulation to get LLR
5 LDPC decoding

[decBits, eqSym] = ...
 helperIndoorRayTracingRxProcessing(rxWave,CIR, ...
 rtChanInfo,cfgLDPCDec,modOrder,ofdmDemod,SNRLin);
cd(eqSym(:));

1 Communications Toolbox Featured Examples

1-46

Calculate BER:

ber = errRate(srcBits,double(decBits));
disp(ber(1));

 0.0118

To plot a BER curve against a range of EbNo values, use the helperIndoorRayTracingSimulationLoop
function to repeat the above single frame processing for up to 300 frames at each EbNo value.

EbNoRange = 27:36;
helperIndoorRayTracingSimulationLoop(...
 cfgLDPCEnc,cfgLDPCDec,ofdmMod,ofdmDemod,rtChan,errRate, ...
 modOrder,numCodewordsPerFrame,EbNoRange);

 Indoor MIMO-OFDM Communication Link using Ray Tracing

1-47

Conclusion and Further Exploration

This example shows how to build a deterministic channel model using ray tracing results in an indoor
conference room. Link-level simulations using LDPC and MIMO-OFDM techniques were performed
for the channel model and BER results were plotted.

Further exploration includes but not limits to:

• Different 3-D maps and/or surface materials
• Different transmitter and/or receiver site positions
• Different transmit and/or receive antenna array specifications
• Different transmit and/or receive antenna array orientations
• Higher number of reflections for the SBR ray tracing method
• Transmit and/or receive beamforming

Appendix

This example uses the following helper functions:

• helperIndoorRayTracingRxProcessing.m
• helperIndoorRayTracingSimulationLoop.m
• helperIndoorRayTracingWaveformGen.m
• helperViewArray.m

1 Communications Toolbox Featured Examples

1-48

Selected Bibliography

[1] Z. Yun, and M. F. Iskander, “Ray tracing for radio propagation modeling: Principles and
applications,” IEEE Access, vol. 3, pp. 1089-1100, Jul. 2015.

[2] 3GPP TR 38.901. Study on channel model for frequencies from 0.5 to 100 GHz. 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

[3] Maltsev, A., et al. Channel Models for 802.11ay. IEEE 802.11-15/1150r9, March 2017.

See Also
Functions
propagationModel | raytrace

Objects
arrayConfig | siteviewer | comm.RayTracingChannel | ldpcEncoderConfig

Related Examples
• “Ray Tracing for Wireless Communications” on page 29-12

 Indoor MIMO-OFDM Communication Link using Ray Tracing

1-49

Effect of a High-Power Interferer on ADC Performance

This example shows the effect of a high-power in-band or out-of-band interferer on the performance
of a communications system with an analog-to-digital converter (ADC).

Introduction

Ideal multiuser communication systems, that use orthogonal frequency division multiplexed (OFDM)
signals and forward error correction (FEC), are essentially immune to high-power narrowband
interference because the narrowband interference affects only one or two subcarriers. For in-band
interference, FEC can recover the bit errors caused by these jammed subcarriers. For out-of-band
interferers, bandpass filtering can remove the adjacent channel interference in these ideal multiuser
systems.

In practical systems, an ADC digitizes signals received at the antenna. Since the ADC has a fixed full-
scale voltage , the input signal is first scaled to the , range. If the ADC has N bits of
resolution, then the maximum quantization error is given by . In a system with sufficient
bits of resolution (for example N=16) and no interfering signal, this quantization error is negligible as
compared to other noise sources in the system and can be ignored.

In the presence of a high-power interferer, the automatic gain controller (AGC) scales the whole
signal to fit in the full-scale range of the ADC. The scaling effectively reduces the number of bits used
to represent the desired signal. Since the quantization error does not change, the effective signal to
noise ratio decreases. Depending on the power of the interfering signal and the number of ADC bits,
the system performance can be adversely affected.

Simulating Effect of Narrowband Interferer on OFDM Signals

Generate an OFDM signal with 128 subcarriers. Assign a 64-QAM modulated signal to each
subcarrier. To exaggerate the quantization error effects, set the number of ADC bits to 7. Assume an
AWGN channel with 30 dB SNR for simplicity.

1 Communications Toolbox Featured Examples

1-50

M = 64; % Modulation order per subcarrier
numSC = 128; % Number of OFDM subcarriers
SNR = 30; % Signal-to-noise ratio in dB
numADCBits = 7; % Number of ADC bits

OFDM with ADC over AWGN Channel

Pass the generated OFDM signal through an AWGN channel. The AGC scales the received signal to
[-1 1] range. Pass the scaled signal through the bipolar ADC. Rescale the signal before applying
OFDM and QAM demodulation. The narrowbandInterfererAndOFDM function simulates this
system.

Run the simulation without interference. All the bits can be received without errors.

interfererAmp = 0;
ber = narrowbandInterfererAndOFDM(M,numSC,interfererAmp,numADCBits,SNR);
disp('BER:')
disp(ber)

BER:
 0

 Effect of a High-Power Interferer on ADC Performance

1-51

1 Communications Toolbox Featured Examples

1-52

 Effect of a High-Power Interferer on ADC Performance

1-53

OFDM with ADC over AWGN Channel with High-Power Interferer

Use a tone to interfere with the 50th subcarrier of the OFDM signal. Set the amplitude of the
interferer to 2 corresponding to an SIR value of about -28 dB. The high amplitude of the interfering
signal forces the AGC to reduce its gain to avoid saturation. This scaling decreases the number of bits
assigned to the desired signal and reduces the effective power of the desired signal. Quantization
noise is a function of the fixed full-scale voltage and the number of bits properties of the ADC. As a
result, the effective signal to noise ratio (SNR) decreases and the system starts to introduce bit
errors.

interfererAmp = 2;
ber = narrowbandInterfererAndOFDM(M,numSC,interfererAmp,numADCBits,SNR);
disp('BER:')
disp(ber)

BER:
 0.0531

1 Communications Toolbox Featured Examples

1-54

 Effect of a High-Power Interferer on ADC Performance

1-55

1 Communications Toolbox Featured Examples

1-56

Effect of Adjacent Channel Users on a Multiuser System

Modern communication systems define multiple signal bandwidths to provide flexibility in choosing
between highly reliable connections or high throughput. For example, 802.11 WLAN standard defines
channel bandwidths that range from 20 MHz to 160 MHz. This figure shows the available WLAN
channel bandwidths.

Typically, such systems are designed with fixed high bandwidth analog RF filters followed by
programmable digital filters. An AGC and ADC combo is used to digitize the analog signal. If one of
the users (i.e. channels) has much higher power than the rest of the users, the ADC quantization may
cause a low SNR value for the low power users. The following demonstrates such a scenario.

Consider a Wi-Fi like system where there are eight independent transmitters (Device 1-8) and eight
independent receivers (Device 1'-8'). Each transmitter-receiver pair is assigned one of the available
20 MHZ bands. 64-QAM modulated signals are OFDM modulated with 56 subcarriers in a bandwidth
of 20 MHz. As shown in this figure, eight possible users are carried over channels 36, 40, 44, 48, 52,

 Effect of a High-Power Interferer on ADC Performance

1-57

56, 60, and 54, with corresponding carrier frequencies (5180:20:5320) MHz. The receivers employ
analog filters that pass through the whole available 160 MHz band then use channelizer filters to
select the desired user. To simplify the simulation, assume same path loss and thermal noise for each
device pair. Also, the simulator uses the multiband combiner to combine signals from the eight users
in the channel and channelizer to separate them in an efficient way. The dotted lines show the
multiband combiner and channelizer.

M = 64; % Modulation order per subcarrier
noiseFigure = 7; % Noise figure in dB
numADCBits = 7; % Number of ADC bits

Multiuser System with ADC over AWGN Channel

Generate OFDM modulated signals for all the active users and combine them using a
comm.MultibandCombiner System object. Apply a path loss equivalent to a nominal distance of 10
meters. Pass the signal through an RF front-end with a noise figure of 7 dB to mimic an AWGN
channel. The AGC scales the received signal to a [-1 1] range. Pass the scaled signal through the
bipolar ADC. Rescale the signal after passing through the channelizer filter, which separates the user
signals. Then apply OFDM and QAM demodulation. All the bits can be received without errors. The
multiuserInterferenceAndADC function simulates this system.

Set all users as active with all users 0 dB relative gain. Run the simulation. All users operate without
errors.

activeUsers = [1 1 1 1 1 1 1 1];
userGaindB = [0 0 0 0 0 0 0 0];

ber = multiuserInterferenceAndADC(M,noiseFigure,numADCBits,activeUsers,userGaindB);

disp('BER for each user:')
disp(ber)

1 Communications Toolbox Featured Examples

1-58

BER for each user:
 0 0 0 0 0 0 0 0

Multiuser System with ADC over AWGN Channel with High Power User

Repeat the same experiment with a high-power user. Set the relative gain of the third user to 30 dB.
Due to the decrease in the effective signal power as compared to the quantization noise (except the
high-power user), the low power users experience bit errors and the BER performance degrades.

userGaindB = [0 0 30 0 0 0 0 0];
ber = multiuserInterferenceAndADC(M,noiseFigure,numADCBits,activeUsers,userGaindB);

disp('BER for each user:')
disp(ber)

BER for each user:
 Columns 1 through 7

 0.0369 0.0404 0 0.0408 0.0364 0.0383 0.0392

 Column 8

 0.0382

 Effect of a High-Power Interferer on ADC Performance

1-59

Further Exploration

The Narrowband Interferer and ADC Explorer app helps you quickly try different system settings to
explore the effect of a high-power narrowband interferer on the system performance due to the fixed
full-scale voltage and the quantization noise introduced by the ADC. Run the Narrowband
Interferer and ADC Explorer app.

1 Communications Toolbox Featured Examples

1-60

• Click "Simulation" switch to start the simulations.
• Change "QAM Modulation order" to 16.
• Increase the interferer amplitude to 4. Subcarrier 50 experiences interference by the narrowband

interferer. "Bit errors in a Frame" gauge shows bit error between 0 and 4 bits since a single
subcarrier is affected.

• Reduce the "Number of ADC Bits" in and observe the received spectrum and bit errors in a frame.
Around 7 bits, the ADC quantization errors start to degrade the system performance noticeably.

Experiment with different SNR and modulation order values and find out the limits of the system to
handle a high-power narrowband interferer.

The Multiuser Interference and ADC Explorer app helps you quickly try different system settings to
explore the effect of multiuser interference on the system performance due to the fixed full-scale
voltage and the quantization noise introduced by the ADC. Run the Multiuser Interference and
ADC Explorer app.

 Effect of a High-Power Interferer on ADC Performance

1-61

• Click "Simulation" switch to start the simulations.
• Change "QAM Modulation order" to 64.
• Increase the gain of the 1st user to 40 dB.
• Decrease the number of ADC bits in small steps. The noise floor in the received spectrum starts

increasing. Around 10 bits, the low power users start to experience bit errors.
• Reducing the number of ADC bits to 5, raises the noise floor above the signal level.

1 Communications Toolbox Featured Examples

1-62

Impact of RF Effects on Communication System Performance

This example shows how to use Communications Toolbox™ blocks to model thermal noise, phase
noise, and nonlinearity impairments of an RF transceiver. The model measures the effects of the
impairments on the bit error rate (BER) of a communications system.

Overview

The ImpactOfRFEffectsOnCommSystemPerformance model shown in this figure, includes blocks
to simulate a transmitter, a channel, a receiver, and to measure and visualize communications link
performance.

The transmitter models:

• A 16QAM-modulated waveform of random bits
• A square root raised cosine (RRC) pulse-shaping filter to limit spectral leakage and minimize

interference (ISI)
• A memoryless power amplifier (PA) with an ideal (infinite) third order intercept (IIP3). The IIP3

value can be changed to model a more realistic PA. The transmitter PA models the third order
nonlinearity because it is the major source of degradation at that end of the link.

The channel models 138 dB of free space path loss.

The RF receiver front end models the analog portion of the receiver, prior to analog-to-digital
conversion. It includes:

 Impact of RF Effects on Communication System Performance

1-63

• A low noise amplifier (LNA) with an ideal noise figure (NF) of 0 dB and a power gain of 20 dB. The
NF can be changed to model a more realistic LNA. At this end of the link, noise is a much more
significant source of degradation than nonlinearity.

• An RF demodulator (RFD) with minimal phase noise. This value can also be changed to model a
more realistic RFD. The phase noise can be a significant source of degradation for a 16QAM link.

• An automatic gain control (AGC) to properly scale the signal prior to quantizing.

The remainder of the receiver models:

• An idealized analog-to-digital converter (ADC) with 12 bits of quantization
• An RRC filter for noise reduction and ISI minimization
• A hard decision 16QAM demodulator

The model testbench includes:

• Power meters before and after the transmitter PA
• Power spectrum scopes before and after the ADC, to illustrate the spectral effects of nonlinear
amplification, noise addition, phase noise, and quantization

• A constellation diagram after the receive filter, with error vector magnitude (EVM) calculation
turned on

• Resettable BER calculation

The model sets some parameter values by creating base workspace variables in its preload function.
It sets additional values by creating additional base workspace variables through the initialization of
the Model Parameters block.

Run the Simulation

The default model configuration has nonzero EVM and shows distortion of the signal in the
constellation diagram below, due to the finite lengths of the transmit and receive FIR filters.

1 Communications Toolbox Featured Examples

1-64

In this same default configuration, the received power spectrum below is noiseless and has no
nonlinear distortions. The sidelobes of the spectrum are from the transmit and receive filter
responses.

 Impact of RF Effects on Communication System Performance

1-65

The Error Rate Calculation (ERC) block computes the system BER. In the default configuration,
with the ERC block discarding transient effects at the beginning of the simulation, the BER is 0.

Exploring the Example

You can investigate multiple RF effects by using the Model Parameters block. By default the Model
Parameters block mask default settings applies distortionless values for transmitter IIP3, LNA noise
figure, RF Demodulator phase noise, and the ADC number of bits. Typical degraded value levels are
shown after the '%' for each of these parameters in the block mask. If you run the simulation with any
one of these degraded values set, you will see effects in the constellation, spectrum, and/or BER.

You can reset the following parameters in the Model Parameters block while the simulation is
running:

• Transmitter IIP3
• LNA noise figure
• ADC number of bits
• ADC full scale voltage

To specify new phase noise values, stop the model first.

For example, if the transmitter IIP3 is set to 15 dBm, the signal spectrum and constellation diagram
show a degraded signal, and the BER degrades to approximately 2.8e-3.

1 Communications Toolbox Featured Examples

1-66

 Impact of RF Effects on Communication System Performance

1-67

You can reset the BER counter while the simulation is running, by double-clicking on the manual
switch twice. This is useful to examine the BER effect when you change a parameter value during
simulation.

Summary

This example showed how various RF front end impairments, such as amplifier nonlinearities and
phase noise, can impact the spectrum, EVM, and BER of a communications system.

See Also
Blocks
AGC | Memoryless Nonlinearity | Phase Noise | Power Meter

Related Examples
• “Impact of Thermal Noise on Communication System Performance” (RF Blockset)
• “Idealized Baseband Amplifier with Nonlinearity and Noise” on page 2-2

1 Communications Toolbox Featured Examples

1-68

Interference Modeling

This example shows interference modeling in a bent pipe satellite communications link using
Communications Toolbox™.

Introduction

Signal interference is the addition of unwanted signals to a desired signal and is a common problem
in many communications systems. Some examples of interference are:

1 The coexistence of 5G and LTE waveforms in the same or similar frequency bands results in one
waveform interfering with another waveform

2 Signals from a secondary base station interfering with the signal from the primary base station at
a mobile device

3 Downlink adjacent satellite interference occurs when the ground receiving antenna receives
significant signal levels from beams of adjacent satellites

4 Interference occurs when a satellite receives and re-broadcasts a strong uplink signal from
secondary ground station

Modeling such interference scenarios allows you to analyze their impact on system performance and
to design mitigation strategies.

System Setup

This example models a bent pipe satellite communication link and illustrates how to model an uplink
interference scenario. A bent pipe link consists of an uplink from a ground station to a satellite, which
acts as a repeater, and downlinks to another ground station without performing any bit-level
processing. The satellite transponder receives a primary signal and an interfering signal from a
secondary ground station. The combined signal is re-broadcast by the satellite, received and
processed at the ground station.

A Multiband Combiner block provides an efficient approach to combine the primary and the
interfering signals at baseband. The Multiband Combiner block interpolates the two signals so that
the resulting sample rate of the signals guarantees no aliasing when the signals are frequency shifted
to model the interference scenario. Then it applies the specified frequency shifts to the signals and
combines them into one signal. The block allows modeling of various amounts of spectral overlap to
simulate varying severity of interference. For more information, see the Multiband Combiner block
reference page.

System Simulation

Each of the two baseband signals has a bandwidth of 500 kHz as seen in the Tx Signal Spectrum
scope. The Frequency offsets parameter of the Multiband Combiner block is set up to model
spectral overlap of 100 kHz. This spectral overlap is seen in the Rx Signal Spectrum that shows the
spectra of the signals received at the satellite transponder and ground station receiver.

A bit error rate of 0 shows that the system performance is not degraded by this amount of
interference. Also, the Received Signal Constellation at the ground station receiver is well clustered
around the reference QPSK constellation of the primary signal with a low RMS EVM.

 Interference Modeling

1-69

1 Communications Toolbox Featured Examples

1-70

Increase the interference effect by increasing the spectral overlap between the two signals. The
increased interference degrades the system performance, as seen from the nonzero bit error rate and
a more spread out received signal constellation with higher RMS EVM.

 Interference Modeling

1-71

Summary and Further Exploration

This example illustrates a technique to model signal interference that is common in many wireless
communications systems. The Multiband Combiner block encompasses the necessary processing of
interpolation, frequency shift and signal combining required to simulate various interference
scenarios. Other ways to explore interference with this model include:

1 Using baseband signals with different bandwidths
2 Activating and deactivating interference using the switch in 'Interfering Signal' subsystem
3 Modeling more than two baseband signals and more than one interfering signal
4 Modeling various amounts of interference by setting parameters of Signal Aggregator block

appropriately
5 Modeling various approaches to minimize the impact of interference at the satellite transponder

and ground station receiver

Experiment with the Multiband Combiner block and possibly alter the processing necessary for the
particular interference scenario. When the Output sample rate options parameter is set to 'Auto',
the Multiband Combiner block interpolates the input signals such that the frequency content of the
original signals is not distorted after they are frequency shifted. You can also interpolate the
baseband input signals to the rate you desire before using the Multiband Combiner block and set the
Output sample rate options parameter to 'Specify via property', set Output sample rate to the
same value as 'Input sample rate' which will turn off the builtin interpolation. This example uses two
signals, but the block can process any number of input signals once they are concatenated into a
matrix.

“Multiband Signal Generation” on page 1-73 example illustrates a comm.MultibandCombiner
System object™ to perform similar processing as the Multiband Combiner block in MATLAB®.

See “Adjacent and Co-Channel Interference” on page 1-207 example to model the effects of adjacent
and co-channel interference on a signal.

1 Communications Toolbox Featured Examples

1-72

Multiband Signal Generation

This example shows how to generate a multiband signal efficiently using the Communications
Toolbox™.

Introduction

The explosive growth of consumer demand for higher data rates in mobile applications leads to
higher transmission rates. Most modern wireless standards include a technique to enhance the data
capacity by combining two or more carriers into one data channel. This technique is called carrier
aggregation in 5G and LTE terminology, and channel bonding in Wi-Fi® terminology. This figure
illustrates three different types of carrier aggregation.

 Multiband Signal Generation

1-73

System Setup

This example demonstrates one approach to model carrier aggregation in a baseband simulation. Two
baseband signals are generated - one is a QPSK modulated signal and the other is a GMSK modulated
signal. Each signal occupies 60 kHz of bandwidth.

A MultibandCombiner System object™ performs the tasks necessary for carrier aggregation. If the
sample rate of the input signals is not high enough, the frequency content will be distorted when the
original signals are frequency shifted to produce the desired carrier aggregation. Setting the
OutputSampleRateSource property to "Auto" configures the object to automatically compute the
output sample rate and interpolate the two signals if necessary to ensure that the resulting signal
sample rate is high enough to avoid aliasing. The info method of the System object shows the
sample rate of the output signal. After the interpolation, the object applies the specified frequency
shifts to the signals and combines them into one signal. For more information about the algorithm
processing, see the comm.MultibandCombiner reference page.

System Simulation

nFrames = 10; % Number of data frames
M = 4; % Modulation order (QPSK modulation)
Fs1 = 60e3; % Input sample rate

qpskTxFilter = comm.RaisedCosineTransmitFilter(RolloffFactor=0.3, ...
 OutputSamplesPerSymbol=2);

gmskMod = comm.GMSKModulator(BitInput=true,SamplesPerSymbol=2);

Create two multiband combiner objects One with specified frequency offsets for the intra-band
contiguous aggregation and a second with specified frequency offsets for the intra-band
noncontiguous aggregation.

sigCombinerCB = comm.MultibandCombiner(...
 InputSampleRate=Fs1, ...
 FrequencyOffsets=[-30e3, 30e3], ...
 OutputSampleRateSource="Auto");
Fs2 = info(sigCombinerCB).OutputSampleRate;

sigCombinerNCB = comm.MultibandCombiner(...
 InputSampleRate=Fs1, ...
 FrequencyOffsets=[-60e3, 60e3],OutputSampleRateSource="Auto");
Fs3 = info(sigCombinerNCB).OutputSampleRate;

Create individual spectrum analyzer scopes to display the baseband signals, the intra-band
contiguous signal, and the intra-band noncontiguous signal.

scopeSF = 0.7; % Scale factor for scope position
spectrumBB = spectrumAnalyzer(...
 Name="Baseband Signals", ...
 NumInputPorts=2, ...
 SampleRate=60e3, ...
 ShowLegend=true, ...
 ChannelNames={'QPSK Signal','GMSK Signal'});
spectrumBB.Position = scopeSF * spectrumBB.Position;
spectrumBB.Position(1) = spectrumBB.Position(1) - ...
 spectrumBB.Position(3);

spectrumCB = spectrumAnalyzer(...

1 Communications Toolbox Featured Examples

1-74

 Name="Intra-Band Contiguous", ...
 NumInputPorts=1, ...
 SampleRate=Fs2);
spectrumCB.Position = scopeSF * spectrumCB.Position;

spectrumNCB = spectrumAnalyzer(...
 Name="Intra-Band Non-Contiguous", ...
 NumInputPorts=1, ...
 SampleRate=Fs3);
spectrumNCB.Position = scopeSF * spectrumNCB.Position;
spectrumNCB.Position(1) = spectrumNCB.Position(1) + ...
 spectrumNCB.Position(3);

for k = 1:nFrames

 % Generate QPSK signal
 data = randi([0, M-1],200,1);
 modSig = pskmod(data,M,pi/4,"gray");
 qpskSignal = qpskTxFilter(modSig);

 % Generate GMSK signal
 data = randi([0, 1],200,1);
 gmskSignal = gmskMod(data);

 % Visualize the two baseband signals
 spectrumBB(qpskSignal,gmskSignal)

 % Upsample, frequency shift and combine the two signals to model
 % intra-band contiguous carrier aggregation.
 combinedSignal = sigCombinerCB([qpskSignal,gmskSignal]);

 % Visualize the resulting signal
 spectrumCB(combinedSignal)

 % Upsample, frequency shift and combine the two signals to model
 % intra-band non contiguous or inter-band non contiguous carrier
 % aggregation.
 combinedSignal = sigCombinerNCB([qpskSignal,gmskSignal]);

 % Visualize the resulting signal
 spectrumNCB(combinedSignal)
end

 Multiband Signal Generation

1-75

1 Communications Toolbox Featured Examples

1-76

Visualization

Intra-band contiguous aggregation results in a signal that has two original signals, each 60 kHz wide,
occupying two contiguous bands of 60 kHz each. In intra-band non-contiguous aggregation, the two
signals occupy non-contiguous bands as shown by the gap between the signal spectra in the Intra-
Band Non-Contiguous Spectrum Analyzer. Inter-band non-contiguous aggregation can be similarly
achieved by appropriate frequency shifts of the signals.

Summary and Further Exploration

This example illustrates a technique to model the carrier aggregation that is used by most modern
wireless communications standards to increase data rates. A System object is used to encapsulate the
necessary processing of interpolation, frequency shift and signal combining. You can explore further
in various ways:

1 Use baseband signals with different bandwidths. As MultibandCombiner System object
requires all input signals to have the same sample rate, resample one or more signals to bring all
baseband signals to the same rate before using MultibandCombiner System object.

2 Aggregate more than two baseband signals.
3 Use different aggregation bands and carriers to model inter-band non-contiguous aggregation.

Also, explore the MultibandCombiner System object to study and possibly alter the processing
necessary for carrier aggregation. Besides configuring the object to automatically compute the output
sample rate by setting the OutputSampleRateSource to "Auto", you can also interpolate the
baseband input signals to the rate you desire before using the MultibandCombiner object, then set
the OutputSampleRateSource to "Property" and set the "OutputSampleRate" equal to
"InputSampleRate" which configures the System object to not perform any interpolation.

 Multiband Signal Generation

1-77

Ship Tracking Using AIS Signals

This example shows how to track ships by processing automatic identification system (AIS) signals.
You can use captured signals or receive signals in real time using an RTL-SDR radio, an ADALM-
PLUTO radio or a USRP™ Radio . You can also show the tracked ships on a map using the Mapping
Toolbox™.

Required Hardware and Software

To run this example using captured signals, you need the Communications Toolbox™.

To receive signals in real time, you also need one of these SDR devices and the corresponding
support package Add-On:

• An RTL-SDR radio and the Communications Toolbox Support Package for RTL-SDR Radio software
Add-On

• An ADALM-PLUTO radio and the Communications Toolbox Support Package for Analog Devices
ADALM-PLUTO Radio software Add-On

• A USRP radio and the corresponding Communications Toolbox Support Package for USRP Radio
software Add-On

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Overview

In marine transportation, vessel traffic services use AIS as a component of the marine traffic
monitoring system. AIS performs these functions:

• Transmit vessel identifier, position, course, and speed.
• Receive and process specified interrogating calls.
• Operate continuously while sailing or at anchor.

AIS has these attributes:

• A transmit frequency in the range 156.025 MHz-162.025 MHz
• Gaussian frequency shift keying modulation
• A bit rate of 9600 bits/sec
• A transmit bandwidth-time product of 0.4
• A receive bandwidth-time product of 0.5
• A modulation index of 0.5

AIS transmission packets contain these fields:

• Training Sequence — 24-bit sequence of alternating zeros and ones (0101...)
• Start Flag — 8-bit sequence, 01111110
• Data — The data portion is 168 bits long in the default transmission packet
• Frame Check Sequence (FCS) — Uses the cyclic redundancy check (CRC) 16-bit polynomial to

calculate the checksum

1 Communications Toolbox Featured Examples

1-78

https://www.mathworks.com/discovery/sdr.html

• End Flag — Identical to the start flag
• Buffer — 24 bits long to account for bit stuffing (maximum 4 bits), distance delay (14 bits), and

synchronization jitter (6 bits)

This figure shows the AIS packet format

Receiver Structure

This block diagram shows the receiver code structure. The processing has three main parts: signal
source, physical layer and data viewer.

Signal Source

Specify the signal source as one of these values

• ''File'' — Uses the comm.BasebandFileReader object to read a file that contains a captured
signal.

• ''RTL-SDR'' — Uses an RTL-SDR radio to receive a live signal.
• ''ADALM-PLUTO'' — Uses a Pluto radio to receive a live signal.
• ''USRP'' — Uses a USRP radio to receive a live signal.

The example uses a signal symbol rate of 9600 Hz and 24 samples per symbol.

 Ship Tracking Using AIS Signals

1-79

If you specify ''RTL-SDR'' as the signal source, the example searches your computer for an RTL-SDR
radio at the radio address '0' and uses that radio as the signal source.

If you specify ''ADALM-PLUTO'' as the signal source, the example searches your computer for a Pluto
radio at the radio address 'usb:0' and uses that radio as the signal source.

If you specify ''USRP'' as the signal source, the example searches your computer for a USRP radio at
the radio address you specify and uses that radio as the signal source.

Physical Layer

The physical layer (PHY) processes the baseband samples from the signal source to produce packets
that contain the ship position information and raw message bytes. This figure shows the PHY
processing components.

• Packet Search — Search for the strongest burst in the received signal by dividing into multiple
windows.

• DC Offset Removal — Remove DC offset from the detected signal.
• Frequency Compensation — Estimate and compensate for the carrier frequency offset.
• Matched Filtering — Perform filtering with a Gaussian pulse generated according to AIS
specifications.

• Synchronization and Demodulation — Perform timing synchronization by correlating the received
signal with the known preamble and demodulate to produce bits.

• AIS Bit Parser — Detect the Start Flag and End Flags, then perform CRC detection. If the CRC is
successful, then decodes the ship information.

AIS signal contains 64 specific message types. Ship position information is included in 11 of the
message types. In this example, you decode all of the 11 message types that contain ship position
information.

This example lists the ship position information including the ship ID, latitude, and longitude, as well
as the associated date and time in a table. For decoding additional information from the messages,
see [1 on page 1-83].

Data Viewer

1 Communications Toolbox Featured Examples

1-80

The data viewer shows the received messages on a graphical user interface (GUI). As data is
captured, the application lists information that it decodes from these messages in a table.

Track Ships Using AIS Signals

The default configuration runs for a duration of 10 seconds and uses signal data from a captured data
file, and outputs to a text file. To provide input values from the command line, you must change
cmdlineInput to 1, then you will be prompted to enter the following information when you run the
example:

1 Reception duration in seconds,
2 Signal source (Captured data file or RTL-SDR radio or ADALM-PLUTO radio or USRP radio),
3 Optional output methods (map, text file, or both).

cmdlineInput = 0;
if cmdlineInput
 % Request user input from the command-line for application parameters
 userInput = helperAISUserInput;
else
 load('defaultInputs.mat');
end
% Calculate AIS parameters based on the user input
[aisParam,sigSrc] = helperAISConfig(userInput);

% Create the data viewer object and configure based on user input
viewer = helperAISViewer('LogFileName',userInput.LogFilename, ...
 'SignalSourceType',userInput.SignalSourceType);

% Launch map based on user input
if userInput.LaunchMap
 startMapUpdate(viewer);
end

% Log data based on user input
if userInput.LogData
 startDataLog(viewer);
end

% Start the viewer and initialize radio time
start(viewer)
radioTime = 0;

% Main loop for capturing and decoding the AIS samples
while radioTime < userInput.Duration
 if aisParam.isSourceRadio
 if aisParam.isSourceRTLSDRRadio % For RTL-SDR
 [rcv,~,lost,~] = sigSrc();
 lostFlag = logical(lost);
 elseif aisParam.isSourcePlutoSDRRadio % For ADALM-PLUTO
 [rcv,~,lostFlag] = sigSrc();
 elseif aisParam.isSourceUSRPRadio % For USRP
 [rcv,~,lostFlag] = sigSrc();
 end
 else % For baseband file
 rcv = sigSrc();
 lostFlag = uint32(0);
 end

 Ship Tracking Using AIS Signals

1-81

 % Recover the information by decoding AIS samples
 [info, pkt] = helperAISRxPhy(rcv,aisParam);

 % View decoded information on viewer
 update(viewer, info, pkt, lostFlag);

 % Update radio time
 radioTime = radioTime + aisParam.FrameDuration;
end

% Stop the viewer and release the signal source
stop(viewer)

release(sigSrc)

If you have the Mapping Toolbox, you can also observe AIS tracking of ships on a map.

1 Communications Toolbox Featured Examples

1-82

Further Exploration

You can investigate AIS signals using the AISExampleApp. To launch the app, enter AISExampleApp
in the MATLAB® Command Window. Use the app interface to select the signal source and change the
duration.

You can explore the supporting functions and System objects for details of the physical layer
implementation.

• helperAISRxPhy.m
• helperAISRxPhyPacketSearch.m
• helperAISRxPhyFreqComp.m
• helperAISRxPhySyncDemod.m
• helperAISRxPhyBitParser.m

References

 Ship Tracking Using AIS Signals

1-83

matlab:commandwindow;AISExampleApp

[1] Recommendation ITU-R M.1371-5. "Technical characteristics for an automatic identification
system using time division multiple access in the VHF maritime mobile frequency band",
International Telecommunication Union. https://www.itu.int/rec/R-REC-M.1371-5-201402-I/en

1 Communications Toolbox Featured Examples

1-84

https://www.itu.int/rec/R-REC-M.1371-5-201402-I/en

Link Budget Analysis

In the design of wireless communications links between two sites, issues of range, throughput, and
received signal quality are of critical importance to the system engineer. Link budget analysis
accounts for all gains and losses in the communication link. Some factors and design choices, such as
propagation path length, signal polarization, and antenna feed cable, degrade signal quality, while
others, such as the power amplifier and antenna size, can increase transmitted signal strength.

Introduction

This example uses linkBudgetAnalyzer app to tabulate system parameters and compute gains and
losses that impact system performance.

linkBudgetAnalyzer

Settings

Separate tabs specify settings for Uplink and Downlink. The Uplink and Downlink tabs contain
these collapsible input parameter sections:

• Link: Contains link level parameters, such as frequency, bandwidth, required Eb/N0
• Transmitter: Contains transmitter specific parameters
• Receiver: Contains the receiver specific parameters
• Propagation: Contains parameters to specify various atmospheric elements that are used to

compute losses in the signal propagation path

After specifying the uplink and downlink settings, select Analyze to update the gains and losses
reported in the Results tab and the tabs with plots of free space path loss (FSPL) and G/T for uplink
and downlink.

Results

The Results tab contains Uplink and Downlink collapsible sections that provide the link budget
results for uplink and downlink, respectively. The Appendix contains a list of functions used to
compute the results.

 Link Budget Analysis

1-85

• Distance and Elevation are computed from the Latitude, Longitude and Altitude input
parameters for the transmitter and receiver.

• Tx Antenna gain and Rx Antenna gain are functions of the corresponding Antenna diameter,
Antenna efficiency, and Frequency input parameters.

• Tx EIRP is a function of the Amplifier power, Amplifier backoff loss, Feeder loss, Radome
loss, Other losses, and Tx Antenna gain input parameters. Tx EIRP, which represents
transmitted equivalent isotropically radiated power (EIRP), is the amount of power that would
have to be radiated by an isotropic antenna to produce the equivalent power density observed
from the actual antenna in a specified direction. Typically, EIRP is quoted for antenna boresight,
which is defined as the axis of maximum radiation.

• The transmitted signal power is diminished by the geometric spreading of the wavefront. This loss
is represented by Free space path loss which is computed using the <docid:comm_ref#bsrduog
fspl> function, Distance, and Frequency.

• Rain attenuation is computed by the <docid:comm_ref#bu6e5ui rainpl> function using
Distance, Frequency, Rain rate, Elevation and Polarization tilt. The
<docid:comm_ref#bu6e5ui rainpl> function applies the International Telecommunication Union
(ITU) rainfall attenuation model which applies only for frequencies at 1-1000 GHz. [1] on page 1-
88

• The <docid:comm_ref#bu6gf3c-1 fogpl> function computes Fog/Cloud attenuation using
Distance, Frequency, Fog/Cloud temperature and Fog/Cloud water density. The
<docid:comm_ref#bu6gf3c-1 fogpl> function applies the ITU cloud and fog attenuation model
which is valid only for frequencies at 10-1000 GHz. [2] on page 1-88

1 Communications Toolbox Featured Examples

1-86

• Atmospheric gas attenuation is a function of Distance, Frequency, Temperature,
Atmospheric pressure and Water vapor density and is calculated using the
<docid:comm_ref#bu6ghsw-1 gaspl> function which applies ITU atmospheric gas attenuation
model that is valid for frequencies at 1-1000 GHz. [3] on page 1-88

• Polarization loss is derived from Polarization mismatch angle.
• Total propagation losses consists of all the above-mentioned losses.
• Tx EIRP is diminished by Total propagation losses and receiver Radome loss to provide

Received isotropic power at the receiver.
• At the receiver, the antenna increases the Received isotropic power by Rx Antenna gain, while

Feeder loss and Other losses decrease the signal power. Received signal power shows the net
result.

• Rx G/T provides information on the performance of the receiver and is computed from Rx
Antenna gain and System temperature. The receiver performance improves as G/T increases.

• C/N represents SNR (Signal-to-Noise Ratio) and is a function of Received signal power, System
temperature, Bandwidth and Boltzmann's constant.

• *C/No* is computed from C/N and Bandwidth.
• Received Eb/No indicates energy per bit and is a function of C/No and Bit rate.
• Margin is computed from Received Eb/No, Required Eb/No, and Implementation loss. One

goal when performing a link budget analysis is to have a satisfactory margin for the chosen data
rate, bandwidth, EIRP and receiver figure of merit. Often some adjustment is needed to get the
desired link margin.

Visualization

For path loss and receiver performance plots, see the uplink and downlink FSPL and G/T tabs. Free
space path loss constitutes the largest component of propagation losses. It is proportional to distance
and frequency. Receiver figure of merit increases with antenna gain, which is proportional to antenna
diameter. The specified Frequency and receiver Antenna diameter are shown by the red * marker
in the plots.

Appendix

Following functions are used to compute the various parameters and losses mentioned in this
example:

• computeAntennaGain.m
• computeAtmGasAtt.m
• computeCbyN0.m
• computeCbyN.m
• computeDistance.m
• computeEbN0.m
• computeEIRP.m
• computeFigureOfMerit.m
• computeFogAtt.m
• computeFSPL.m
• computeMargin.m

 Link Budget Analysis

1-87

• computePolarizationLoss.m
• computeRainAtt.m
• computeWavelength.m

References

1 Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.

2 Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.840-6: Attenuation due to clouds and fog. 2013.

3 Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.676-10: Attenuation by atmospheric gases 2013.

See Also
Satellite Link Budget Analyzer

Related Examples
• “Link Budget Analysis” (Satellite Communications Toolbox)

1 Communications Toolbox Featured Examples

1-88

Parallel Concatenated Convolutional Coding: Turbo Codes

This example characterizes the performance of turbo codes over a noisy channel. It shows the basic
structure of turbo codes at the transmitter and receiver. We chose the Long Term Evolution (LTE)
specifications [4] for the constituent component parameters.

The invention of turbo codes [1], along with the development of iterative decoding principles with
near Shannon limit performance, has led to their absorption in a wide variety of applications some of
which include deep space communications, third generation wireless standards, and digital video
broadcasting [3].

Available Example Implementations

This example includes both MATLAB® and Simulink® implementations:

MATLAB script using System objects: commTurboCoding.m

Simulink model using System blocks: commpccc.slx

Simulink model using variable-sized code-blocks: commpcccvs.slx

Both the MATLAB and Simulink implementations of the system are set up so you can simulate the
system over a range of Eb/No values for user-specified system parameters like code block length and
number of decoding iterations. The following sections use the fixed-size code-block Simulink
implementation to describe the details of the coding scheme.

Turbo Encoder

A comm.TurboEncoder is a parallel concatenation scheme with multiple constituent Convolutional
encoders. The first encoder operates directly on the input bit sequence, while any others operate on
interleaved input sequences, obtained by interleaving the input bits over a block length.

 Parallel Concatenated Convolutional Coding: Turbo Codes

1-89

The System block based Turbo Encoder block uses two identical 8-state recursive systematic
convolutional encoders. The comm.ConvolutionalEncoder System object™ uses the "Terminated"
setting for the TerminationMethod property. This restores the encoders to the starting all-zeros
state for each frame of data the block processes. The internal block interleaver uses pre-computed
permutation indices, based on the user-specified Code block length parameter (see the Model
Parameters block). The bit reordering subsystem removes the extra set of systematic bits from
the second encoder output and realizes the trellis termination as per [4].

Iterative Decoding

For iterative decoding of the parallel concatenated encoding scheme, the comm.TurboDecoder uses
the a posteriori probability (APP) decoder [2] as the constituent decoder component.

Each comm.APPDecoder System object corresponds to a constituent encoder which provides an
updated sequence of log-likelihood values for the uncoded bits from the received sequence of log-
likelihoods for the channel (coded) bits. For each set of received channel sequences, the decoder
iteratively updates the log-likelihoods for the uncoded bits until a stopping criterion is met. This
example uses a fixed number of decoding iterations, as specified by the Number of decoding
iterations parameter in the model's Model Parameters block. The default number of iterations is
six.

The TerminationMethod property for the APP Decoder System object is set to be "Terminated" to
match the encoders. The decoder does not assume knowledge of the tail bits and as a result, these
are excluded from the multiple iterations.

The internal interleaver of the decoder is identical to the one the encoder uses. It reorders the
sequences so that they are properly aligned at the two decoders.

BER Performance

The following figure shows the bit error rate performance of the parallel concatenated coding scheme
in an AWGN channel over a range of Eb/No values for two sets of code block lengths and number of
decoding iterations.

1 Communications Toolbox Featured Examples

1-90

As the figure shows, the iterative decoding performance improves with an increase in the number of
decoding iterations (at the expense of computational complexity) and larger block lengths (at the
expense of decoding latency).

Variable-Sized Turbo Coding

The companion model commpcccvs.slx highlights turbo coding using variable-sized code-blocks
within a simulation run.

 Parallel Concatenated Convolutional Coding: Turbo Codes

1-91

The model is set up to run two user specified code-block lengths, which vary as per the selected
control signal. The interleaver indices per block length and the noise variance are calculated per time
step. Using the CRC syndrome detector, the model displays the code-block error rate in addition to
the bit error rate, as the former is the more relevant performance metric with variable-sized code
blocks.

CBER Performance

The following figure shows the code-block error rate performance of the parallel concatenated coding
scheme in an AWGN channel over a range of Eb/No values for a similar set up as used for BER.

1 Communications Toolbox Featured Examples

1-92

We observe similar improvements as before in performance with increase in the number of decoding
iterations and/or block lengths.

Further Exploration

The example allows you to explore the effects of different block lengths and number of decoding
iterations on the system performance. It supports all of the 188 code block sizes specified in [4] for a
user-specified fixed number of decoding iterations.

Selected References

1 C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error correcting coding and
decoding: turbo codes," Proc. IEEE® Int. Conf. on Communications, Geneva, Switzerland, May
1993, pp. 1064-1070.

2 Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, "A Soft-Input Soft-Output Maximum A
Posterior (MAP) Module to Decode Parallel and Serial Concatenated Codes," JPL TDA Progress
Report, Vol. 42-127, Nov. 1996.

3 Schlegel, Christian B. and Lance C. Perez, "Trellis and Turbo Coding", IEEE Press, 2004.
4 3GPP TS 36.212 v10.8.0, "3rd Generation partnership project; Technical specification group

radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding (Release 10)", 2013-06.

 Parallel Concatenated Convolutional Coding: Turbo Codes

1-93

Tail-Biting Convolutional Coding

This model shows how to use the Convolutional Encoder and Viterbi Decoder blocks to
simulate a tail-biting convolutional code. Terminating the trellis of a convolutional code is a key
parameter in the code's performance for packet-based communications. Tail-biting convolutional
coding is a technique of trellis termination which avoids the rate loss incurred by zero-tail
termination at the expense of a more complex decoder [1].

The example uses an ad-hoc suboptimal decoding method for tail-biting decoding and shows how the
encoding is achieved for a feed-forward encoder. Bit-Error-Rate performance comparisons are made
with the zero-tailed case for a standard convolutional code.

Tail-Biting Encoding

Tail-biting encoding ensures that the starting state of the encoder is the same as its ending state (and
that this state value does not necessarily have to be the all-zero state). For a rate 1/n feed-forward
encoder, this is achieved by initializing the m memory elements of the encoder with the last m
information bits of a block of data of length L, and ignoring the output. All of the L bits are then input
to the encoder and the resultant L*n output bits are used as the codeword.

This is modeled by the Tail-biting Convolutional Encoder subsystem in the following model,
commtailbiting.slx:

1 Communications Toolbox Featured Examples

1-94

matlab:commtailbiting

For a block length of 100 bits, the encoder subsystem outputs 200 bits for a rate 1/2 feed-forward
encoder with 6 memory elements. The Display block in the subsystem indicates the initial and final
states are identical for each block of processed data.

The Convolutional Encoder blocks use the "Truncated (reset every frame)" setting for the Operation
mode parameter to indicate the block-wise processing.

Refer to the “Tailbiting Encoding Using Feedback Encoders” on page 16-53 as per [2] on how to
achieve tail-biting encoding for a feedback encoder.

Zero-Tailed Encoding

In comparison, the zero-tail termination method appends m zeros to a block of data to ensure the
feed-forward encoder starts from and ends in the all-zero state for each block. This incurs a rate loss
due to the extra tail bits (i.e. non-informational bits) that are transmitted.

Referring to the following model, commterminatedcnv.slx,

observe that for the same block length of 100 bits, the encoder output now includes the zero-tail bits
resulting in an actual code rate of 100/212 which is less than that achieved by the tail-biting encoder.

The Convolutional Encoder block uses the "Terminate trellis by appending bits" setting for the
Operation mode parameter for this case, which works for feedback encoders as well.

 Tail-Biting Convolutional Coding

1-95

matlab:commterminatedcnv

Tail-Biting Decoding

The maximum likelihood tail-biting decoder involves determining the best path in the trellis under the
constraint that it starts and ends in the same state. A way to implement this is to run M parallel
Viterbi algorithms where M is the number of states in the trellis, and select the decoded bits based on
the Viterbi algorithm that gives the best metric. However this makes the decoding M times more
complex than that for zero-tailed encoding.

This example uses an ad-hoc suboptimum scheme as per [3], which is much simpler than the
maximum likelihood approach and yet performs comparably. The scheme is based on the premise that
the tail-biting trellis can be considered circular as it starts and ends in the same state. This allows the
Viterbi algorithm to be continued past the end of a block by repeating the received codeword
circularly. As a result, the model repeats the received codeword from the demodulator and runs this
data set through the Viterbi decoder, performing the traceback from the best state at the end of the
repeated data set. Only a portion of the decoded bits from the middle are selected as the decoded
message bits.

The Operation mode parameter for the Viterbi Decoder block is set to be "Truncated" for the tail-
biting case while it is set to "Terminated" for the zero-tailed case.

BER Performance

The example compares the Bit-error-rate performance of the two termination methods for hard-
decision decoding in an AWGN channel over a range of Eb/No values. Note that the two models are
set such that they can be simulated over a range of Eb/No values using BERTool.

1 Communications Toolbox Featured Examples

1-96

As the figure shows the ad-hoc tail-biting decoding scheme performs comparatively close to the lower
bounded performance of the zero-tailed convolutional code for the chosen parameters.

Further Exploration

Upon loading, the models initialize a set of variables that control the simulation. These include the
block length, Eb/No and the maximum number of errors and bits simulated. You are encouraged to
play with the values of these variables to see their effects on the link performance.

Note that the ad-hoc decoding scheme's performance is sensitive to the block length used. Also the
performance of the code is dependent on the traceback decoding length used for the Viterbi
algorithm.

Selected Bibliography

1 H. Ma and J. Wolf, "On Tail Biting convolutional codes," IEEE Transactions on Communications,
Vol. COM-34, No. 2, Feb. 1986, pp. 104-11.

2 C. Weiss, C. Bettstetter, S. Riedel, "Code Construction and Decoding of Parallel Concatenated
Tail-Biting Codes," IEEE Transactions on Information Theory, vol. 47, No. 1, Jan. 2001, pp.
366-386.

 Tail-Biting Convolutional Coding

1-97

3 Y. E. Wang and R. Ramesh, "To Bite or not to Bite ? A study of Tail Bits vs. Tail-Biting," Personal,
Indoor and Mobile Radio Communications, 1996. PIMRC'96, Seventh IEEE® International
Symposium, Volume 2, Oct. 15-18, 1996, Page(s):317 - 321.

1 Communications Toolbox Featured Examples

1-98

Log-Likelihood Ratio (LLR) Demodulation

This example shows the BER performance improvement for QPSK modulation when using log-
likelihood ratio (LLR) instead of hard-decision demodulation in a convolutionally coded
communication link. With LLR demodulation, one can use the Viterbi decoder either in the
unquantized decoding mode or the soft-decision decoding mode. Unquantized decoding, where the
decoder inputs are real values, though better in terms of BER, is not practically viable. In the more
practical soft-decision decoding, the demodulator output is quantized before being fed to the decoder.
It is generally observed that this does not incur a significant cost in BER while significantly reducing
the decoder complexity. We validate this experimentally through this example.

For a Simulink™ version of this example, see “LLR vs. Hard Decision Demodulation in Simulink” on
page 1-136.

Initialization

Initialize simulation parameters.

M = 4; % Modulation order
bitsPerIter = 1.2e4; % Number of bits to simulate
EbNo = 3; % Information bit Eb/No in dB

Initialize coding properties for a rate 1/2, constraint length 7 code.

codeRate = 1/2; % Code rate of convolutional encoder
constLen = 7; % Constraint length of encoder
codeGenPoly = [171 133]; % Code generator polynomial of encoder
tblen = 32; % Traceback depth of Viterbi decoder
trellis = poly2trellis(constLen,codeGenPoly);

Create a comm.ConvolutionalEncoder System object™ by using trellis as an input.

enc = comm.ConvolutionalEncoder(trellis);

Channel

The signal going into the AWGN channel is the modulated encoded signal. To achieve the required
noise level, adjust the Eb/No for coded bits and multi-bit symbols. Calculate the SNR value based on
the Eb/No value you want to simulate.

SNR = convertSNR(EbNo,"ebno","BitsPerSymbol",log2(M),"CodingRate",codeRate);

Viterbi Decoding

Create comm.ViterbiDecoder objects to act as the hard-decision, unquantized, and soft-decision
decoders. For all three decoders, set the traceback depth to tblen.

decHard = comm.ViterbiDecoder(trellis,'InputFormat','Hard', ...
 'TracebackDepth',tblen);

decUnquant = comm.ViterbiDecoder(trellis,'InputFormat','Unquantized', ...
 'TracebackDepth',tblen);

decSoft = comm.ViterbiDecoder(trellis,'InputFormat','Soft', ...
 'SoftInputWordLength',3,'TracebackDepth',tblen);

 Log-Likelihood Ratio (LLR) Demodulation

1-99

Calculating the Error Rate

Create comm.ErrorRate objects to compare the decoded bits to the original transmitted bits. The
Viterbi decoder creates a delay in the decoded bit stream output equal to the traceback length. To
account for this delay, set the ReceiveDelay property of the comm.ErrorRate objects to tblen.

errHard = comm.ErrorRate('ReceiveDelay',tblen);
errUnquant = comm.ErrorRate('ReceiveDelay',tblen);
errSoft = comm.ErrorRate('ReceiveDelay',tblen);

System Simulation

Generate bitsPerIter message bits. Then convolutionally encode and modulate the data.

txData = randi([0 1],bitsPerIter,1);
encData = enc(txData);
modData = pskmod(encData,M,pi/4,InputType="bit");

Pass the modulated signal through an AWGN channel.

[rxSig,noiseVariance] = awgn(modData,SNR);

Before using a comm.ViterbiDecoder object in the soft-decision mode, the output of the
demodulator needs to be quantized. This example uses a comm.ViterbiDecoder object with a
SoftInputWordLength of 3. This value is a good compromise between short word lengths and a
small BER penalty. Define partition points for 3-bit quantization.

demodLLR.Variance = noiseVariance;
partitionPoints = (-1.5:0.5:1.5)/noiseVariance;

Demodulate the received signal and output hard-decision bits.

hardData = pskdemod(rxSig,M,pi/4,OutputType="bit");

Demodulate the received signal and output LLR values.

LLRData = pskdemod(rxSig,M,OutputType="llr");

Hard-decision decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataHard = decHard(hardData);
berHard = errHard(txData,rxDataHard);

Unquantized decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataUnquant = decUnquant(LLRData);
berUnquant = errUnquant(txData,rxDataUnquant);

Soft-decision decoding

Pass the demodulated data to the quantiz function. This data must be multiplied by -1 before being
passed to the quantizer, because, in soft-decision mode, the Viterbi decoder assumes that positive
numbers correspond to 1s and negative numbers to 0s. Pass the quantizer output to the Viterbi
decoder. Compute the error statistics.

1 Communications Toolbox Featured Examples

1-100

quantizedValue = quantiz(-LLRData,partitionPoints);
rxDataSoft = decSoft(double(quantizedValue));
berSoft = errSoft(txData,rxDataSoft);

Running Simulation Example

Simulate the previously described communications system over a range of Eb/No values by executing
the simulation file simLLRvsHD. It plots BER results as they are generated. BER results for hard-
decision demodulation and LLR demodulation with unquantized and soft-decision decoding are
plotted in red, blue, and black, respectively. A comparison of simulation results with theoretical
results is also shown. Observe that the BER is only slightly degraded by using soft-decision decoding
instead of unquantized decoding. The gap between the BER curves for soft-decision decoding and the
theoretical bound can be narrowed by increasing the number of quantizer levels.

This example may take some time to compute BER results. If you have the Parallel Computing
Toolbox™ (PCT) installed, you can set usePCT to true to run the simulation in parallel. In this case,
the file LLRvsHDwithPCT is run.

To obtain results over a larger range of Eb/No values, modify the appropriate supporting files. Note
that you can obtain more statistically reliable results by collecting more errors.

usePCT = false;
if usePCT && license('checkout','Distrib_Computing_Toolbox') ...
 && ~isempty(ver('parallel'))
 LLRvsHDwithPCT(1.5:0.5:5.5,5);
else
 simLLRvsHD(1.5:0.5:5.5,5);
end

 Log-Likelihood Ratio (LLR) Demodulation

1-101

Appendix

The following functions are used in this example:

• simLLRvsHD.m — Simulates system without PCT.
• LLRvsHDwithPCT.m — Simulates system with PCT.
• simLLRvsHDPCT.m — Helper function called by LLRvsHDwithPCT.

1 Communications Toolbox Featured Examples

1-102

FBMC vs. OFDM Modulation

This example compares Filter Bank Multi-Carrier (FBMC) with Orthogonal Frequency Division
Multiplexing (OFDM) and highlights the merits of the candidate modulation scheme for Fifth
Generation (5G) communication systems.

FBMC was considered as an alternate waveform to OFDM in the 3GPP RAN study phase I during
3GPP Release 14.

Introduction

This example compares Filter Bank Multi-Carrier (FBMC) modulation with generic OFDM
modulation. FBMC offers ways to overcome the known limitations of OFDM of reduced spectral
efficiency and strict synchronization requirements. These advantages have led it to being considered
as one of the modulation techniques for 5G communication systems [2 on page 1-108, 4 on page 1-
108].

This example models Filter Bank Multi-Carrier modulation with configurable parameters and
highlights the basic transmit and receive processing.

s = rng(211); % Set RNG state for repeatability

System Parameters

Define system parameters for the example. You can modify these parameters to explore their impact
on the system.

numFFT = 1024; % Number of FFT points
numGuards = 212; % Guard bands on both sides
K = 4; % Overlapping symbols, one of 2, 3, or 4
numSymbols = 100; % Simulation length in symbols
bitsPerSubCarrier = 2; % 2: 4QAM, 4: 16QAM, 6: 64QAM, 8: 256QAM
snrdB = 12; % SNR in dB

Filter Bank Multi-Carrier Modulation

FBMC filters each subcarrier modulated signal in a multicarrier system. The prototype filter is the
one used for the zero frequency carrier and is the basis for the other subcarrier filters. The filters are
characterized by the overlapping factor, K which is the number of multicarrier symbols that overlap
in the time domain. The prototype filter order can be chosen as 2*K-1 where K = 2, 3, or 4 and is
selected as per the PHYDYAS project [1 on page 1-108].

The current FBMC implementation uses frequency spreading. It uses an N*K length IFFT with
symbols overlapped with a delay of N/2, where N is the number of subcarriers. This design choice
makes it easy to analyze FBMC and compare with other modulation methods.

To achieve full capacity, offset quadrature amplitude modulation (OQAM) processing is employed. The
real and imaginary parts of a complex data symbol are not transmitted simultaneously, as the
imaginary part is delayed by half the symbol duration.

The transmit-end processing is shown in the following diagram.

 FBMC vs. OFDM Modulation

1-103

% Prototype filter
switch K
 case 2
 HkOneSided = sqrt(2)/2;
 case 3
 HkOneSided = [0.911438 0.411438];
 case 4
 HkOneSided = [0.971960 sqrt(2)/2 0.235147];
 otherwise
 return
end
% Build symmetric filter
Hk = [fliplr(HkOneSided) 1 HkOneSided];

% Transmit-end processing
% Initialize arrays
L = numFFT-2*numGuards; % Number of complex symbols per OFDM symbol
KF = K*numFFT;
KL = K*L;
dataSubCar = zeros(L, 1);
dataSubCarUp = zeros(KL, 1);

sumFBMCSpec = zeros(KF*2, 1);
sumOFDMSpec = zeros(numFFT*2, 1);

numBits = bitsPerSubCarrier*L/2; % account for oversampling by 2
inpData = zeros(numBits, numSymbols);
rxBits = zeros(numBits, numSymbols);
txSigAll = complex(zeros(KF, numSymbols));
symBuf = complex(zeros(2*KF, 1));

% Loop over symbols
for symIdx = 1:numSymbols

 % Generate mapped symbol data
 inpData(:, symIdx) = randi([0 1], numBits, 1);
 modData = qammod(inpData(:, symIdx), 2^bitsPerSubCarrier, ...
 'InputType', 'Bit', 'UnitAveragePower', true);

 % OQAM Modulator: alternate real and imaginary parts
 if rem(symIdx,2)==1 % Odd symbols
 dataSubCar(1:2:L) = real(modData);
 dataSubCar(2:2:L) = 1i*imag(modData);
 else % Even symbols
 dataSubCar(1:2:L) = 1i*imag(modData);
 dataSubCar(2:2:L) = real(modData);
 end

1 Communications Toolbox Featured Examples

1-104

 % Upsample by K, pad with guards, and filter with the prototype filter
 dataSubCarUp(1:K:end) = dataSubCar;
 dataBitsUpPad = [zeros(numGuards*K,1); dataSubCarUp; zeros(numGuards*K,1)];
 X1 = filter(Hk, 1, dataBitsUpPad);
 % Remove 1/2 filter length delay
 X = [X1(K:end); zeros(K-1,1)];

 % Compute IFFT of length KF for the transmitted symbol
 txSymb = fftshift(ifft(X));

 % Transmitted signal is a sum of the delayed real, imag symbols
 symBuf = [symBuf(numFFT/2+1:end); complex(zeros(numFFT/2,1))];
 symBuf(KF+(1:KF)) = symBuf(KF+(1:KF)) + txSymb;

 % Compute power spectral density (PSD)
 currSym = complex(symBuf(1:KF));
 [specFBMC, fFBMC] = periodogram(currSym, hann(KF, 'periodic'), KF*2, 1);
 sumFBMCSpec = sumFBMCSpec + specFBMC;

 % Store transmitted signals for all symbols
 txSigAll(:,symIdx) = currSym;
end

% Plot power spectral density
sumFBMCSpec = sumFBMCSpec/mean(sumFBMCSpec(1+K+2*numGuards*K:end-2*numGuards*K-K));
plot(fFBMC-0.5,10*log10(sumFBMCSpec));
grid on
axis([-0.5 0.5 -180 10]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['FBMC, K = ' num2str(K) ' overlapped symbols'])
set(gcf, 'Position', figposition([15 50 30 30]));

 FBMC vs. OFDM Modulation

1-105

The power spectral density of the FBMC transmit signal is plotted to highlight the low out-of-band
leakage.

OFDM Modulation with Corresponding Parameters

For comparison, we review the existing OFDM modulation technique, using the full occupied band,
however, without a cyclic prefix.

for symIdx = 1:numSymbols

 inpData2 = randi([0 1], bitsPerSubCarrier*L, 1);
 modData = qammod(inpData2, 2^bitsPerSubCarrier, ...
 'InputType', 'Bit', 'UnitAveragePower', true);

 symOFDM = [zeros(numGuards,1); modData; zeros(numGuards,1)];
 ifftOut = sqrt(numFFT).*ifft(ifftshift(symOFDM));

 [specOFDM,fOFDM] = periodogram(ifftOut, rectwin(length(ifftOut)), ...
 numFFT*2, 1, 'centered');
 sumOFDMSpec = sumOFDMSpec + specOFDM;
end

% Plot power spectral density (PSD) over all subcarriers
sumOFDMSpec = sumOFDMSpec/mean(sumOFDMSpec(1+2*numGuards:end-2*numGuards));
figure;
plot(fOFDM,10*log10(sumOFDMSpec));
grid on
axis([-0.5 0.5 -180 10]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['OFDM, numFFT = ' num2str(numFFT)])
set(gcf, 'Position', figposition([46 50 30 30]));

1 Communications Toolbox Featured Examples

1-106

Comparing the plots of the spectral densities for OFDM and FBMC schemes, FBMC has lower side
lobes. This allows a higher utilization of the allocated spectrum, leading to increased spectral
efficiency.

FBMC Receiver with No Channel

The example implements a basic FBMC demodulator and measures the BER for the chosen
configuration in the absence of a channel. The processing includes matched filtering followed by
OQAM separation to form the received data symbols. These are de-mapped to bits and the resultant
bit error rate is determined. In the presence of a channel, linear multi-tap equalizers may be used to
mitigate the effects of frequency-selective fading.

The receive-end processing is shown in the following diagram.

BER = comm.ErrorRate;

% Process symbol-wise
for symIdx = 1:numSymbols
 rxSig = txSigAll(:, symIdx);

 % Add WGN
 rxNsig = awgn(rxSig, snrdB, 'measured');

 % Perform FFT
 rxf = fft(fftshift(rxNsig));

 % Matched filtering with prototype filter
 rxfmf = filter(Hk, 1, rxf);
 % Remove K-1 delay elements
 rxfmf = [rxfmf(K:end); zeros(K-1,1)];
 % Remove guards
 rxfmfg = rxfmf(numGuards*K+1:end-numGuards*K);

 % OQAM post-processing
 % Downsample by 2K, extract real and imaginary parts
 if rem(symIdx, 2)
 % Imaginary part is K samples after real one
 r1 = real(rxfmfg(1:2*K:end));
 r2 = imag(rxfmfg(K+1:2*K:end));
 rcomb = complex(r1, r2);
 else
 % Real part is K samples after imaginary one
 r1 = imag(rxfmfg(1:2*K:end));
 r2 = real(rxfmfg(K+1:2*K:end));
 rcomb = complex(r2, r1);
 end
 % Normalize by the upsampling factor
 rcomb = (1/K)*rcomb;

 FBMC vs. OFDM Modulation

1-107

 % De-mapper: Perform hard decision
 rxBits(:, symIdx) = qamdemod(rcomb, 2^bitsPerSubCarrier, ...
 'OutputType', 'bit', 'UnitAveragePower', true);
end

% Measure BER with appropriate delay
BER.ReceiveDelay = bitsPerSubCarrier*KL;
ber = BER(inpData(:), rxBits(:));

% Display Bit error
disp(['FBMC Reception for K = ' num2str(K) ', BER = ' num2str(ber(1)) ...
 ' at SNR = ' num2str(snrdB) ' dB'])

FBMC Reception for K = 4, BER = 0 at SNR = 12 dB

% Restore RNG state
rng(s);

Conclusion and Further Exploration

The example presents the basic transmit and receive characteristics of the FBMC modulation
scheme. Explore this example by changing the number of overlapping symbols, FFT lengths, guard
band lengths, and SNR values.

Refer to “UFMC vs. OFDM Modulation” on page 1-118 for an example that describes the Universal
Filtered Multi-Carrier (UFMC) modulation scheme.

FBMC is considered advantageous in comparison to OFDM by offering higher spectral efficiency. Due
to the per subcarrier filtering, it incurs a larger filter delay (in comparison to UFMC) and also
requires OQAM processing, which requires modifications for MIMO processing.

Further explorations should include modifications for MIMO processing with more complete link-level
processing including channel estimation and equalization [2 on page 1-108].

Selected Bibliography

1 "FBMC physical layer: a primer", PHYDYAS EU FP7 Project 2010. http://www.ict-phydyas.org
2 Schellman, M., Zhao, Z., Lin, H., Siohan, P., Rajatheva, N., Luecken, V., Ishaque, A., "FBMC-based

air interface for 5G mobile: Challenges and proposed solutions", CROWNCOM 2014, pp 102-107.
3 Farhang-Boroujeny, B., "OFDM versus filter bank multicarrier", IEEE® Signal Proc. Mag., vol. 28,

pp. 92-112, May 2011.
4 Wunder, G., Kasparick, M., Wild, T., Schaich, F., Yejian Chen, Dryjanski, M., Buczkowski, M.,

Pietrzyk, S., Michailow, N., Matthe, M., Gaspar, I., Mendes, L., Festag, A., Fettweis, G., Dore, J.-B.,
Cassiau, N., Ktenas, D., Berg, V., Eged, B., Vago, P., "5GNOW: Intermediate frame structure and
transceiver concepts", Globecom workshops, pp. 565-570, 2014.

See Also
Functions
ofdmmod | ofdmdemod | qammod | qamdemod

1 Communications Toolbox Featured Examples

1-108

Objects
powermeter

Related Examples
• “SC-FDMA vs. OFDM Modulation” on page 1-2
• “F-OFDM vs. OFDM Modulation” on page 1-110
• “UFMC vs. OFDM Modulation” on page 1-118

 FBMC vs. OFDM Modulation

1-109

F-OFDM vs. OFDM Modulation

This example compares Orthogonal Frequency Division Multiplexing (OFDM) with Filtered-OFDM (F-
OFDM) and highlights the merits of the candidate modulation scheme for Fifth Generation (5G)
communication systems.

Introduction

This example compares Filtered-OFDM modulation with generic Cyclic Prefix OFDM (CP-OFDM)
modulation. For F-OFDM, a well-designed filter is applied to the time domain OFDM symbol to
improve the out-of-band radiation of the sub-band signal, while maintaining the complex-domain
orthogonality of OFDM symbols.

This example models Filtered-OFDM modulation with configurable parameters. It highlights the filter
design technique and the basic transmit/receive processing.

s = rng(211); % Set RNG state for repeatability

System Parameters

Define system parameters for the example. These parameters can be modified to explore their impact
on the system.

numFFT = 1024; % Number of FFT points
numRBs = 50; % Number of resource blocks
rbSize = 12; % Number of subcarriers per resource block
cpLen = 72; % Cyclic prefix length in samples

bitsPerSubCarrier = 6; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
snrdB = 18; % SNR in dB

toneOffset = 2.5; % Tone offset or excess bandwidth (in subcarriers)
L = 513; % Filter length (=filterOrder+1), odd

Filtered-OFDM Filter Design

Appropriate filtering for F-OFDM satisfies the following criteria:

• Should have a flat passband over the subcarriers in the sub-band
• Should have a sharp transition band to minimize guard-bands
• Should have sufficient stop-band attenuation

A filter with a rectangular frequency response, i.e. a sinc impulse response, meets these criteria. To
make this causal, the low-pass filter is realized using a window, which, effectively truncates the
impulse response and offers smooth transitions to zero on both ends [3 on page 1-117].

numDataCarriers = numRBs*rbSize; % number of data subcarriers in sub-band
halfFilt = floor(L/2);
n = -halfFilt:halfFilt;

% Sinc function prototype filter
pb = sinc((numDataCarriers+2*toneOffset).*n./numFFT);

% Sinc truncation window
w = (0.5*(1+cos(2*pi.*n/(L-1)))).^0.6;

1 Communications Toolbox Featured Examples

1-110

% Normalized lowpass filter coefficients
fnum = (pb.*w)/sum(pb.*w);

% Filter impulse response
h = fvtool(fnum, 'Analysis', 'impulse', 'Fs', 15.36e6);

% Use dsp filter objects for filtering
filtTx = dsp.FIRFilter('Structure', 'Direct form symmetric', ...
 'Numerator', fnum);
filtRx = clone(filtTx); % Matched filter for the Rx

F-OFDM Transmit Processing

In F-OFDM, the sub-band CP-OFDM signal is passed through the designed filter. As the filter's
passband corresponds to the signal's bandwidth, only the few subcarriers close to the edge are
affected. A key consideration is that the filter length can be allowed to exceed the cyclic prefix length
for F-OFDM [1 on page 1-117]. The inter-symbol interference incurred is minimized due to the filter
design using windowing (with soft truncation).

Transmit-end processing operations are shown in the following F-OFDM transmitter diagram.

 F-OFDM vs. OFDM Modulation

1-111

% Set up a figure for spectrum plot
hFig = figure('Position', figposition([46 50 30 30]), 'MenuBar', 'none');
axis([-0.5 0.5 -200 -20]);
hold on;
grid on
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['F-OFDM, ' num2str(numRBs) ' Resource blocks, ' ...
 num2str(rbSize) ' Subcarriers each'])

% Generate data symbols
bitsIn = randi([0 1], bitsPerSubCarrier*numDataCarriers, 1);

% QAM Symbol mapper
symbolsIn = qammod(bitsIn, 2^bitsPerSubCarrier, 'InputType', 'bit', ...
 'UnitAveragePower', true);

% Pack data into an OFDM symbol
offset = (numFFT-numDataCarriers)/2; % for band center
symbolsInOFDM = [zeros(offset,1); symbolsIn; ...
 zeros(numFFT-offset-numDataCarriers,1)];
ifftOut = ifft(ifftshift(symbolsInOFDM));

% Prepend cyclic prefix
txSigOFDM = [ifftOut(end-cpLen+1:end); ifftOut];

% Filter, with zero-padding to flush tail. Get the transmit signal
txSigFOFDM = filtTx([txSigOFDM; zeros(L-1,1)]);

% Plot power spectral density (PSD)
[psd,f] = periodogram(txSigFOFDM, rectwin(length(txSigFOFDM)), ...
 numFFT*2, 1, 'centered');
plot(f,10*log10(psd));

1 Communications Toolbox Featured Examples

1-112

% Compute peak-to-average-power ratio (PAPR)
pm = powermeter(Measurement="Peak-to-average power ratio",ComputeCCDF=true);
paprFOFDM = pm(txSigFOFDM);
disp(['Peak-to-Average-Power-Ratio for F-OFDM = ' num2str(paprFOFDM) ' dB']);

Peak-to-Average-Power-Ratio for F-OFDM = 11.371 dB

OFDM Modulation with Corresponding Parameters

For comparison, we review the existing OFDM modulation technique, using the full occupied band,
with the same length cyclic prefix.

% Plot power spectral density (PSD) for OFDM signal
[psd,f] = periodogram(txSigOFDM, rectwin(length(txSigOFDM)), numFFT*2, ...
 1, 'centered');
hFig1 = figure('Position', figposition([46 15 30 30]));
plot(f,10*log10(psd));
grid on
axis([-0.5 0.5 -100 -20]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['OFDM, ' num2str(numRBs*rbSize) ' Subcarriers'])

 F-OFDM vs. OFDM Modulation

1-113

% Compute peak-to-average-power ratio (PAPR)
pm = powermeter(Measurement="Peak-to-average power ratio",ComputeCCDF=true);
paprOFDM = pm(txSigOFDM);
disp(['Peak-to-Average-Power-Ratio for OFDM = ' num2str(paprOFDM) ' dB']);

Peak-to-Average-Power-Ratio for OFDM = 9.721 dB

Comparing the plots of the spectral densities for CP-OFDM and F-OFDM schemes, F-OFDM has lower
side lobes. This allows a higher utilization of the allocated spectrum, leading to increased spectral
efficiency.

Refer to the comm.OFDMModulator System object™ which can also be used to implement the CP-
OFDM modulation.

F-OFDM Receiver with No Channel

The example next highlights the basic receive processing for F-OFDM for a single OFDM symbol. The
received signal is passed through a matched filter, followed by the normal CP-OFDM receiver. It
accounts for both the filtering ramp-up and latency prior to the FFT operation.

No fading channel is considered in this example but noise is added to the received signal to achieve
the desired SNR.

% Add WGN
rxSig = awgn(txSigFOFDM, snrdB, 'measured');

Receive processing operations are shown in the following F-OFDM receiver diagram.

1 Communications Toolbox Featured Examples

1-114

% Receive matched filter
rxSigFilt = filtRx(rxSig);

% Account for filter delay
rxSigFiltSync = rxSigFilt(L:end);

% Remove cyclic prefix
rxSymbol = rxSigFiltSync(cpLen+1:end);

% Perform FFT
RxSymbols = fftshift(fft(rxSymbol));

% Select data subcarriers
dataRxSymbols = RxSymbols(offset+(1:numDataCarriers));

% Plot received symbols constellation
switch bitsPerSubCarrier
 case 2 % QPSK
 refConst = qammod((0:3).', 4, 'UnitAveragePower', true);
 case 4 % 16QAM
 refConst = qammod((0:15).', 16,'UnitAveragePower', true);
 case 6 % 64QAM
 refConst = qammod((0:63).', 64,'UnitAveragePower', true);
 case 8 % 256QAM
 refConst = qammod((0:255).', 256,'UnitAveragePower', true);
end
constDiagRx = comm.ConstellationDiagram(...
 'ShowReferenceConstellation', true, ...
 'ReferenceConstellation', refConst, ...
 'Position', figposition([20 15 30 40]), ...
 'EnableMeasurements', true, ...
 'MeasurementInterval', length(dataRxSymbols), ...
 'Title', 'F-OFDM Demodulated Symbols', ...
 'Name', 'F-OFDM Reception', ...
 'XLimits', [-1.5 1.5], 'YLimits', [-1.5 1.5]);
constDiagRx(dataRxSymbols);

 F-OFDM vs. OFDM Modulation

1-115

% Channel equalization is not necessary here as no channel is modeled

% BER computation
BER = comm.ErrorRate;

% Perform hard decision and measure errors
rxBits = qamdemod(dataRxSymbols, 2^bitsPerSubCarrier, 'OutputType', 'bit', ...
 'UnitAveragePower', true);
ber = BER(bitsIn, rxBits);

disp(['F-OFDM Reception, BER = ' num2str(ber(1)) ' at SNR = ' ...
 num2str(snrdB) ' dB']);

F-OFDM Reception, BER = 0.00083333 at SNR = 18 dB

% Restore RNG state
rng(s);

As highlighted, F-OFDM adds a filtering stage to the existing CP-OFDM processing at both the
transmit and receive ends. The example models the full-band allocation for a user, but the same
approach can be applied for multiple bands (one per user) for an uplink asynchronous operation.

Refer to the comm.OFDMDemodulator System object™ which can be used to implement the CP-
OFDM demodulation after receive matched filtering.

1 Communications Toolbox Featured Examples

1-116

Conclusion and Further Exploration

The example presents the basic characteristics of the F-OFDM modulation scheme at both transmit
and receive ends of a communication system. Explore different system parameter values for the
number of resource blocks, number of subcarriers per blocks, filter length, tone offset and SNR.

Universal Filtered Multi-Carrier (UFMC) modulation scheme is another approach to sub-band filtered
OFDM. For more information, see the “UFMC vs. OFDM Modulation” on page 1-118 example. This F-
OFDM example uses a single sub-band while the UFMC example uses multiple sub-bands.

F-OFDM and UFMC both use time-domain filtering with subtle differences in the way the filter is
designed and applied. For UFMC, the length of filter is constrained to be equal to the cyclic-prefix
length, while for F-OFDM, it can exceed the CP length.

For F-OFDM, the filter design leads to a slight loss in orthogonality (strictly speaking) which affects
only the edge subcarriers.

Selected Bibliography

1 Abdoli J., Jia M. and Ma J., "Filtered OFDM: A New Waveform for Future Wireless Systems," 2015
IEEE® 16th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Stockholm, 2015, pp. 66-70.

2 R1-162152. "OFDM based flexible waveform for 5G." 3GPP TSG RAN WG1 meeting 84bis.
Huawei; HiSilicon. April 2016.

3 R1-165425. "F-OFDM scheme and filter design." 3GPP TSG RAN WG1 meeting 85. Huawei;
HiSilicon. May 2016.

See Also
Functions
ofdmmod | ofdmdemod | qammod | qamdemod

Objects
powermeter

Related Examples
• “SC-FDMA vs. OFDM Modulation” on page 1-2
• “FBMC vs. OFDM Modulation” on page 1-103
• “UFMC vs. OFDM Modulation” on page 1-118

 F-OFDM vs. OFDM Modulation

1-117

UFMC vs. OFDM Modulation

This example compares Universal Filtered Multi-Carrier (UFMC) with Orthogonal Frequency Division
Multiplexing (OFDM) and highlights the merits of the candidate modulation scheme for Fifth
Generation (5G) communication systems.

UFMC was considered as an alternate waveform to OFDM in the 3GPP RAN study phase I during
3GPP Release 14.

Introduction

OFDM, as a multi-carrier modulation technique, has been widely adopted by 4G communication
systems, such as LTE and Wi-Fi®. It has many advantages: robustness to channel delays, single-tap
frequency domain equalization, and efficient implementation. What is often not highlighted are its
costs such as the loss in spectral efficiency due to higher side-lobes and the strict synchronization
requirements. New modulation techniques are, thus, being considered for 5G communication systems
to overcome some of these factors.

As an example, an LTE system at 20 MHz channel bandwidth uses 100 resource blocks of 12
subcarriers each, at an individual subcarrier spacing of 15 kHz. This utilizes only 18 MHz of the
allocated spectrum, leading to a 10 percent loss. Additionally, the cyclic prefix of 144 or 160 samples
per OFDM symbol leads to another ~7 percent efficiency loss, for an overall 17 percent loss in
possible spectral efficiency.

With the now defined ITU requirements for 5G systems, applications require higher data rates, lower
latency and more efficient spectrum usage. This example focuses on the new modulation technique
known as Universal Filtered Multi-Carrier (UFMC) and compares it with OFDM within a generic
framework.

s = rng(211); % Set RNG state for repeatability

System Parameters

Define system parameters for the example. These parameters can be modified to explore their impact
on the system.

numFFT = 512; % number of FFT points
subbandSize = 20; % must be > 1
numSubbands = 10; % numSubbands*subbandSize <= numFFT
subbandOffset = 156; % numFFT/2-subbandSize*numSubbands/2 for band center

% Dolph-Chebyshev window design parameters
filterLen = 43; % similar to cyclic prefix length
slobeAtten = 40; % side-lobe attenuation, dB

bitsPerSubCarrier = 4; % 2: 4QAM, 4: 16QAM, 6: 64QAM, 8: 256QAM
snrdB = 15; % SNR in dB

Universal Filtered Multi-Carrier Modulation

UFMC is seen as a generalization of Filtered OFDM and FBMC (Filter Bank Multi-carrier)
modulations. The entire band is filtered in filtered OFDM and individual subcarriers are filtered in
FBMC, while groups of subcarriers (sub-bands) are filtered in UFMC.

1 Communications Toolbox Featured Examples

1-118

This subcarrier grouping allows one to reduce the filter length (when compared with FBMC). Also,
UFMC can still use QAM as it retains the complex orthogonality (when compared with FBMC), which
works with existing MIMO schemes.

The full band of subcarriers (N) is divided into sub-bands. Each subband has a fixed number of
subcarriers and not all sub-bands need to be employed for a given transmission. An N-pt IFFT for
each subband is computed, inserting zeros for the unallocated carriers. Each subband is filtered by a
filter of length L, and the responses from the different sub-bands are summed. The filtering is done to
reduce the out-of-band spectral emissions. Different filters per subband can be applied, however, in
this example, the same filter is used for each subband. A Chebyshev window with parameterized side-
lobe attenuation is employed to filter the IFFT output per subband [1 on page 1-124].

The transmit-end processing is shown in the following diagram.

% Design window with specified attenuation
prototypeFilter = chebwin(filterLen, slobeAtten);

% Transmit-end processing
% Initialize arrays
inpData = zeros(bitsPerSubCarrier*subbandSize, numSubbands);
txSig = complex(zeros(numFFT+filterLen-1, 1));

hFig = figure;
axis([-0.5 0.5 -100 20]);
hold on;
grid on

xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['UFMC, ' num2str(numSubbands) ' Subbands, ' ...
 num2str(subbandSize) ' Subcarriers each'])

% Loop over each subband
for bandIdx = 1:numSubbands

 bitsIn = randi([0 1], bitsPerSubCarrier*subbandSize, 1);
 % QAM Symbol mapper
 symbolsIn = qammod(bitsIn, 2^bitsPerSubCarrier, 'InputType', 'bit', ...
 'UnitAveragePower', true);
 inpData(:,bandIdx) = bitsIn; % log bits for comparison

 % Pack subband data into an OFDM symbol

 UFMC vs. OFDM Modulation

1-119

 offset = subbandOffset+(bandIdx-1)*subbandSize;
 symbolsInOFDM = [zeros(offset,1); symbolsIn; ...
 zeros(numFFT-offset-subbandSize, 1)];
 ifftOut = ifft(ifftshift(symbolsInOFDM));

 % Filter for each subband is shifted in frequency
 bandFilter = prototypeFilter.*exp(1i*2*pi*(0:filterLen-1)'/numFFT* ...
 ((bandIdx-1/2)*subbandSize+0.5+subbandOffset+numFFT/2));
 filterOut = conv(bandFilter,ifftOut);

 % Plot power spectral density (PSD) per subband
 [psd,f] = periodogram(filterOut, rectwin(length(filterOut)), ...
 numFFT*2, 1, 'centered');
 plot(f,10*log10(psd));

 % Sum the filtered subband responses to form the aggregate transmit
 % signal
 txSig = txSig + filterOut;
end
set(hFig, 'Position', figposition([20 50 25 30]));
hold off;

% Compute peak-to-average-power ratio (PAPR)
pm = powermeter(Measurement="Peak-to-average power ratio",ComputeCCDF=true);
paprUFMC = pm(txSig);
disp(['Peak-to-Average-Power-Ratio (PAPR) for UFMC = ' num2str(paprUFMC) ' dB']);

Peak-to-Average-Power-Ratio (PAPR) for UFMC = 8.2379 dB

OFDM Modulation with Corresponding Parameters

For comparison, we review the existing OFDM modulation technique, using the full occupied band,
however, without a cyclic prefix.

1 Communications Toolbox Featured Examples

1-120

symbolsIn = qammod(inpData(:), 2^bitsPerSubCarrier, 'InputType', 'bit', ...
 'UnitAveragePower', true);

% Process all sub-bands together
offset = subbandOffset;
symbolsInOFDM = [zeros(offset, 1); symbolsIn; ...
 zeros(numFFT-offset-subbandSize*numSubbands, 1)];
ifftOut = sqrt(numFFT).*ifft(ifftshift(symbolsInOFDM));

% Plot power spectral density (PSD) over all subcarriers
[psd,f] = periodogram(ifftOut, rectwin(length(ifftOut)), numFFT*2, ...
 1, 'centered');
hFig1 = figure;
plot(f,10*log10(psd));
grid on
axis([-0.5 0.5 -100 20]);
xlabel('Normalized frequency');
ylabel('PSD (dBW/Hz)')
title(['OFDM, ' num2str(numSubbands*subbandSize) ' Subcarriers'])
set(hFig1, 'Position', figposition([46 50 25 30]));

% Compute peak-to-average-power ratio (PAPR)
pm = powermeter(Measurement="Peak-to-average power ratio",ComputeCCDF=true);
paprOFDM = pm(ifftOut);
disp(['Peak-to-Average-Power-Ratio (PAPR) for OFDM = ' num2str(paprOFDM) ' dB']);

Peak-to-Average-Power-Ratio (PAPR) for OFDM = 8.8843 dB

Comparing the plots of the spectral densities for OFDM and UFMC schemes, UFMC has lower side-
lobes. This allows a higher utilization of the allocated spectrum, leading to increased spectral
efficiency. UFMC also shows a slightly better PAPR.

 UFMC vs. OFDM Modulation

1-121

UFMC Receiver with No Channel

The example next highlights the basic UFMC receive processing, which, like OFDM, is FFT-based.
The subband filtering extends the receive time window to the next power-of-two length for the FFT
operation. Every alternate frequency value corresponds to a subcarrier main lobe. In typical
scenarios, per-subcarrier equalization is used for equalizing the joint effect of the channel and the
subband filtering.

In this example, only the subband filter is equalized because no channel effects are modeled. Noise is
added to the received signal to achieve the desired SNR.

% Add WGN
rxSig = awgn(txSig, snrdB, 'measured');

The receive-end processing is shown in the following diagram.

% Pad receive vector to twice the FFT Length (note use of txSig as input)
% No windowing or additional filtering adopted
yRxPadded = [rxSig; zeros(2*numFFT-numel(txSig),1)];

% Perform FFT and downsample by 2
RxSymbols2x = fftshift(fft(yRxPadded));
RxSymbols = RxSymbols2x(1:2:end);

% Select data subcarriers
dataRxSymbols = RxSymbols(subbandOffset+(1:numSubbands*subbandSize));

% Plot received symbols constellation
constDiagRx = comm.ConstellationDiagram('ShowReferenceConstellation', ...
 false, 'Position', figposition([20 15 25 30]), ...
 'Title', 'UFMC Pre-Equalization Symbols', ...
 'Name', 'UFMC Reception', ...
 'XLimits', [-150 150], 'YLimits', [-150 150]);
constDiagRx(dataRxSymbols);

1 Communications Toolbox Featured Examples

1-122

% Use zero-forcing equalizer after OFDM demodulation
rxf = [prototypeFilter.*exp(1i*2*pi*0.5*(0:filterLen-1)'/numFFT); ...
 zeros(numFFT-filterLen,1)];
prototypeFilterFreq = fftshift(fft(rxf));
prototypeFilterInv = 1./prototypeFilterFreq(numFFT/2-subbandSize/2+(1:subbandSize));

% Equalize per subband - undo the filter distortion
dataRxSymbolsMat = reshape(dataRxSymbols,subbandSize,numSubbands);
EqualizedRxSymbolsMat = bsxfun(@times,dataRxSymbolsMat,prototypeFilterInv);
EqualizedRxSymbols = EqualizedRxSymbolsMat(:);

% Plot equalized symbols constellation
constDiagEq = comm.ConstellationDiagram('ShowReferenceConstellation', ...
 false, 'Position', figposition([46 15 25 30]), ...
 'Title', 'UFMC Equalized Symbols', ...
 'Name', 'UFMC Equalization');
constDiagEq(EqualizedRxSymbols);

 UFMC vs. OFDM Modulation

1-123

% BER computation
BER = comm.ErrorRate;

% Perform hard decision and measure errors
rxBits = qamdemod(EqualizedRxSymbols, 2^bitsPerSubCarrier, 'OutputType', 'bit', ...
 'UnitAveragePower', true);
ber = BER(inpData(:), rxBits);

disp(['UFMC Reception, BER = ' num2str(ber(1)) ' at SNR = ' ...
 num2str(snrdB) ' dB']);

UFMC Reception, BER = 0 at SNR = 15 dB

% Restore RNG state
rng(s);

Conclusion and Further Exploration

The example presents the basic characteristics of the UFMC modulation scheme at both transmit and
receive ends of a communication system. Explore different system parameter values for the number
of sub-bands, number of subcarriers per subband, filter length, side-lobe attenuation, and SNR.

Refer to “FBMC vs. OFDM Modulation” on page 1-103 for an example that describes the Filter Bank
Multi-Carrier (FBMC) modulation scheme. The “F-OFDM vs. OFDM Modulation” on page 1-110
example describes the Filtered-OFDM modulation scheme.

UFMC is considered advantageous in comparison to OFDM by offering higher spectral efficiency.
Subband filtering has the benefit of reducing the guards between sub-bands and also reducing the
filter length, which makes this scheme attractive for short bursts. The latter property also makes it
attractive in comparison to FBMC, which suffers from much longer filter length.

Selected Bibliography

1 Communications Toolbox Featured Examples

1-124

1 Schaich, F., Wild, T., Chen, Y., "Waveform Contenders for 5G - Suitability for Short Packet and
Low Latency Transmissions", Vehicular Technology Conference, pp. 1-5, 2014.

2 Wild, T., Schaich, F., Chen Y., "5G air interface design based on Universal Filtered (UF-)OFDM ",
Proc. of 19th International Conf. on Digital Signal Processing, pp. 699-704, 2014.

See Also
Functions
ofdmmod | ofdmdemod | qammod | qamdemod

Objects
powermeter

Related Examples
• “SC-FDMA vs. OFDM Modulation” on page 1-2
• “FBMC vs. OFDM Modulation” on page 1-103
• “F-OFDM vs. OFDM Modulation” on page 1-110

 UFMC vs. OFDM Modulation

1-125

P25 Spectrum Sensing with Synthesized and Captured Data

This example shows how to use cyclostationary feature detection to distinguish signals with different
modulation schemes, including P25 signals [1]. It defines four cases of signals: noise only, C4FM,
CQPSK, and one arbitrary type. The example applies the detection algorithm to signals with different
SNR values, and to a captured real-world P25 signal, and then classifies the signals as one of the four
types. Graphical results show that the detection algorithm succeeds in all the cases.

Project 25 (P25)

Project 25 (P25 or APCO-25) is a suite of standards for digital radio communications for use by
federal, state, province and local public safety agencies in North America. When emergencies arise,
this protocol suite enables communication among government agencies and mutual aid response
teams. In this regard, P25 fills the same role as the European Terrestrial Trunked Radio (TETRA) [2]
protocol, although the two standards are not interoperable with each other. In North America, P25 is
widely used in public safety, security, public service, and commercial applications [1].

Project 25 is deployed in two phases. In Phase 1, P25 uses C4FM, an acronym for compatible 4 level
frequency modulation. In its simplest form, it is a special type of 4FSK modulation, which uses four
different frequencies to represent symbols. Phase 1 uses this modulation scheme to transmit digital
information over a 12.5 kHz channel.

Phase 2 transmits digital information over a 6.25 kHz channel using the compatible quadrature phase
shift keying (CQPSK) modulation format. CQPSK modulation is essentially pi/4 differential quadrature
phase shift keying (pi/4 DQPSK), where encoding is symmetric, using phase change values of -135
degrees, -45 degrees, +45 degrees and +135 degrees, as shown in the following figure.

In this figure, the next state of the red dots can only be green dots, and vice versa. Although the data
rate and bits per symbol are identical, the main difference between the two modulation schemes is
that C4FM uses a frequency shift to depict a symbol, which provides a fixed amplitude signal. In

1 Communications Toolbox Featured Examples

1-126

contrast, CQPSK, uses a phase shift to depict a symbol, which imparts an amplitude component to the
signal.

Cyclostationary Feature Detection

Modulation recognition and signal classification has been a subject of considerable research for over
two decades. Classification schemes can generally be separated into one of two broad categories:
likelihood-based (LB) approaches and feature-based (FB) approaches [3]. Cyclostationary feature
detection is an FB technique based on the fact that communications signals are not accurately
described as stationary, but rather more appropriately modeled as cyclostationary [4].

A cyclostationary process is a signal having statistical properties that vary cyclically with time [5].
These periodicities occur for signals in well defined manners due to processes such as sampling,
scanning, modulating, multiplexing, and coding. This resulting periodic nature of signals can be
exploited to determine the modulation scheme of the unknown signal [4].

Cyclostationary feature detection is a robust spectrum sensing technique because modulated
information is a cyclostationary process, while noise is not. As a result, cyclic detectors can
successfully operate even in low SNR environments.

Noise-Only Case

For the noise-only case, generate a (4*N)-by-1 vector of white Gaussian noise with a power of 1 dBW.
1/(4*N) is the cyclic resolution used to calculate the spectral autocorrelation function (SAF) in
commP25ssca.m.

N = 4096;
input = wgn(4*N,1,1);

Use the time domain spectral autocorrelation function to analyze the cyclostationary features of the
signal x(t). Run the spectral autocorrelation function commP25ssca.m on the input signal. This
function estimates the ideal spectral autocorrelation function using the strip spectrum correlation
algorithm (SSCA) [3] temporal smoothing method. It is an FFT based time smoothing algorithm.
Refer to [6] for more information about the implementation of this algorithm.

Run the plot function commP25plot.m. This step illustrates the spectral autocorrelation function,
which is a three-dimensional figure. Its x-axis represents the cyclic frequency (alpha) from -1 to 1. Its
y-axis represents the spectral frequency (f) from -0.5 to 0.5, and its z-axis (Sx) represents the
corresponding magnitude of the spectral autocorrelation function for each (alpha , f) pair. Cyclic
resolution dalpha = 1/T, where T is the observation time of the data. Spectral resolution df = 1/Tw,
where Tw is the window time to calculate the complex demodulate [7]. Since T > Tw, dalpha < df.
Note that when alpha does not equal zero, the SAF values are approximately zero.

% 64 represents the window time Tw, 4*N represents the observation time T
[Sx,alphao,fo] = commP25ssca(input,1,1/64,1/(4*N));
fig1 = figure('Position',figposition([5 40 40 40]));
commP25plot(Sx,alphao,fo);

 P25 Spectrum Sensing with Synthesized and Captured Data

1-127

commP25decision_noise.m determines if the input signal contains only noise.
commP25decision_c4fm.m determines if the input signal is a C4FM signal. And
commP25decision_cqpsk.m determines if the input signal is a CQPSK signal. These decisions are
based upon the location of the peaks in the SAF. In this example, the code correctly concludes that
there is no P25 signal present.

[c,d] = size(Sx);
[Ades,Index] = sort(Sx(:),'descend'); % sort Sx by its element and store in Ades
[Ridx,Cidx] = ind2sub(size(Sx),Index); % corresponding row index and column index
leng = length(Ades);

noise_decision = commP25decision_noise(Ades,Ridx,Cidx,leng,c,d);
if noise_decision == 0
 c4fm_decision = commP25decision_c4fm(Ades,Ridx,leng,c);
 if c4fm_decision == 0
 commP25decision_cqpsk(Ades,Ridx,Cidx,leng,c,d);
 end
end

There is no P25 signal.

C4FM Case with Synthesized Data

According to [8], the following modulation structure generates a C4FM output signal.

1 Communications Toolbox Featured Examples

1-128

A normal raised cosine filter, which satisfies the Nyquist pulse shaping criterion, minimizes
intersymbol interference. The parameters of the raised cosine filter are chosen per the filter's
specifications in [8]. Specifically, this raised cosine filter has an upsampling factor of 4, and a roll-off
factor of 0.2. The C4FM standard also calls for an inverse sinc filter after the raised cosine filter, to
compensate for the sinc response of a P25 receiver integrate and dump filter. The FM modulator has
a deviation of 600 Hz.

To observe the effects of noise on the design decisions, run the detection at SNR values of -3 dB, 3 dB
and infinity dB.

% The length of input bits is N. The length of the output bits must also be
% N
x = randi([0,3],N,1);
sym = 2*x-3; % integer input

% Raised Cosine Filter
sampsPerSym = 4; % Upsampling factor
% Design raised cosine filter with given order in symbols. Apply gain to
% the unit energy filter to obtain max amplitude of 1.
rctFilt = comm.RaisedCosineTransmitFilter(...
 'Shape', 'Normal', ...
 'RolloffFactor', 0.2, ...
 'OutputSamplesPerSymbol', sampsPerSym, ...
 'FilterSpanInSymbols', 60, ...
 'Gain', 1.9493);
c4fm_init = rctFilt(sym);

shape2 = 'Inverse-sinc Lowpass';
d2 = fdesign.interpolator(2, shape2);
intrpltr = design(d2, 'SystemObject', true);
c4fm_init = intrpltr(c4fm_init);

% Baseband Frequency Modulator
Fs = 4800;
freqdev = 600;
int_x = cumsum(c4fm_init)/Fs;
c4fm_output = exp(1i*2*pi*freqdev*int_x);
y = c4fm_output(1:N); % Ideal case, SNR = infinity
y1 = awgn(y,3); % SNR = 3 dB
y2 = awgn(y,-3); % SNR = -3 dB

The corresponding spectral autocorrelation functions are calculated and plotted. Note that the SAF
peaks become more indistinct as the SNR decreases.

[Sx0,alphao0,fo0] = commP25ssca(y,1,1/64,1/(4*N));
[Sx1,alphao1,fo1] = commP25ssca(y1,1,1/64,1/(4*N));
[Sx2,alphao2,fo2] = commP25ssca(y2,1,1/64,1/(4*N));
fig2 = figure('Position',figposition([5 40 80 40]));
subplot(131);
commP25plot(Sx0,alphao0,fo0);

 P25 Spectrum Sensing with Synthesized and Captured Data

1-129

title('Ideal case');
subplot(132);
commP25plot(Sx1,alphao1,fo1);
title('SNR = 3 dB');
subplot(133);
commP25plot(Sx2,alphao2,fo2);
title('SNR = -3 dB');

This section follows the same procedures as in the previous one and obtains the classification results
for each SNR value. The function commP25decision.m performs spectrum sensing classification for
all possible input signal types.

commP25decision(Sx0); % Ideal case

There is signal present. Checking for presence of C4FM.
This is C4FM.

commP25decision(Sx1); % SNR = 3 dB

There is signal present. Checking for presence of C4FM.
This is C4FM.

commP25decision(Sx2); % SNR = -3 dB

There is signal present. Checking for presence of C4FM.
This is C4FM.

CQPSK Case with Synthesized Data

According to [8], the following modulation structure generates a CQPSK output signal.

1 Communications Toolbox Featured Examples

1-130

The CQPSK modulator consists of In Phase and Quadrature (I and Q) parts. The input bits are
processed by the lookup table [8] to yield a 5-level I/Q signal. Because the specification of the lookup
table is equivalent to pi/4 DQPSK, the example uses the DQPSK modulator System object™ to
implement this lookup table. The I/Q signals are then filtered with the raised cosine filter described in
the previous case.

% The size of input bits is 2*N, the size of output is 4*N
x = randi([0,1],2*N,1);

% Create a DQPSK modulator System object with bits as inputs, phase
% rotation of pi/4 and Gray-coded constellation
dqpskMod = comm.DQPSKModulator(pi/4,'BitInput',true);
% Modulate and filter
modout = dqpskMod(x);
release(rctFilt);
cqpsk_output = rctFilt(modout);
y = cqpsk_output; % Ideal case, SNR = infinity
y1 = awgn(y,3); % SNR = 3 dB
y2 = awgn(y,-3); % SNR = -3 dB

Calculate and plot the corresponding spectral autocorrelation functions.

[Sx0,alphao0,fo0] = commP25ssca(y,1,1/64,1/(4*N));
[Sx1,alphao1,fo1] = commP25ssca(y1,1,1/64,1/(4*N));
[Sx2,alphao2,fo2] = commP25ssca(y2,1,1/64,1/(4*N));
fig3 = figure('Position',figposition([5 40 80 40]));
subplot(131);
commP25plot(Sx0,alphao0,fo0);
title('Ideal case');
subplot(132);
commP25plot(Sx1,alphao1,fo1);
title('SNR = 3 dB');
subplot(133);
commP25plot(Sx2,alphao2,fo2);
title('SNR = -3 dB');

The code outputs below show the results of CQPSK detection for three different SNR values.

 P25 Spectrum Sensing with Synthesized and Captured Data

1-131

commP25decision(Sx0); % Ideal case

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is CQPSK.

commP25decision(Sx1); % SNR = 3 dB

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is CQPSK.

commP25decision(Sx2); % SNR = -3 dB

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is CQPSK.

Non-P25 Signal Case with Synthesized Data

This case defines one arbitrary signal type, processes it with the P25 cyclostationary detector, and
determines if it is a P25 signal.

Design an FIR equiripple lowpass filter, and apply it to a random input. Do not add any noise to the
signal in this case. Try additional signal types, and let the cyclostationary feature detector classify
them.

bcoeffs = firpm(200,[0 0.2 0.22 1],[1 1 0 0]); % Set N to achieve 40 dB rejection
input = randn(N,1);
y = filter(bcoeffs,1,input);

Then we calculate and plot the spectral autocorrelation function. Note that the different modulation
characteristics of each signal yield significantly different SAFs.

[Sx,alphao,fo] = commP25ssca(y,1,1/64,1/(4*N));
fig4 = figure('Position',figposition([5 40 40 40]));
commP25plot(Sx,alphao,fo);

1 Communications Toolbox Featured Examples

1-132

Follow the same procedures and obtain the classification result.

commP25decision(Sx);

There is signal present. Checking for presence of C4FM.
This is NOT C4FM. Checking for presence of CQPSK.
This is NOT CQPSK either, so it is not a P25 signal.

C4FM Case with Captured Data

This case applies the detection algorithm to a captured real-world C4FM signal. The signal was
transmitted by a P25 radio at 446 MHz, received by a USRP® radio, and then saved by MATLAB® in
capturedc4fm.mat. Follow the same procedures and obtain the classification result.

load capturedc4fm.mat;
y = y(1:4*N);
agc = comm.AGC;
y = 0.1*agc(y);
[Sx,alphao,fo] = commP25ssca(y,1,1/64,1/(4*N));
fig5 = figure('Position',figposition([5 40 40 40]));
commP25plot(Sx,alphao,fo);
commP25decision(Sx);

There is signal present. Checking for presence of C4FM.
This is C4FM.

 P25 Spectrum Sensing with Synthesized and Captured Data

1-133

Conclusion

This example shows how to use cyclostationary feature detection to distinguish signals of different
modulation schemes. The algorithm classifies the signals based on the location of the peaks in
spectral autocorrelation function. Cyclostationary feature detection has advantages over some
detectors, like the energy detector, due to its resilience to noise.

Appendix

This example uses the following scripts and helper functions:

• commP25ssca.m

• commP25plot.m

• commP25decision.m

• commP25decision_noise.m

• commP25decision_c4fm.m

• commP25decision_cqpsk.m

Selected Bibliography

1 P25 Technology Interest Group: https://www.project25.org/
2 TETRA <https://en.wikipedia.org/wiki/Terrestrial_Trunked_Radio>

1 Communications Toolbox Featured Examples

1-134

https://www.project25.org/
https://en.wikipedia.org/wiki/Terrestrial_Trunked_Radio

3 E. C. Like, "Non-Cooperative Modulation Recognition Via Exploitation of Cyclic Statistics". MS
Thesis. 2007

4 E. C. Like, V. D. Chakravarthy, P. Ratazzi, and Z. Wu, "Signal Classification in Fading Channels
Using Cyclic Spectral Analysis", EURASIP Journal on Wireless Communications and Networking,
Volume 2009, 2009.

5 W. A. Gardner, A. Napolitano and L. Paura, "Cyclostationarity: Half a century of research", Signal
Processing, Vol. 86, No. 4, pp. 639-697, 2006.

6 E. L. Da Costa, "Detection and Identification of Cyclostationary Signals". MS Thesis. 1996.
7 Antonio F. Lima, Jr., "Analysis of Low Probability of Intercept (LPI) Radio Signals using

Cyclostationary Processing". MS Thesis. 2002.
8 TIA Standard Project 25: <https://tiaonline.org/what-we-do/standards/>

 P25 Spectrum Sensing with Synthesized and Captured Data

1-135

https://tiaonline.org/what-we-do/standards/

LLR vs. Hard Decision Demodulation in Simulink

This model shows the improvement in BER performance when using log-likelihood ratio (LLR) instead
of hard decision demodulation in a convolutionally coded communication link.

For a MATLAB® version of this example, see “Log-Likelihood Ratio (LLR) Demodulation” on page 1-
99.

System Setup

This example model simulates a convolutionally coded communication system having one transmitter,
an AWGN channel and three receivers. The convolutional encoder has a code rate of 1/2. The system
employs a 16-QAM modulation. The modulated signal passes through an additive white Gaussian
noise channel. The top receiver performs hard decision demodulation in conjunction with a Viterbi
decoder that is set up to perform hard decision decoding. The second receiver has the demodulator
configured to compute log-likelihood ratios (LLRs) that are then quantized using a 3-bit quantizer. It
is well known that the quantization levels are dependent on noise variance for optimum performance
[2]. The exact boundaries of the quantizer are empirically determined here. A Viterbi decoder that is
set up for soft decision decoding processes these quantized values. The LLR values computed by the
demodulator are multiplied by -1 to map them to the right quantizer index for use with Viterbi
Decoder. To compute the LLR, the demodulator must be given the variance of noise as seen at its
input. The third receiver includes a demodulator that computes LLRs which are processed by a
Viterbi decoder that is set up in unquantized mode. The BER performance of each receiver is
computed and displayed.

modelName = 'commLLRvsHD';
open_system(modelName);

1 Communications Toolbox Featured Examples

1-136

System Simulation and Visualization

Simulate this system over a range of information bit Eb/No values. Adjust these Eb/No values for
coded bits and multi-bit symbols to get noise variance values required for the AWGN block and
Rectangular QAM Baseband Demodulator block. Collect BER results for each Eb/No value and
visualize the results.

EbNo = 2:0.5:8; % information rate Eb/No in dB
codeRate = 1/2; % code rate of convolutional encoder
nBits = 4; % number of bits in a 16-QAM symbol
Pavg = 10; % average signal power of a 16-QAM modulated signal
snr = EbNo - 10*log10(1/codeRate) + 10*log10(nBits); % SNR in dB
noiseVarVector = Pavg ./ (10.^(snr./10)); % noise variance

% Initialize variables for storing the BER results
ber_HD = zeros(1,length(EbNo));
ber_SD = zeros(1,length(EbNo));
ber_LLR = zeros(1, length(EbNo));

% Loop over all noiseVarVector values
for idx=1:length(noiseVarVector)
 noiseVar = noiseVarVector(idx); %#ok<NASGU>
 sim(modelName);
 % Collect BER results
 ber_HD(idx) = BER_HD(1);
 ber_SD(idx) = BER_SD(1);
 ber_LLR(idx) = BER_LLR(1);
end

% Perform curve fitting and plot the results
fitBER_HD = real(berfit(EbNo,ber_HD));
fitBER_SD = real(berfit(EbNo,ber_SD));
fitBER_LLR = real(berfit(EbNo,ber_LLR));
semilogy(EbNo,ber_HD,'r*', ...
 EbNo,ber_SD,'g*', ...
 EbNo,ber_LLR,'b*', ...
 EbNo,fitBER_HD,'r', ...
 EbNo,fitBER_SD,'g', ...
 EbNo,fitBER_LLR,'b');
legend('Hard Decision Decoding', ...
 'Soft Decision Decoding','Unquantized Decoding');
xlabel('Eb/No (dB)');
ylabel('BER');
title('LLR vs. Hard Decision Demodulation with Viterbi Decoding');
grid on;

 LLR vs. Hard Decision Demodulation in Simulink

1-137

To experiment with this system further, try different modulation types. This system uses a binary
mapped modulation scheme for faster error collection but it is well known that Gray mapped signal
constellation provides better BER performance. Experiment with various constellation ordering
options in the modulator and demodulator blocks. Configure the demodulator block to compute
approximate LLR to see the difference in the BER performance compared to hard decision
demodulation and LLR. Try out a different range of Eb/No values. Finally, investigate different
quantizer boundaries for your modulation scheme and Eb/No values.

Using Dataflow in Simulink

You can configure this example to use data-driven execution by setting the Domain parameter to
dataflow for Dataflow Subsystem. With dataflow, blocks inside the domain, execute based on the
availability of data as rather than the sample timing in Simulink®. Simulink automatically partitions
the system into concurrent threads. This autopartitioning accelerates simulation and increases data
throughput. To learn more about dataflow and how to run this example using multiple threads, see
“Multicore Simulation of Comparing Demodulation Types” on page 1-586.

% Cleanup
close_system(modelName,0);
clear modelName EbNo codeRate nBits Pavg snr noiseVarVector ...
 ber_HD ber_SD ber_LLR idx noiseVar fitBER_HD fitBER_SD fitBER_LLR;

Selected Bibliography

[1] J. L. Massey, "Coding and Modulation in Digital Communications", Proc. Int. Zurich Seminar on
Digital Communications, 1974

1 Communications Toolbox Featured Examples

1-138

[2] J. A. Heller, I. M. Jacobs, "Viterbi Decoding for Satellite and Space Communication", IEEE® Trans.
Comm. Tech. vol COM-19, October 1971

 LLR vs. Hard Decision Demodulation in Simulink

1-139

Passband Modulation

This model shows a straightforward way to perform passband modulation, by multiplying a modulated
complex signal with a complex sine wave to perform frequency upconversion. In general, it is
preferable to model a system at complex baseband. However, there are some circumstances where it
is necessary to model the system at real passband. An example of this is when an adjacent band
signal is processed with a nonlinearity, and causes interference in the desired band. This model also
illustrates the effect of such interference.

Structure of the Example

The communications link in this model includes these components:

• A Random Integer Generator block, used as source of random data
• A modulator and a pulse shaping filter that perform QPSK modulation and root raised cosine pulse

shaping.
• An Upconverter block that multiplies the modulated signal by a carrier frequency.
• A source of tone interference. The interference has a cubic nonlinearity which may be toggled on

or off. When the nonlinearity is off, the interference falls completely out of band, but when on, the
third harmonic of the tone is introduced into the desired band, causing co-channel interference.

• An AWGN Channel block, set to Eb/No mode. It specifies two bits per symbol because the
modulation format is QPSK. The signal power is 1/(2*8) watts. This is because the original signal

1 Communications Toolbox Featured Examples

1-140

power at the modulator is 1 watt. The root-raised cosine filter upsamples the signal by a factor of
8, which reduces the power by that factor. The frequency upconversion block output takes only the
real part of the signal, thereby reducing the power again, this time by a factor of 2. Finally, the
symbol period is 1e-6 seconds, to match the original sample time on the Random Integer
Generator source.

• A Downconverter block that converts the signal from real passband to complex baseband.
• A root raised cosine pulse shaping filter that decimates back to one sample per symbol, and a

QPSK demodulator block.
• BER and RMS EVM metric calculation blocks.

Results and Displays

When the simulation runs, two spectrum analyzers and one scatter plot open.

The first spectrum analyzer shows the signal and the interference signal at passband. With the
nonlinearity turned off, the spectrum of the tone interferer falls outside the bandwidth of the desired
signal. With the cubic nonlinearity on, the third harmonic of the interference falls into the band of the
desired signal.

The second scope illustrates the signal after it has been downconverted back to baseband at the
receiver, prior to the root raised cosine filtering. Note that with the nonlinearity on, you can see the
interfering tone present with the baseband signal.

 Passband Modulation

1-141

The third scope shows the scatter plot of the received signal, and by toggling the nonlinearity on and
off, you can view the effect the interference has on the scatter plot. With the nonlinearity on, the
signal constellation is more diffuse than when the nonlinearity is not present.

The model also contains two numerical displays. The first one displays the BER of the link. The BER
calculation resets each time the nonlinearity is toggled on or off.

The second numerical display is the RMS Error Vector Magnitude (EVM) measured with the EVM
Measurement block.

Experimenting with the Example

Double-click on the Nonlinearity on/off block to toggle the nonlinearity on the interference
signal. Observe the changes this has on the received spectrum, constellation, BER and EVM.

By varying the Eb/No parameter, you can produce BER curves, and compare the results of the model
with theoretical results. Note that the model achieves expected theoretical results[1] for QPSK with
the nonlinearity off. Furthermore, you can see the effects the nonlinearity has on overall BER.

1 Communications Toolbox Featured Examples

1-142

For further experimentation, try changing the value of the Eb/No parameter on the AWGN channel
block, or changing the power of the interference signal. To change the power of the interference
signal, open the Interference with Nonlinearity subsystem, and modify the gain value.

See Also

The Downconverter block uses a simple complex multiplication method to perform downconversion.
You can find an example showing more efficient downconversion using IF subsampling at: “IF
Subsampling with Complex Multirate Filters”.

Bibliography

1 Proakis, John G., Digital Communications, Fourth Ed., sec. 5.2.7, New York, McGraw-Hill, 2001.

 Passband Modulation

1-143

256-Channel ADSL

This model shows part of the asymmetric digital subscriber line (ADSL) technology for transmitting
data and multimedia information over telephone lines. It illustrates a downstream path from the
central office to the end user. It incorporates the discrete multitone (DMT) signaling modulation
technique.

The DMT modulator and demodulator subsystems in the model have been updated to allow code
reuse when generating code. These subsystems now generate only 10 unique reusable functions
compared to the 256 chunks of code for each modulator/demodulator block generated earlier. This
leads to shorter compile times and smaller executable sizes.

Structure of the Example

When the simulation is run, the model:

• Generates random binary data frames,
• Transmits the binary data frames according to the ADSL specification,
• Simulates a channel, specifically the telephone line, using an FIR filter of length 101 and the

AWGN Channel block,
• Attempts to recover the transmitted information from the received data,
• Computes error statistics.

The model uses frame-based processing, thereby processing many bits in each time step. For more
information, see “Sample- and Frame-Based Concepts”.

1 Communications Toolbox Featured Examples

1-144

Transmitting Data

The transmitter portion of the model, shaded in blue at the top of the model, contains two parallel
paths. One path (the fast buffer) processes the first 776 bits of each 1552-bit data frame, while the
other path (the interleaved buffer) processes the last 776 bits of each data frame. Each path appends
eight cyclic redundancy check (CRC) bits to its 776-bit frame, scrambles the bits, and encodes them
using a shortened Reed-Solomon code. The scrambling and encoding operations interpret the bits as
integers between 0 and 127. In the second path but not the first, a Convolutional Interleaver block
interleaves the encoded data. This interleaving operation increases the second path's resistance to
burst errors but also adds latency. Finally, the data from the two routes is concatenated and
modulated. Data from the fast buffer is modulated to the low frequency subcarriers, while data from
the interleaved buffer is modulated to the high frequency subcarriers, according to the bit allocation
vector b. This example assumes that the bit allocation vector is known and uses the vector to
calculate the channel. Click
commadsl;get_param('commadsl','ModelWorkspace');commandwindow to see in the
MATLAB® Command Window the calculations involved.

Processing Received Data

The receiver attempts to undo each operation that the transmitter performs. Much of the receiver's
design is straightforward; for example, to undo the actions of the Convolutional Interleaver block, use
a Convolutional Deinterleaver block with the same mask parameters. The frequency domain equalizer
in the DMT Demodulator subsystem mitigates the channel distortion.

Aligning Frames to Account for Delays. One subtle point in the receiver portion is the Integer
Delay block that follows the Convolutional Deinterleaver block. This Integer Delay block delays the

 256-Channel ADSL

1-145

deinterleaved data by 800 samples. Because the delay between the original and restored sequences is
40 samples (five shift registers times a maximum delay of 2*(5-1) samples among all shift registers),
the extra 800-sample delay ensures that bits are properly aligned in the 840-bit frame.

Results and Displays

Two display icons show error statistics for comparisons between the transmitted and received data in
the two paths (with and without interleaving). Two other display icons show error statistics based on
the CRC bits, where any nonzero bit among the eight CRC bits indicates a frame error.

In each of the display icons, the error statistics consist of the bit error rate, the number of bit errors,
and the total number of bits processed.

Selected Bibliography

[1] Bingham, John A.C., ADSL, VDSL, and Multicarrier Modulation, New York, Wiley, 2000.

[2] ITU-T Recommendation G.992.1 Asymmetric Digital Subscriber Line (ADSL) Transceivers,
Geneva, Telecommunication Standardization Sector of International Telecommunication Union, 1999.

[3] Maxwell, Kim, "Asymmetric Digital Subscriber Line: Interim Technology for the Next Forty Years,"
IEEE Communications Magazine, October 1996, pp. 100-106.

1 Communications Toolbox Featured Examples

1-146

Simultaneous Simulation of Multiple Fading Channels with
WINNER II Channel Model

This example shows how to set up a system with multiple base stations (BS), multiple mobile stations
(MS) and multiple MIMO downlinks from one BS sector to one MS. You must download and install the
WINNER II Channel Model for Communications Toolbox™ Add-On to run this example. Each link is
assigned with a propagation scenario and condition. Fading channel coefficients for all links are
generated simultaneously. An impulse signal is passed through the fading channel for each link. The
received impulse and frequency responses are plotted for selected links.

Check for Support Package Installation

Check if the 'WINNER II Channel Model for Communications Toolbox' support package is installed.

commSupportPackageCheck("CST_WINNER2");

Antenna Array Inventory

In the WINNER II channel model, each BS is composed of one or more sectors, and each BS sector
and MS is assigned with an antenna array. We need to first establish a set of arrays that are available
for BS sectors and MS to employ, which we call the antenna array inventory.

In this example, all available antenna arrays are uniform circular array (UCA). There are four
different UCAs in the inventory:

• 16 elements with a radius of 30cm
• 12 elements with a radius of 30cm
• 8 elements with a radius of 30cm
• 4 elements with a radius of 5cm

Each antenna element in the UCAs is omnidirectional.

s = rng(21); % For repeatability

AA(1) = winner2.AntennaArray("UCA",16,0.3);
AA(2) = winner2.AntennaArray("UCA",12,0.3);
AA(3) = winner2.AntennaArray("UCA",8,0.3);
AA(4) = winner2.AntennaArray("UCA",4,0.05);

Configure System Layout

On a 300-by-300 (meters) map, we will set up 3 BS, 5 MS, and 6 links. The first BS has one sector
which is equipped with a 16-element UCA. The second BS also has one sector that is equipped with a
12-element UCA. The third BS has three sectors which are equipped with a 8-element UCA each.
Each MS is assigned with a 4-element UCA.

BSIdx = {1; 2; [3 3 3]}; % Index in antenna array inventory vector
MSIdx = [4 4 4 4 4]; % Index in antenna array inventory vector
numLinks = 6; % Number of links
range = 300; % Layout range (meters)
cfgLayout = winner2.layoutparset(MSIdx,BSIdx,numLinks,AA,range);

Six links are modeled in the system. The first BS connects to the first and second MSs. The second BS
connects to the third MS. For the third BS, its first sector connects to the third and fourth MSs, its

 Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model

1-147

second sector connects to the fifth MS, and its third sector does not connect to any MS. From MS
perspective, each of them connects to one BS except for the third one, which connects to both the
second and third BSs. Each link is assigned with one propagation scenario, chosen from B4 (outdoor
to indoor), C2 (Urban macro-cell) and C4 (Urban macro outdoor to indoor). Non-line-of-sight (NLOS)
is modeled for each link.

cfgLayout.Pairing = [1 1 2 3 3 4; 6 7 8 8 9 10]; % Index in cfgLayout.Stations
cfgLayout.ScenarioVector = [6 6 13 13 11 11]; % 6 for B4, 11 for C2 and 13 for C4
cfgLayout.PropagConditionVector = [0 0 0 0 0 0]; % 0 for NLOS

The three BSs are uniformly spaced between 0 and 300 on the x-axis and have the same position on
the y-axis. MS positions are assigned to ensure that their distances to the connected BSs are in the
valid path loss ranges for the corresponding scenarios. Specifically, the ranges for the B4, C2 and C4
scenarios are [3, 1000], [50, 5000] and [50, 5000] meters, respectively. By default, each BS sector is
32 meters high and MS is 1.5 meters high. Each MS is randomly assigned with a velocity which does
not exceed 0.5 m/s in any of the X, Y and Z directions.

% Number of BS sectors and MSs in the system
numBSSect = sum(cfgLayout.NofSect);
numMS = length(MSIdx);

% Set up positions for BS sectors. Same position for the
% third, fourth and fifth sectors as they belong to one BS.
cfgLayout.Stations(1).Pos(1:2) = [50; 150];
cfgLayout.Stations(2).Pos(1:2) = [150; 150];
cfgLayout.Stations(3).Pos(1:2) = [250; 150];
cfgLayout.Stations(4).Pos(1:2) = [250; 150];
cfgLayout.Stations(5).Pos(1:2) = [250; 150];

% Set up MS positions
cfgLayout.Stations(6).Pos(1:2) = [10; 180]; % 50m from 1st BS
cfgLayout.Stations(7).Pos(1:2) = [60; 50]; % 111.8m from 1st BS
cfgLayout.Stations(8).Pos(1:2) = [194; 117]; % 55m and 65m from 2nd and 3rd BSs respectively
cfgLayout.Stations(9).Pos(1:2) = [260; 270]; % 120.4m from 3rd BS
cfgLayout.Stations(10).Pos(1:2) = [295; 90]; % 75m from 3rd BS

% Randomly draw MS velocity
for i = numBSSect + (1:numMS)
 cfgLayout.Stations(i).Velocity = rand(3,1) - 0.5;
end

To illustrate the system setup, we plot the BSs, the MSs, and the links between them on a 2-D map. In
the plot, each BS sector is represented by a circle, each MS is represented by a cross, and each link
is represented by a straight line between the corresponding BS and MS. As the third BS has three
sectors, only three circles are shown on the map.

% Get all BS sector and MS positions
BSPos = cell2mat({cfgLayout.Stations(1:numBSSect).Pos});
MSPos = cell2mat({cfgLayout.Stations(numBSSect+1:end).Pos});

scrsz = get(groot,"ScreenSize");
figSize = min(scrsz([3,4]))/2.3;
figure(...
 Position=[scrsz(3)*.5-figSize/2,scrsz(4)*.7-figSize/2,figSize,figSize]);
hold on;
grid on;
hBS = plot(BSPos(1,:),BSPos(2,:),"or"); % Plot BS

1 Communications Toolbox Featured Examples

1-148

hMS = plot(MSPos(1,:),MSPos(2,:),"xb"); % Plot MS
for linkIdx = 1:numLinks % Plot links
 pairStn = cfgLayout.Pairing(:,linkIdx);
 pairPos = cell2mat({cfgLayout.Stations(pairStn).Pos});
 plot(pairPos(1,:),pairPos(2,:),"-b");
end
xlim([0 300]); ylim([0 300]);
xlabel("X Position (meters)");
ylabel("Y Position (meters)")
legend([hBS, hMS],"BS","MS",location="northwest");

Configure Model Parameters

There are multiple model parameters that can be adjusted in the structure created by the
winner2.wimparset function. In this example, the center frequency is 5.25 GHz. Path loss and
shadowing fading are modeled for each link. To support bandwidth up to 100 MHz, the two strongest
clusters of each link are divided into 3 subclusters each which are 5 ns apart. All links are sampled at
different rates which depend on the velocity of the MSs. Because the third and fourth links connect to
the same MS, they share the same sample rate.

frameLen = 1600; % Number of samples to be generated

cfgWim = winner2.wimparset;
cfgWim.NumTimeSamples = frameLen;
cfgWim.IntraClusterDsUsed = "yes";

 Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model

1-149

cfgWim.CenterFrequency = 5.25e9;
cfgWim.UniformTimeSampling = "no";
cfgWim.ShadowingModelUsed = "yes";
cfgWim.PathLossModelUsed = "yes";
cfgWim.RandomSeed = 31415926; % For repeatability

Create WINNER II Channel System Object™

We are now able to use the model and layout configurations to create a WINNER II channel System
object. Once the object is created, you can call its info method to view some derived system
parameters. For example, in the info method return, the NumBSElements, NumMSElements and
NumPaths fields indicate the number of array elements at BS sectors, the number of array elements
at MSs and the number of paths for each link. The SampleRate field also shows the sample rate for
each link.

WINNERChan = comm.WINNER2Channel(cfgWim,cfgLayout);
chanInfo = info(WINNERChan)

chanInfo = struct with fields:
 NumLinks: 6
 NumBSElements: [16 16 12 8 8 8]
 NumMSElements: [4 4 4 4 4 4]
 NumPaths: [16 16 16 16 24 24]
 SampleRate: [3.0636e+07 3.5303e+07 2.7559e+07 2.7559e+07 3.9688e+07 4.3108e+07]
 ChannelFilterDelay: [7 7 7 7 7 7]
 NumSamplesProcessed: 0

Process Impulse Signal for Each Link

We pass an impulse signal through each link and observe the impulse and frequency responses at the
MS. To do so, we need to create the impulse signal for each link and aggregate them into a cell array.
This is achieved by using the NumBSElements field of the info method return and the cellfun
function. The impulse signal cell array is to be processed by the channel object.

txSig = cellfun(@(x) [ones(1,x);zeros(frameLen-1,x)], ...
 num2cell(chanInfo.NumBSElements)',UniformOutput=false);

rxSig = WINNERChan(txSig); % Pass impulse signal through each link

Plotting the received signal at MSs gives an idea about how the fading channel's impulse and
frequency responses look for each link. Out of the 4 antennas at each MS, only the received signal at
the first antenna is plotted. The fact that the links are sampled at different rates is captured in the
impulse response plot. For each link, the first few samples from a channel filter delay are plotted in
the negative time axis, if any.

figure(Position= ...
 [scrsz(3)*.3-figSize/2,scrsz(4)*.25-figSize/2,figSize,figSize]);
hold on;
for linkIdx = 1:numLinks
 delay = chanInfo.ChannelFilterDelay(linkIdx);
 stem(((0:(frameLen-1))-delay)/chanInfo.SampleRate(linkIdx), ...
 abs(rxSig{linkIdx}(:,1)));
end
maxX = max((cell2mat(cellfun(@(x) find(abs(x) < 1e-8,1,"first"), ...
 rxSig.',UniformOutput=false)) - chanInfo.ChannelFilterDelay)./ ...
 chanInfo.SampleRate);

1 Communications Toolbox Featured Examples

1-150

minX = -max(chanInfo.ChannelFilterDelay./chanInfo.SampleRate);
xlim([minX, maxX]);
xlabel("Time (s)");
ylabel("Magnitude");
legend("Link 1","Link 2","Link 3","Link 4","Link 5","Link 6");
title("Impulse Response at First Receive Antenna");

As the third and fourth links connect to the same MS and hence have the same sample rate, we plot
them together using the Spectrum Analyzer System object. The two links have 16 paths each and
demonstrate significant frequency selectivity.

sa = spectrumAnalyzer(...
 Name="Frequency response", ...
 Method="welch", ...
 SpectrumType="power-density", ...
 SampleRate=chanInfo.SampleRate(3), ...
 Position=[scrsz(3)*.7-figSize/2,scrsz(4)*.25-figSize/2,figSize,figSize], ...
 Title="Frequency Response", ...
 ShowLegend=true, ...
 ChannelNames=["Link 3","Link 4"]);

sa(cell2mat(cellfun(@(x) x(:,1),rxSig(3:4,1)',UniformOutput=false)));
release(sa)

 Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model

1-151

rng(s); % Restore RNG

Further Exploration

The example shows how to configure a WINNER II fading channel System object to model a system
with multiple MIMO links from BSs to MSs. Further exploration includes modifications to the fields of
the cfgLayout and cfgWim to model different antenna arrays like uniform linear arrays (ULA),
BS/MS locations and pairings, propagation scenarios and conditions, and so on.

Because the third and fourth links are connecting to the same MS, you can combine the received
signals from both links, by offsetting the samples appropriately to account for the channel filter
delays on the two links.

Selected Bibliography

1 IST WINNER II, "WINNER II Channel Models", D1.1.2, Sep. 2007.

1 Communications Toolbox Featured Examples

1-152

802.11ac Multiuser MIMO Precoding with WINNER II Channel
Model

This example shows the transmit and receive processing for a 802.11ac™ multiuser downlink
transmission over a WINNER II fading channel. You must download and install the WINNER II
Channel Model for Communications Toolbox™ Add-On to run this example. Only one WINNER II
channel System object™ is needed to set up the channels from one access point to all users.

Introduction

802.11ac supports downlink (access-point to station) multiuser transmissions for up to four users and
up to eight transmit antennas to increase the aggregate throughput of the link [1]. Based on a
scheduled transmission time for a user, the scheduler looks for other smaller packets ready for
transmission to other users. If available, it schedules these users over the same interval, which
reduces the overall time taken for multiple transmissions.

This simultaneous transmission comes at a higher complexity because successful reception of the
individual user's payloads requires precoding, also known as transmit-end beamforming. Precoding
assumes that channel state information (CSI) is known at the transmitter. A sounding packet, as
described in the “802.11ac Transmit Beamforming” (WLAN Toolbox) example, is used to determine
the CSI for each user in a multiuser transmission. Each of the users feed back their individual CSI to
the beamformer. The beamformer uses the CSI from all users to set the precoding (spatial mapping)
matrix for subsequent data transmission.

This example uses a channel inversion technique for a three-user transmission with a different
number of spatial streams allocated per user and different rate parameters per user. The system can
be characterized by the figure below.

The example generates the multiuser transmit waveform, passes it through a multiuser WINNER II
channel and decodes the received signal for each user to calculate the bits in error. Prior to the data
transmission, the example uses a null-data packet (NDP) transmission to sound the different channel
for each user and determines the precoding matrix under the assumption of perfect feedback.

Check for Support Package Installation

Check if the 'WINNER II Channel Model for Communications Toolbox' support package is installed.

 802.11ac Multiuser MIMO Precoding with WINNER II Channel Model

1-153

commSupportPackageCheck('CST_WINNER2');

Simulation Parameters and Configuration

For 802.11ac, a maximum of eight spatial streams is allowed. An 8x8 MIMO configuration for three
users is used in this example, where the first user has three streams, second has one, and the third
has four streams allocated to it. Different rate parameters and payload sizes for each user are
specified as vector parameters for the transmission configuration.

s = rng(10); % Set RNG seed for repeatability

% Transmission parameters
chanBW = 'CBW80'; % Channel bandwidth
numUsers = 3; % Number of users
numSTSVec = [3 1 4]; % Number of streams per user
userPos = [0 1 2]; % User positions
mcsVec = [4 6 8]; % MCS per user: 16QAM, 64QAM, 256QAM
apepVec = [520 192 856]; % Payload per user, in bytes
chCodingVec = {'BCC','LDPC','LDPC'}; % Channel coding per user

% Precoding and equalization parameters
precodingType = 'ZF'; % Precoding type; ZF or MMSE
snr = 47; % SNR in dB
eqMethod = 'ZF'; % Equalization method

% Create the multiuser VHT format configuration object
numTx = sum(numSTSVec);
cfgVHTMU = wlanVHTConfig('ChannelBandwidth',chanBW, ...
 'NumUsers',numUsers, ...
 'NumTransmitAntennas',numTx, ...
 'GroupID',2, ...
 'NumSpaceTimeStreams',numSTSVec,...
 'UserPositions',userPos, ...
 'MCS',mcsVec, ...
 'APEPLength',apepVec, ...
 'ChannelCoding',chCodingVec);

The number of transmit antennas is set to be the sum total of all the used space-time streams. This
implies no space-time block coding (STBC) or spatial expansion is employed for the transmission.

Sounding (NDP) Configuration

For precoding, channel sounding is first used to determine the channel experienced by the users
(receivers). This channel state information is sent back to the transmitter, for it to be used for
subsequent data transmission. It is assumed that the channel varies slowly over the two
transmissions. For multiuser transmissions, the same NDP (Null Data Packet) is transmitted to each
of the scheduled users [2].

% VHT sounding (NDP) configuration, for same number of streams
cfgVHTNDP = wlanVHTConfig('ChannelBandwidth',chanBW, ...
 'NumUsers',1, ...
 'NumTransmitAntennas',numTx, ...
 'GroupID',0, ...
 'NumSpaceTimeStreams',sum(numSTSVec),...
 'MCS',0, ...
 'APEPLength',0);

1 Communications Toolbox Featured Examples

1-154

The number of streams specified is the sum total of all space-time streams used. This allows the
complete channel to be sounded.

% Generate the null data packet, with no data
txNDPSig = wlanWaveformGenerator([],cfgVHTNDP);
NPDSigLen = size(txNDPSig, 1);

WINNER II Channel for Indoor Office (A1) Scenario

In this example, one comm.WINNER2Channel System object™ in the WINNER II Channel Model for
Communications Toolbox™ is set up to simulate the three channels to different users. The indoor
office (A1) non-line-of-sight (NLOS) scenario is configured for each user. With a fixed power delay
profile, each user experiences a 16-path fading channel with the largest delay of 175 us. Each user is
also assigned a low mobility as appropriate for 802.11ac.

The access point employs a uniform circular array (UCA) with a radius of 20cm. Each user employs a
uniform linear array (ULA) with 5cm spacing between elements. It is also assumed that each user's
number of receive antennas is equal to the number of space-time streams allocated to them.

% Set up layout parameters for WINNER II channel
AA = winner2.AntennaArray('UCA',numTx,0.2);
for i = 1:numUsers
 AA(i+1) = winner2.AntennaArray('ULA',numSTSVec(i),0.05);
end
STAIdx = 2:(numUsers+1);
APIdx = {1};
rndSeed = 12;
cfgLayout = winner2.layoutparset(STAIdx,APIdx,numUsers,AA,[],rndSeed);
cfgLayout.Pairing = [ones(1,numUsers);2:(numUsers+1)]; % One access point to all users
cfgLayout.ScenarioVector = ones(1,numUsers); % A1 scenario for all links
cfgLayout.PropagConditionVector = zeros(1,numUsers); % NLOS
for i = 1:numUsers % Randomly set velocity for each user
 v = rand(3,1) - 0.5;
 cfgLayout.Stations(i+1).Velocity = v/norm(v,'fro');
end

% Set up model parameters for WINNER II channel
cfgModel = winner2.wimparset;
cfgModel.FixedPdpUsed = 'yes';
cfgModel.FixedAnglesUsed = 'yes';
cfgModel.IntraClusterDsUsed = 'no';
cfgModel.RandomSeed = 111; % Repeatability

% The maximum velocity for the 3 users is 1m/s. Set up the SampleDensity
% field to ensure that the sample rate matches the channel bandwidth.
maxMSVelocity = max(cell2mat(cellfun(@(x) norm(x,'fro'), ...
 {cfgLayout.Stations.Velocity},'UniformOutput',false)));
cfgModel.UniformTimeSampling = 'yes';
cfgModel.SampleDensity = round(physconst('LightSpeed')/ ...
 cfgModel.CenterFrequency/2/(maxMSVelocity/wlanSampleRate(cfgVHTMU)));

% Create the WINNER II channel System object
WINNERChan = comm.WINNER2Channel(cfgModel,cfgLayout);

% Call the info method to check some derived channel parameters
chanInfo = info(WINNERChan)

 802.11ac Multiuser MIMO Precoding with WINNER II Channel Model

1-155

chanInfo =

 struct with fields:

 NumLinks: 3
 NumBSElements: [8 8 8]
 NumMSElements: [3 1 4]
 NumPaths: [16 16 16]
 SampleRate: [8.0000e+07 8.0000e+07 8.0000e+07]
 ChannelFilterDelay: [7 7 7]
 NumSamplesProcessed: 0

The channel filtering delay for each user is stored to account for its compensation at the receiver. In
practice, symbol timing estimation would be used. At transmitter, an extra ten all-zero samples are
appended to account for channel filter delay.

chanDelay = chanInfo.ChannelFilterDelay;
numPadZeros = 10;

% Set ModelConfig.NumTimeSamples to match the length of the input signal to
% avoid warning
WINNERChan.ModelConfig.NumTimeSamples = NPDSigLen + numPadZeros;

% Sound the WINNER II channel for all users
chanOutNDP = WINNERChan([txNDPSig;zeros(numPadZeros,numTx)]);

% Add AWGN
rxNDPSig = cellfun(@awgn,chanOutNDP, ...
 num2cell(snr*ones(numUsers,1)),'UniformOutput',false);

Channel State Information Feedback

Each user estimates its own channel using the received NDP signal and computes the channel state
information that it can send back to the transmitter. This example uses the singular value
decomposition of the channel seen by each user to compute the CSI feedback.

mat = cell(numUsers,1);
for uIdx = 1:numUsers
 % Compute the feedback matrix based on received signal per user
 mat{uIdx} = vhtCSIFeedback(rxNDPSig{uIdx}(chanDelay(uIdx)+1:end,:), ...
 cfgVHTNDP,uIdx,numSTSVec);
end

Assuming perfect feedback, with no compression or quantization loss of the CSI, the transmitter
computes the steering matrix for the data transmission using either Zero-Forcing or Minimum-Mean-
Square-Error (MMSE) based precoding techniques. Both methods attempt to cancel out the intra-
stream interference for the user of interest and interference due to other users. The MMSE-based
approach avoids the noise enhancement inherent in the zero-forcing technique. As a result, it
performs better at low SNRs.

% Pack the per user CSI into a matrix
numST = length(mat{1}); % Number of subcarriers
steeringMatrix = zeros(numST,sum(numSTSVec),sum(numSTSVec));
% Nst-by-Nt-by-Nsts
for uIdx = 1:numUsers

1 Communications Toolbox Featured Examples

1-156

 stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
 steeringMatrix(:,:,stsIdx) = mat{uIdx}; % Nst-by-Nt-by-Nsts
end

% Zero-forcing or MMSE precoding solution
if strcmp(precodingType, 'ZF')
 delta = 0; % Zero-forcing
else
 delta = (numTx/(10^(snr/10))) * eye(numTx); % MMSE
end
for i = 1:numST
 % Channel inversion precoding
 h = squeeze(steeringMatrix(i,:,:));
 steeringMatrix(i,:,:) = h/(h'*h + delta);
end

% Set the spatial mapping based on the steering matrix
cfgVHTMU.SpatialMapping = 'Custom';
cfgVHTMU.SpatialMappingMatrix = permute(steeringMatrix,[1 3 2]);

Data Transmission

Random bits are used as the payload for the individual users. A cell array is used to hold the data bits
for each user, txDataBits. For a multiuser transmission the individual user payloads are padded
such that the transmission duration is the same for all users. This padding process is described in
Section 9.12.6 of [1]. In this example for simplicity the payload is padded with zeros to create a
PSDU for each user.

% Create data sequences, one for each user
txDataBits = cell(numUsers,1);
psduDataBits = cell(numUsers,1);
for uIdx = 1:numUsers
 % Generate payload for each user
 txDataBits{uIdx} = randi([0 1],cfgVHTMU.APEPLength(uIdx)*8,1,'int8');

 % Pad payload with zeros to form a PSDU
 psduDataBits{uIdx} = [txDataBits{uIdx}; ...
 zeros((cfgVHTMU.PSDULength(uIdx)-cfgVHTMU.APEPLength(uIdx))*8,1,'int8')];
end

Using the format configuration, cfgVHTMU, with the steering matrix, to generate the multiuser VHT
waveform.

txSig = wlanWaveformGenerator(psduDataBits,cfgVHTMU);

The WINNER II channel object does not allow the input signal size to change once locked, so we have
to call the release method before passing the waveform through it. In addition, as we restart the
channel, we want it to re-process the NDP before the waveform so as to accurately mimic the channel
continuity. Only the waveform portion of the channel's output is extracted for the subsequent
processing of each user.

release(WINNERChan);

% Set ModelConfig.NumTimeSamples to match the total length of NDP plus
% waveform and padded zeros
WINNERChan.ModelConfig.NumTimeSamples = ...
 WINNERChan.ModelConfig.NumTimeSamples + length(txSig) + numPadZeros;

 802.11ac Multiuser MIMO Precoding with WINNER II Channel Model

1-157

% Transmit through the WINNER II channel for all users, with 10 all-zero
% samples appended to account for channel filter delay
chanOut = WINNERChan([txNDPSig; zeros(numPadZeros,numTx); ...
 txSig; zeros(numPadZeros,numTx)]);

% Extract the waveform output for each user
chanOut = cellfun(@(x) x(NPDSigLen+numPadZeros+1:end,:),chanOut,'UniformOutput',false);

% Add AWGN
rxSig = cellfun(@awgn,chanOut, ...
 num2cell(snr*ones(numUsers,1)),'UniformOutput',false);

Data Recovery per User

The receive signals for each user are processed individually. The example assumes that there are no
front-end impairments and that the transmit configuration is known by the receiver for simplicity.

A user number specifies the user of interest being decoded for the transmission. This is also used to
index into the vector properties of the configuration object that are user-specific.

% Get field indices from configuration, assumed known at receiver
ind = wlanFieldIndices(cfgVHTMU);

% Single-user receivers recover payload bits
rxDataBits = cell(numUsers,1);
scaler = zeros(numUsers,1);
spAxes = gobjects(sum(numSTSVec),1);
hfig = figure('Name','Per-stream equalized symbol constellation');
for uIdx = 1:numUsers
 rxNSig = rxSig{uIdx}(chanDelay(uIdx)+1:end, :);

 % User space-time streams
 stsU = numSTSVec(uIdx);

 % Estimate noise power in VHT fields
 lltf = rxNSig(ind.LLTF(1):ind.LLTF(2),:);
 demodLLTF = wlanLLTFDemodulate(lltf,chanBW);
 nVar = helperNoiseEstimate(demodLLTF,chanBW,sum(numSTSVec));

 % Perform channel estimation based on VHT-LTF
 rxVHTLTF = rxNSig(ind.VHTLTF(1):ind.VHTLTF(2),:);
 demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,chanBW,numSTSVec);
 chanEst = wlanVHTLTFChannelEstimate(demodVHTLTF,chanBW,numSTSVec);

 % Recover information bits in VHT Data field
 rxVHTData = rxNSig(ind.VHTData(1):ind.VHTData(2),:);
 [rxDataBits{uIdx},~,eqsym] = wlanVHTDataRecover(rxVHTData, ...
 chanEst,nVar,cfgVHTMU,uIdx, ...
 'EqualizationMethod',eqMethod,'PilotPhaseTracking','None', ...
 'LDPCDecodingMethod','layered-bp','MaximumLDPCIterationCount',6);

 % Plot equalized symbols for all streams per user
 scaler(uIdx) = ceil(max(abs([real(eqsym(:)); imag(eqsym(:))])));
 for i = 1:stsU
 subplot(numUsers,max(numSTSVec),(uIdx-1)*max(numSTSVec)+i);
 plot(reshape(eqsym(:,:,i),[],1),'.');
 axis square

1 Communications Toolbox Featured Examples

1-158

 spAxes(sum([0 numSTSVec(1:(uIdx-1))])+i) = gca; % Store axes handle
 title(['User ' num2str(uIdx) ', Stream ' num2str(i)]);
 grid on;
 end
end

% Scale axes for all subplots and scale figure
for i = 1:numel(spAxes)
 xlim(spAxes(i),[-max(scaler) max(scaler)]);
 ylim(spAxes(i),[-max(scaler) max(scaler)]);
end
pos = get(hfig,'Position');
set(hfig,'Position',[pos(1)*0.7 pos(2)*0.7 1.3*pos(3) 1.3*pos(4)]);

Per-stream equalized symbol constellation plots validate the simulation parameters and convey the
effectiveness of the technique. Note the discernible 16QAM, 64QAM and QPSK constellations per
user as specified on the transmit end. Also observe the EVM degradation over the different streams
for an individual user. This is a representative characteristic of the channel inversion technique.

 802.11ac Multiuser MIMO Precoding with WINNER II Channel Model

1-159

The recovered data bits are compared with the transmitted payload bits to determine the bit error
rate.

% Compare recovered bits against per-user APEPLength information bits
ber = inf(1, numUsers);
for uIdx = 1:numUsers
 idx = (1:cfgVHTMU.APEPLength(uIdx)*8).';
 [~,ber(uIdx)] = biterr(txDataBits{uIdx}(idx),rxDataBits{uIdx}(idx));
 disp(['Bit Error Rate for User ' num2str(uIdx) ': ' num2str(ber(uIdx))]);
end

rng(s); % Restore RNG state

Bit Error Rate for User 1: 0
Bit Error Rate for User 2: 0
Bit Error Rate for User 3: 0.00014603

The small number of bit errors, within noise variance, indicate successful data decoding for all
streams for each user, despite the variation in EVMs seen in individual streams.

Conclusion and Further Exploration

The example shows how to use the WINNER II fading channel System object to model a multiuser
VHT transmission in 802.11ac. Further exploration includes modifications to the transmission
parameters, antenna arrays, channel scenarios, LOS vs. NLOS propagations, path loss modeling and
shadowing modeling.

There is another version of this example in the WLAN Toolbox™, which uses three independent TGac
fading channels for three users: “802.11ac Multi-User MIMO Precoding” (WLAN Toolbox).

Appendix

This example uses the following helper functions from WLAN Toolbox:

• helperNoiseEstimate.m
• vhtCSIFeedback.m

Selected Bibliography

1 IEEE® Std 802.11ac-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

2 Perahia, E., R. Stacey, "Next Generation Wireless LANS: 802.11n and 802.11ac", Cambridge
University Press, 2013.

3 IEEE Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

4 IST WINNER II, "WINNER II Channel Models", D1.1.2, Sep. 2007.
5 Breit, G., H. Sampath, S. Vermani, et al., "TGac Channel Model Addendum", Version 12. IEEE

802.11-09/0308r12, March 2010.

1 Communications Toolbox Featured Examples

1-160

End-to-End QAM Simulation with RF Impairments and
Corrections

This example provides visualization capabilities to see the effects of RF impairments and corrections
in a satellite downlink. The link employs 16-QAM modulation in the presence of AWGN and uses a
High Power Amplifier (HPA) to overcome the losses associated with satellite communications. The
HPA introduces nonlinear behavior that, when combined with other RF impairments, requires the use
of mitigation techniques.

This example includes:

• A MATLAB® GUI, QAMwithRFImpairmentsExample.

• A MATLAB-based simulator function, QAMwithRFImpairmentsSim.m, which receives its input
parameters from the GUI.

Keywords: QAM, RF impairments, I/Q imbalance, nonlinearity, RF correction.

Introduction

The simulation allows you to configure the parameters shown in the GUI.

Open the GUI to:

• Modify the parameters
• Run the simulation with MATLAB
• Visualize signal constellations and spectra
• View the underlying MATLAB code
• Generate C code and run the simulation (with a valid MATLAB Coder™ license)

QAMwithRFImpairmentsExample

 End-to-End QAM Simulation with RF Impairments and Corrections

1-161

matlab:QAMwithRFImpairmentsExample

The Simulate button simulates the configured link using interpreted MATLAB code. While the
simulation is running, you can modify some simulation parameters using the GUI. The impact of
parameter setting updates is immediately observable on the Results panel or on the plots. Parameters
that are nontunable while the simulation is running are grayed out. To modify nontunable
parameters, the simulation must be stopped.

The View MATLAB Code button opens the simulator code in the editor allowing for visual inspection
and further exploration of the underlying functions used in the simulation.

The Run Generated Code button compiles the MATLAB function into an executable MEX-file and
runs the simulation once the compiling process is complete. The MEX version of the simulation runs
much faster though there is a time penalty from the compiling process itself. You can modify the same
parameters when running from either interpreted mode or from the MEX-file.

1 Communications Toolbox Featured Examples

1-162

The Stop Simulation button stops the simulation during execution. This works for both interpreted
MATLAB and the MEX-file. The button is active only when a simulation is running.

The Help button brings up this HTML page.

Simulation Overview

The simulation executes the following steps:

• Generate random integers
• Modulate with 16-QAM
• Root raised cosine (RRC) transmit filter
• Pass through an HPA
• Apply transmit antenna gain
• Apply path loss based on atmospheric condition
• Pass the signal through an AWGN channel with RF impairments
• Apply receive antenna gain
• Remove DC offset
• Apply automatic gain control
• RRC receive filter
• Apply ADC effects
• Compensate for I/Q amplitude and phase imbalance
• Correct for the Doppler shift
• Demodulate 16-QAM
• Calculate the bit error rate

The following block diagram shows the architecture of the system.

You can specify the following signal impairments:

 End-to-End QAM Simulation with RF Impairments and Corrections

1-163

• Receiver noise temperature in the range [0, 600] K
• Doppler error in the range [-3, 3] Hz
• DC offset, expressed as a percentage of the maximum signal voltage, in the range [0, 20]
• Phase noise in the range [-100, -48] dBc/Hz
• I/Q amplitude imbalance in the range [-5, 5] dB
• I/Q phase imbalance in the range [-30, 30] degrees
• HPA backoff level in the range [1, 30] dB
• Quantization error by changing the number of ADC bits in the range of [2 16] bits
• Saturation due to ADC full scale voltage in the range of [0.1 2] amplitude units (AUs)

An HPA backoff of 30 dB corresponds to negligible distortion because the amplifier is operating in its
linear region, while 1 dB corresponds to severe distortion. A Saleh model is used to simulate the
behavior of the HPA. Further information is available on the comm.MemorylessNonlinearity page.

The GUI provides the ability to enable or disable corrections for Doppler error, I/Q imbalance, and DC
offset. These corrections are provided by three System objects. The comm.CarrierSynchronizer
compensates for the frequency offset due to Doppler, the comm.IQImbalanceCompensator corrects
the amplitude and phase imbalance, and the dsp.DCBlocker compensates for the DC offset.

Results and Displays

You can use GUI controls to display:

• The spectrum of the transmitted signal measured at the output of the transmit RRC filter.
• The spectrum of the received signal measured at the input of the receive RRC filter.
• The constellation diagram of the received signal.
• The constellation diagrams of the HPA input signal.
• The constellation diagrams of the HPA output signal

A typical spectrum plot, using the default parameters, is shown. The effects of AWGN are most easily
seen in the out-of-band signal spectrum, where the noise floor of the received signal is 20 dB higher
than the transmitted signal spectrum. The received signal spectrum also shows the effect of
propagation loss through the channel.

1 Communications Toolbox Featured Examples

1-164

A plot of the constellation diagram is shown for the case in which the I/Q imbalance correction is
disabled. The red + symbols denote the 16-QAM reference constellation. The constellation is scaled
and rotated by the uncorrected imbalance.

 End-to-End QAM Simulation with RF Impairments and Corrections

1-165

The effects of nonlinear HPA behavior are shown as HPA Input and HPA Output using the same
constellation diagram plot. The diagrams show the effects of AM/AM and AM/PM distortion when the
amplifier operates 7 dB below saturation. AM/AM distortion causes the 'rounded' appearance of the
HPA output signal constellation, while AM/PM causes the constellation to rotate.

1 Communications Toolbox Featured Examples

1-166

The bit error rate, number of errors, total number of transmitted symbols, path loss, and the Eb/No
are displayed directly on the results panel of the GUI.

Further Exploration

Use the GUI to change the parameters listed below.

• Link gains and losses: Vary the noise temperature between 0 to 290 K (typical) to view the
effects on the received signal spectrum analyzer plot. Likewise, change the link distance,
atmospheric condition and carrier frequency to view the impact on the received signal spectrum.
Changes in the link margin are also reflected in the calculated path loss and Eb/No.

• HPA AM-to-AM and AM-to-PM conversion: Vary the HPA Backoff between 30 dB (negligible
nonlinearity) to 1 dB (severe nonlinearity). A value of 7 dB corresponds to moderate nonlinearity.
View the effects on the spectrum plot, the HPA output constellation, the received signal
constellation diagram, and on the bit error rate. Increasing nonlinearity increases spectral
regrowth and causes the HPA output constellation to become 'rounder' and rotate. The HPA
Backoff parameter can be adjusted while the simulation is executing.

 End-to-End QAM Simulation with RF Impairments and Corrections

1-167

• Phase noise: Set the Phase Noise to -48 dBc/Hz (high) and observe the increased variance in the
tangential direction in the received signal constellation diagram. This level of phase noise is
sufficient to cause errors in an otherwise error-free channel. Set the Phase Noise to -55 dBc/Hz
(low) and observe that the variance in the tangential direction has decreased. This level of phase
noise does not significantly increase the error rate. Now, set the HPA Backoff level parameter to 7
dB (moderate nonlinearity). Note that even though the moderate HPA nonlinearity and the
moderate phase noise do not cause many bit errors when applied individually, they do cause
significantly more bit errors when applied together. The Phase Noise parameter can be adjusted
only when the simulation is stopped.

• DC offset and DC offset correction: Set the DC offset to 10 and disable the DC offset correction
by unchecking the DC Offset checkbox. The constellation diagram changes significantly. Re-enable
the DC Offset correction and view the received signal constellation diagram and signal spectrum
to verify that the DC offset is removed. Both the DC offset and the DC offset correction parameters
can be modified during simulation execution.

• I/Q imbalance: Disable the Amplitude and phase imbalance box to view the effects of an I/Q
imbalance on the received constellation diagram. Modify the amplitude and phase imbalance
fields to observe the effects of different values on the received signal constellation diagram. Re-
enable the I/Q imbalance correction to verify that the receive constellation aligns with its
reference points. These parameters can be modified during execution.

• Doppler and Doppler compensation: Set Doppler error to 0.7 Hz and disable the Doppler error
correction to show the effect of uncorrected Doppler on the received signal. Note that the BER is
close to 0.5. Re-enable the Doppler error correction to correct for the Doppler error. Verify that
the BER decreases. These parameters are available only when the simulation is stopped.

• ADC Effects: Decrease the number of ADC bits to view the effect of increasing quantization
errors on the received signal. Decrease the ADC full scale voltage to impose saturation on the
received signal and view its effect on the system performance.

• Code Generation: Run the simulation by clicking the Run Generated Code button. The first time
this is done, the simulation compiles before executing, which makes the process take longer than
it does when simulating with interpreted MATLAB. Change the HPA backoff level and rerun the
simulation. Note that the results panel updates very quickly. Now, change the Phase noise and
click the Run Generated Code button. The code is recompiled because the phase noise is a
nontunable parameter. Enable the Rx constellation option and rerun the simulation. You can see
that when the scope is activated, the bit error results accumulate more slowly but the scope
updates much faster than it does when running with interpolated MATLAB.

• BER estimation: By default, the Number of bit errors parameter is set to Inf so that the effects
of the impairments and corrections can be easily visualized on the scopes. For BER estimation, it
is typically sufficient to collect 50 to 200 errors; consequently, disable the scopes and change the
Number of bit errors parameter from Inf to 100. It is important to leave the modifiable
parameters unchanged when the simulation is running to obtain a valid BER estimate.

Selected Bibliography

[1] Saleh, Adel A.M., "Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT
Amplifiers," IEEE® Transactions on Communications, Vol. COM-29, No. 11, November 1981.

[2] Kasdin, N.J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/(f^alpha);
Power Law Noise Generation," The Proceedings of the IEEE, Vol. 83, No. 5, May, 1995.

[3] Kasdin, N. Jeremy, and Todd Walter, "Discrete Simulation of Power Law Noise," 1992 IEEE
Frequency Control Symposium.

1 Communications Toolbox Featured Examples

1-168

[4] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood Cliffs, N.J.,
Prentice Hall, 1988.

 End-to-End QAM Simulation with RF Impairments and Corrections

1-169

HF Ionospheric Channel Models

This example shows how to simulate High-Frequency (HF) ionospheric channels, based on the models
described in Recommendation ITU-R F.1487. In particular, it shows how to simulate the general
Watterson channel model, and other simplified channel models used in the quantitative testing of HF
modems. It makes use of the comm.RayleighChannel System object™ and stdchan function along
with the Gaussian and bi-Gaussian doppler structures from Communications Toolbox™.

ITU-R HF Channel Models: Overview

In HF ionospheric radio communications, the transmitted signal can bounce off several times from
the E and F layers of the ionosphere, which results in several propagation paths, also called modes
[1 on page 1-177]. Typically, the multipath delay spreads are large, as compared to mobile radio.
Also, the signal can suffer from Doppler spread due to the turbulence of the ionosphere. However, the
fading rate is usually smaller than for mobile radio.

Recommendation ITU-R F.1487 [1 on page 1-177] proposes a general Gaussian scatter model for the
simulation of HF ionospheric channels. This model is based on Watterson's channel model [2 on page
1-177]. Simpler models are also proposed in [1 on page 1-177] for use in HF modem tests, with
specified parameters.

Initialization of Simulation-Specific Parameters

The simulation sampling rate Rs is specified to 9.6K Hz, and kept the same for the remainder of the
example. We use a QPSK modulation scheme with zero phase offset.

Rs = 9.6e3; % Channel sampling rate
M = 4; % Modulation order
qpskMod = comm.QPSKModulator(0); % QPSK modulator object

Watterson Channel Model

The Watterson channel model consists of a tapped delay line, where each tap corresponds to a
resolvable propagation path. On each tap, two magneto-ionic components are present: each one is
modeled as a complex Gaussian random process with a given gain and frequency shift, and whose
Doppler spectrum is Gaussian with a given standard deviation [2 on page 1-177]. Hence, each tap is
characterized by a bi-Gaussian Doppler spectrum, which consists of two Gaussian functions in the
frequency domain, each one with its own set of parameters (power gain, frequency shift, and
standard deviation).

In this example, we follow the Watterson simulation model specified in [1 on page 1-177], in which
the complex fading process on each tap is obtained by adding two independent frequency-shifted
complex Gaussian random processes (with Gaussian Doppler spectra) corresponding to the two
magneto-ionic components. This simulation model leads to a complex fading process whose envelope
is in general not Rayleigh distributed. Hence, to be faithful to the simulation model, we cannot simply
generate a Rayleigh channel with a bi-Gaussian Doppler spectrum. Instead, we generate two
independent Rayleigh channels, each with a frequency-shifted Gaussian Doppler spectrum, gain-scale
them, and add them together to obtain the Watterson channel model with a bi-Gaussian Doppler
spectrum. For simplicity, we simulate a Watterson channel with only one tap.

A frequency-shifted Gaussian Doppler spectrum can be seen as a bi-Gaussian Doppler spectrum in
which only one Gaussian function is present (the second one having a zero power gain). Hence, to
emulate the frequency-shifted Gaussian Doppler spectrum of each magneto-ionic component, we

1 Communications Toolbox Featured Examples

1-170

construct a bi-Gaussian Doppler structure such that one of the two Gaussian functions has the
specified frequency shift and standard deviation, while the other has a zero power gain.

The first magneto-ionic component has a Gaussian Doppler spectrum with standard deviation
sGauss1, frequency shift fGauss1, and power gain gGauss1. A bi-Gaussian Doppler structure
dopplerComp1 is constructed such that the second Gaussian function has a zero power gain (its
standard deviation and center frequency are hence irrelevant, and take on default values), while the
first Gaussian function has a normalized standard deviation sGauss1/fd and a normalized frequency
shift fGauss1/fd, where the normalization factor fd is the maximum Doppler shift of the
corresponding channel. In this example, since the gain of the second Gaussian function is zero, the
value assigned to the gain of the first Gaussian function is irrelevant (we leave it to its default value
of 0.5), because the associated channel System object created later normalizes the Doppler spectrum
to have a total power of 1.

For more information on how to construct a bi-Gaussian Doppler structure, see doppler.

fd = 10; % Chosen maximum Doppler shift for simulation
sGauss1 = 2.0;
fGauss1 = -5.0;
dopplerComp1 = doppler('BiGaussian', ...
 'NormalizedStandardDeviations', [sGauss1/fd 1/sqrt(2)], ...
 'NormalizedCenterFrequencies', [fGauss1/fd 0], ...
 'PowerGains', [0.5 0])

dopplerComp1 = struct with fields:
 SpectrumType: 'BiGaussian'
 NormalizedStandardDeviations: [0.2000 0.7071]
 NormalizedCenterFrequencies: [-0.5000 0]
 PowerGains: [0.5000 0]

To simulate the first magneto-ionic component, we construct a single-path Rayleigh channel System
object chanComp1 with a frequency-shifted Gaussian Doppler spectrum specified by the Doppler
structure dopplerComp1. The average path power gain of the channel is 1 (0 dB).

chanComp1 = comm.RayleighChannel(...
 'SampleRate', Rs, ...
 'MaximumDopplerShift', fd, ...
 'DopplerSpectrum', dopplerComp1, ...
 'RandomStream', 'mt19937ar with seed', ...
 'Seed', 99, ...
 'PathGainsOutputPort', true)

chanComp1 =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 10
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: true

 Show all properties

 HF Ionospheric Channel Models

1-171

Similarly, the second magneto-ionic component has a Gaussian Doppler spectrum with standard
deviation sGauss2, frequency shift fGauss2, and power gain gGauss2. A bi-Gaussian Doppler
structure dopplerComp2 is constructed such that the second Gaussian function has a zero power
gain (its standard deviation and center frequency are hence irrelevant, and take on default values),
while the first Gaussian function has a normalized standard deviation sGauss2/fd and a normalized
frequency shift fGauss2/fd (again its power gain is irrelevant).

sGauss2 = 1.0;
fGauss2 = 4.0;
dopplerComp2 = doppler('BiGaussian', ...
 'NormalizedStandardDeviations', [sGauss2/fd 1/sqrt(2)], ...
 'NormalizedCenterFrequencies', [fGauss2/fd 0], ...
 'PowerGains', [0.5 0])

dopplerComp2 = struct with fields:
 SpectrumType: 'BiGaussian'
 NormalizedStandardDeviations: [0.1000 0.7071]
 NormalizedCenterFrequencies: [0.4000 0]
 PowerGains: [0.5000 0]

To simulate the second magneto-ionic component, we construct a single-path Rayleigh channel
System object chanComp2 with a frequency-shifted Gaussian Doppler spectrum specified by the
Doppler structure dopplerComp2.

chanComp2 = comm.RayleighChannel(...
 'SampleRate', Rs, ...
 'MaximumDopplerShift', fd, ...
 'DopplerSpectrum', dopplerComp2, ...
 'RandomStream', 'mt19937ar with seed', ...
 'Seed', 999, ...
 'PathGainsOutputPort', true)

chanComp2 =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 10
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: true

 Show all properties

We compute in the loop below the output to the Watterson channel in response to an input signal, and
store it in y. In obtaining y, the function call on chanComp1 emulates the effect of the first magneto-
ionic component, while the function call on chanComp2 emulates the effect of the second component.

To obtain the desired power gains, gGauss1 and gGauss2, of each magneto-ionic component, we
need to scale the output signal for each magneto-ionic component by their corresponding amplitude
gains, sqrt(gGauss1) and sqrt(gGauss2).

Due to the low Doppler shifts found in HF environments and the fact that the bi-Gaussian Doppler
spectrum is combined from two objects, obtaining measurements for the Doppler spectrum using the

1 Communications Toolbox Featured Examples

1-172

built-in visualization of the System objects is not appropriate. Instead, we store the channel's complex
path gains and later compute the Doppler spectrum for each path at the command line. In the loop
below, the channel's complex path gains are obtained by summing (after scaling by the corresponding
amplitude gains) the complex path gains associated with each magneto-ionic component, and then
stored in g.

gGauss1 = 1.2; % Power gain of first component
gGauss2 = 0.25; % Power gain of second component

Ns = 2e6; % Total number of channel samples
frmLen = 1e3; % Number of samples per frame
numFrm = Ns/frmLen; % Number of frames

[y, g] = deal(zeros(Ns, 1));
for frmIdx = 1:numFrm
 x = qpskMod(randi([0 M-1], frmLen, 1));
 [y1, g1] = chanComp1(x);
 [y2, g2] = chanComp2(x);
 y(frmLen*(frmIdx-1)+(1:frmLen)) = sqrt(gGauss1) * y1 ...
 + sqrt(gGauss2) * y2;
 g(frmLen*(frmIdx-1)+(1:frmLen)) = sqrt(gGauss1) * g1 ...
 + sqrt(gGauss2) * g2;
end

The Doppler spectrum is estimated from the complex path gains and plotted.

hFig = figure;
pwelch(g, hamming(Ns/100), [], [], Rs, 'centered');
axis([-0.1 0.1 -80 0]);
legend('Simulation');

 HF Ionospheric Channel Models

1-173

The theoretical bi-Gaussian Doppler spectrum is overlaid to the estimated Doppler spectrum. We
observe a good fit between both.

f = -(Rs/2):0.1:(Rs/2);
Sd = gGauss1 * 1/sqrt(2*pi*sGauss1^2) * exp(-(f-fGauss1).^2/(2*sGauss1^2)) ...
 + gGauss2 * 1/sqrt(2*pi*sGauss2^2) * exp(-(f-fGauss2).^2/(2*sGauss2^2));

hold on;
plot(f(Sd>0)/1e3, 10*log10(Sd(Sd>0)), 'k--');
legend('Simulation', 'Theory');

1 Communications Toolbox Featured Examples

1-174

ITU-R F.1487 Low Latitudes, Moderate Conditions (LM) Channel Model

Recommendation ITU-R F.1487 specifies simplified channel models used in the quantitative testing of
HF modems. These models consist of two independently fading paths with equal power. On each path,
the two magneto-ionic components are assumed to have zero frequency shift and equal variance:
hence the bi-Gaussian Doppler spectrum on each tap reduces to a single Gaussian Doppler spectrum,
and the envelope of the complex fading process is Rayleigh-distributed.

Below, we construct a channel object according to the Low Latitudes, Moderate Conditions (LM)
channel model specified in Annex 3 of ITU-R F.1487, using the stdchan function. The path delays are
0 and 2 ms. The frequency spread, defined as twice the standard deviation of the Gaussian Doppler
spectrum, is 1.5 Hz. The Gaussian Doppler spectrum structure is hence constructed with a
normalized standard deviation of (1.5/2)/ fd, where fd is 1 Hz (type help doppler for more
information). When using stdchan to construct ITU-R HF channel models, the maximum Doppler
shift must be set to 1 Hz: this ensures that the Gaussian Doppler spectrum of the constructed channel
has the correct standard deviation.

close(hFig);

fd = 1;
chanLM = stdchan('iturHFLM', Rs, fd);
chanLM.RandomStream = 'mt19937ar with seed';
chanLM.Seed = 9999;
chanLM.PathGainsOutputPort = true;
chanLM.Visualization = 'Impulse response'

 HF Ionospheric Channel Models

1-175

chanLM =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: [0 0.0020]
 AveragePathGains: [0 0]
 NormalizePathGains: true
 MaximumDopplerShift: 1
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: true

 Show all properties

We have turned on the impulse response visualization in the Rayleigh channel System object. The
code below simulates the LM channel and visualizes its bandlimited impulse response. By default, the
channel responses for one of every four samples are visualized for faster simulation. In other words,
for a frame of length 1000, the responses for the 1st, 5th, 9th, ..., 997th samples are shown. To
observe the response for every sample, set the SamplesToDisplay property of chanLM to '100%'.

numFrm = 10; % Number of frames
for frmIdx = 1:numFrm
 x = qpskMod(randi([0 M-1], frmLen, 1));
 chanLM(x);
end

We now turn on the Doppler spectrum visualization for the channel object to observe the theoretical
and empirical Gaussian Doppler spectra for the first discrete path. Due to the very low Doppler shift,
it may take a while to have the empirical spectrum converge to the theoretical spectrum.

1 Communications Toolbox Featured Examples

1-176

release(chanLM);
chanLM.Visualization = 'Doppler spectrum';

frmLen = 2e6; % Number of samples per frame
numFrm = 80; % Number of frames
for frmIdx = 1:numFrm
 x = qpskMod(randi([0 M-1], frmLen, 1));
 chanLM(x);
end

Selected Bibliography

1 - Recommendation ITU-R F.1487, "Testing of HF modems with bandwidths of up to about 12 kHz
using ionospheric channel simulators," 2000.

2 - C. C. Watterson, J. R. Juroshek, and W. D. Bensema, "Experimental confirmation of an HF channel
model," IEEE® Trans. Commun. Technol., vol. COM-18, no. 6, Dec. 1970.

 HF Ionospheric Channel Models

1-177

GSM, CDMA and WiMAX Channel Models

This example shows how to simulate multipath fading channels defined for GSM/EDGE [1 2], CDMA
[3], and WiMAX [4] wireless standards. The example uses the Rayleigh and MIMO fading channel
System objects™ from Communications Toolbox™ to simulate and visualize the channels.

GSM Channel Model

GSM (Global System for Mobile Communications) is the global standard for 2G mobile
communications. The multipath fading channel for GSM was defined in [1 2] for different
communication scenarios including rural area (RAx), hilly terrain (HTx), urban area (TUx). Each
scenario was assigned a specific power delay profile (PDP) and Doppler spectrum. In this example,
we simulate the hilly terrain scenario (HTx) with 12 taps. We pass GMSK modulated signals through
the fading channel and observe its impulse response.

% Set random number generator for repeatability
rng('default');

Create a GMSK modulator using the comm.GMSKModulator object and use it to modulate randomly
generated bits. This object is to illustrate that the GMSK modulation is used in the GSM system.

gmskMod = comm.GMSKModulator(...
 'BitInput', true, ...
 'SamplesPerSymbol', 8);

% Modulate random bits using the GMSK object
x = gmskMod(randi([0 1], 1e4, 1));

Assume mobile speed at 120 km/h. Calculate the Doppler shift at the carrier frequency of 1.8 GHz.

v = 120*1e3/3600; % Mobile speed (m/s)
fc = 1.8e9; % Carrier frequency
fd = v*fc/physconst('lightspeed'); % Maximum Doppler shift

To simulate the fading channel for HTx, we can configure a comm.RayleighChannel object
following the PDP specification in [1 2]. Alternatively, we can use the stdchan function to create the
desired comm.RayleighChannel object, given the scenario input 'gsmHTx12c1'. So we do not have
to refer to [1 2] for PDP and Doppler spectrum specifications.

Rsym = 270.833e3; % GSM symbol rate
Rsamp = gmskMod.SamplesPerSymbol * Rsym; % GSM sample rate
gsmChan = stdchan('gsmHTx12c1', Rsamp, fd);

We turn on the impulse response visualization for the channel object and send the GMSK modulated
data through it. You can observe that the path (tap) delays last over 5 samples. The first 7 and last 5
taps can be grouped into two different clusters. In that sense, the channel characterizes two
dominant paths from the transmitter to the receiver with scattering. You can also observe that the
impulse response changes reasonably fast at this mobile speed of 120 km/h.

gsmChan.Visualization = 'Impulse response';
gsmChan(x);

1 Communications Toolbox Featured Examples

1-178

CDMA Channel Model

CDMA (Code-Division Multiple Access) is the standard for 3G mobile communications. Like GSM, the
multipath fading channel for CDMA was defined in [3] for different communication scenarios with
different PDPs and Doppler spectra. In this example, we simulate the typical urban scenario (TUx)
with a low mobile speed and visualize the channel's frequency response. The
cdma2000ForwardReferenceChannels and cdma2000ForwardWaveformGenerator functions
are used to configure and simulate a CDMA 2000 waveform, which is subsequently transmitted
through the fading channel.

% Configure a CDMA waveform and change the packet length
config = cdma2000ForwardReferenceChannels('ALL-RC3');
config.NumChips = 1e4;

% Generate a waveform
waveform = cdma2000ForwardWaveformGenerator(config);

Derive channel sample rate from the waveform configuration. If the SpreadingRate field is 'SR1', it
corresponds to a 1.2288 Mcps waveform. If it is 'SR3', it corresponds to a 3.6864 Mcps waveform.

Rsprd = str2double(config.SpreadingRate(3)) * 1.2288e6;
Rsamp = Rsprd * config.OversamplingRatio;

% Assume a human walking speed which is about 5 km/h. Calculate the Doppler
% shift at the carrier frequency of 1.9 GHz.
v = 5*1e3/3600; % Mobile speed (m/s)
fc = 1.9e9; % Carrier frequency
fd = v*fc/physconst('lightspeed'); % Maximum Doppler shift

Again, configure a CDMA channel for TUx using the stdchan function. Turn on the channel's
frequency response visualization and pass the waveform through it. You can observe the obvious

 GSM, CDMA and WiMAX Channel Models

1-179

frequency-selectivity of the channel. The frequency response varies slowly at this low mobile speed of
5 km/h.

cdmaChan = stdchan('cdmatux', Rsamp, fd);
cdmaChan.Visualization = 'Frequency response';
y = cdmaChan(waveform);

WiMAX Channel Model

The WiMAX (IEEE® 802.16) channel models [4] for fixed wireless applications are proposed for
scenarios where the cell radius is less than 10 km, the directional antennas at the receiver are
installed under-the-eaves/windows or on the rooftop, and the base station (BS) antennas are 15 to 40
m in height. The channel models comprise a set of path loss models including shadowing (suburban,
urban) and a multipath fading model, which describes the multipath delay profile, the K-factor
distribution, and the Doppler spectrum. The antenna gain reduction factor, due to the use of
directional antennas, is also characterized.

This example uses a MIMO multipath fading channel System object™ comm.MIMOChannel with two
transmit antennas, one receive antenna, and a rounded Doppler spectrum structure. The modified
Stanford University Interim (SUI) channel models consist of a set of 6 typical channels used to
simulate the IEEE 802.16 channel models (more specifically the 2004 version of the standard for fixed
wireless applications). They are proposed for a scenario where: the cell size is 7 km, the BS antenna
height is 30 m, the receive antenna height is 6 m, the BS antenna beamwidth is 120 degrees, the
receive antenna is either omnidirectional or directional (30 degrees), and only vertical polarization is
used.

Each modified SUI channel model has three taps. Each tap is characterized by a relative delay (with
respect to the first path delay), a relative power, a Rician K-factor, and a maximum Doppler shift. Two
sets of relative powers are specified for each channel model: one for an omnidirectional antenna, and
one for a 30 degrees directional antenna. Furthermore, for each set of relative powers, two different

1 Communications Toolbox Featured Examples

1-180

K-factors are specified, a K-factor for 90% cell coverage, and a K-factor for 75% cell coverage. Hence,
each of the 6 modified SUI channel models comprises parameters for four distinct scenarios. Each
modified SUI channel model is further assigned an antenna correlation, defined as the envelope
correlation coefficient between signals received at different antenna elements.

The code below constructs a MIMO fading channel System object according to the modified SUI-1
channel model, for an omnidirectional antenna and 90% cell coverage.

The channel model has 3 paths: the first path is Rician while the remaining two are Rayleigh. Each
path has a rounded Doppler spectrum for its diffuse component: the parameters are as specified in
the doppler('Rounded') structure. While different maximum Doppler shifts are specified for each path
in [4], we use the maximum value of the Doppler shifts for all paths.

We use 2 transmit antennas and 1 receive antenna. Similar to Appendix B of [4], the correlation
coefficient between the two links on each path is taken equal to the antenna spatial correlation. The
correlation coefficient is 0.7.

The sample rate for a WiMAX system is 1.429, 2.857, 5.714, 11.429 or 22.857 MHz. At such rates
with a small Doppler shift, we need many samples and long simulation time to sufficiently exhibit the
channel statistical characteristics. To avoid that, we arbitrarily choose a smaller sample rate of 0.1
MHz. You can increase the sample rate, Rsamp, and number of samples, Ns, at the same time to see
the similar statistical results.

Rsamp = 0.1e6;
Ns = 3e6;

wimaxChan = comm.MIMOChannel(...
 'SampleRate', Rsamp, ...
 'PathDelays', [0 0.4 0.9]*1e-6, ...
 'AveragePathGains', [0 -15 -20], ...
 'FadingDistribution', 'Rician', ...
 'KFactor', 4, ...
 'MaximumDopplerShift', .5, ...
 'DopplerSpectrum', doppler('Rounded'), ...
 'TransmitCorrelationMatrix', [1 0.7; 0.7 1], ...
 'ReceiveCorrelationMatrix', 1, ...
 'PathGainsOutputPort', true);

The code below simulates the modified SUI-1 channel model with a long QPSK modulated frame
input.

Nt = size(wimaxChan.TransmitCorrelationMatrix, 1);
x = pskmod(randi([0 3], Ns, Nt), 4);
[~, g] = wimaxChan(x);

The Doppler spectrum of the 1st link of the second path is estimated from the complex path gains and
plotted.

figure;
win = hamming(Ns/5);
Noverlap = Ns/10;
pwelch(g(:,2,1),win,Noverlap,[],Rsamp,'centered')
axis([-0.1/10 0.1/10 -80 10]);
legend('Simulation');

 GSM, CDMA and WiMAX Channel Models

1-181

The theoretical rounded Doppler spectrum is overlaid on the estimated Doppler spectrum. We
observe a good fit between them.

fd = wimaxChan.MaximumDopplerShift;
f = -fd:0.01:fd;
a = wimaxChan.DopplerSpectrum.Polynomial; % Parameters of the rounded Doppler spectrum
Sd = 1/(2*fd*(a(1)+a(2)/3+a(3)/5))*(a(1)+a(2)*(f/fd).^2+a(3)*(f/fd).^4);
Sd = Sd*10^(wimaxChan.AveragePathGains(2)/10); % Scaling by average path power

hold on;
plot(f(Sd>0)/1e3,10*log10(Sd(Sd>0)),'k--');
legend('Simulation','Theory');

1 Communications Toolbox Featured Examples

1-182

The Doppler spectrum for the 2nd link of the 2nd path is also estimated and compared to the
theoretical spectrum. We also observe a good fit between them.

figure;
pwelch(g(:,2,2),win,Noverlap,[],Rsamp,'centered')
axis([-0.1/10 0.1/10 -80 10]);
legend('Simulation');
hold on;
plot(f(Sd>0)/1e3,10*log10(Sd(Sd>0)),'k--');
legend('Simulation','Theory');

 GSM, CDMA and WiMAX Channel Models

1-183

For each path, we plot the fading envelope waveforms of both transmit links. We can observe a
correlation between the fading envelopes.

figure;
semilogy(abs(g(:,1,1)),'b');
hold on;
grid on;
semilogy(abs(g(:,1,2)),'r');
legend('First transmit link','Second transmit link');
title('Fading envelopes for two transmit links of Path 1');

figure;
semilogy(abs(g(:,2,1)),'b');
hold on;
grid on;
semilogy(abs(g(:,2,2)),'r');
legend('First transmit link','Second transmit link');
title('Fading envelopes for two transmit links of Path 2');

figure;
semilogy(abs(g(:,3,1)),'b');
hold on;
grid on;
semilogy(abs(g(:,3,2)),'r');
legend('First transmit link','Second transmit link');
title('Fading envelopes for two transmit links of Path 3');

1 Communications Toolbox Featured Examples

1-184

 GSM, CDMA and WiMAX Channel Models

1-185

1 Communications Toolbox Featured Examples

1-186

We compute the spatial correlation matrices for each path. We observe that they show a match with
the theoretical values Rt. Note that corrcoef function estimate can be improved if Ns is increased.

TxCorrMatrixPath1 = corrcoef(g(:,1,1),g(:,1,2)).'
TxCorrMatrixPath2 = corrcoef(g(:,2,1),g(:,2,2)).'
TxCorrMatrixPath3 = corrcoef(g(:,3,1),g(:,3,2)).'

TxCorrMatrixPath1 =

 1.0000 + 0.0000i 0.7537 + 0.0388i
 0.7537 - 0.0388i 1.0000 + 0.0000i

TxCorrMatrixPath2 =

 1.0000 + 0.0000i 0.7605 + 0.2331i
 0.7605 - 0.2331i 1.0000 + 0.0000i

TxCorrMatrixPath3 =

 1.0000 + 0.0000i 0.7113 + 0.1282i
 0.7113 - 0.1282i 1.0000 + 0.0000i

 GSM, CDMA and WiMAX Channel Models

1-187

Selected Bibliography

1 3GPP TS 05.05 V8.20.0 (2005-11): 3rd Generation Partnership Project; Technical Specification
Group GSM/EDGE Radio Access™ Network; Radio transmission and reception (Release 1999).

2 3GPP TS 45.005 V7.9.0 (2007-2): 3rd Generation Partnership Project; Technical Specification
Group GSM/EDGE Radio Access Network; Radio transmission and reception (Release 7).

3 3GPP TR 25.943 V6.0.0 (2004-12): 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; Deployment aspects (Release 6).

4 IEEE 802.16 Broadband Wireless Access Working Group, "Channel models for fixed wireless
applications", IEEE 802.16a-03/01, 2003-06-27.

1 Communications Toolbox Featured Examples

1-188

GSM Multiframe Generation in Simulink

This example shows how to model a GSM® waveform generator to generate a 51-frame multiframe in
Simulink®. For more information see GSM TDMA Frame Parameterization for Waveform Generation
Example.

Introduction

This model generates a 51-frame GSM downlink multiframe with the following configuration.
Downlink frames can carry normal burst (NB), frequency correction burst (FB), synchronization burst
(SB) and dummy burst. The first frame is [FB NB NB NB NB Dummy NB NB], the second frame is [SB
NB NB NB NB Dummy NB NB], and the next 49 frames are [NB NB NB NB NB Dummy NB NB].
Repeat this structure 3 times.

cfg1 =

 gsmDownlinkConfig with properties:

 BurstType: [FB NB NB NB NB Dummy NB NB]
 SamplesPerSymbol: 8
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

cfg2 =

 gsmDownlinkConfig with properties:

 BurstType: [SB NB NB NB NB Dummy NB NB]
 SamplesPerSymbol: 8
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

cfg3 =

 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB Dummy NB NB]
 SamplesPerSymbol: 8
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

 GSM Multiframe Generation in Simulink

1-189

GSM 51-frame Multiframe Generation

Double click the TDMA Frame 0 block. The gsmDownlinkFrame0 function uses the
gsmDownlinkConfig function to configure the GSM downlink TDMA frame for the first frame. The
gsmFrame function generates the samples of the frame. Double click the TDMA Frame 2 to 50
block. This block generates 49 frames at once using the y = gsmFrame(cfg,49) function call.

Setup Model

The GSM standard [1] specifies the symbol rate as R = 1625e3/6 symbols per second. Set the
gsmDownlinkWaveform blocks' sample time to match the GSM specifications. Use the gsmInfo
function to get information on the generated waveform based on the configuration object, cfg.

wfInfo =

 struct with fields:

 SymbolRate: 2.7083e+05
 SampleRate: 2.1667e+06
 BandwidthTimeProduct: 0.3000
 BurstLengthInSymbols: 156.2500
 NumBurstsPerFrame: 8
 BurstLengthInSamples: 1250
 FrameLengthInSamples: 10000

Setup MATLAB Function Block

Select each MATLAB Function block and open the Property Inspector. In the Modeling tab, expand
the Design group and click on the Property Inspector under the General category. In the Properties

1 Communications Toolbox Featured Examples

1-190

tab, make sure that Update method is set to Discrete and Sample Time is set to
51*wfInfo.FrameLengthInSamples/Rs. Close the Property Inspector.

Results

Running the simulation displays the time domain signal and the spectrogram.

 GSM Multiframe Generation in Simulink

1-191

Selected Bibliography

1 3GPP TS 45.001, Radio Access Network; Physical layer on the radio path; General description
(Release 8)

2 3GPP TS 45.002, Radio Access Network; Multiplexing and multiple access on the radio path
(Release 8)

1 Communications Toolbox Featured Examples

1-192

Multipath Fading Channel

This example shows how to use Rayleigh and Rician multipath fading channel System objects and
their built-in visualization to model a fading channel and display the spectral characteristics of the
channel. Rayleigh and Rician fading channels are useful models of real-world phenomena in wireless
communication. These phenomena include multipath scattering effects, time dispersion, and Doppler
shifts that arise from relative motion between the transmitter and receiver.

Processing a signal using a fading channel involves the following steps:

1 Create a channel System object™ that describes the channel that you want to use. A channel
object is a type of MATLAB® variable that contains information about the channel, such as the
maximum Doppler shift.

2 Adjust properties of the System object, as needed to model your channel. For example, you can
change the path delays or average path gains.

3 Call the channel System object like a function to apply the channel model, which generates
random discrete path gains and filters the input signal.

Initialization

The following variables control both the Rayleigh and Rician channel objects. By default, the channel
is modeled as four fading paths, each representing a cluster of multipath components received at
around the same delay.

sampleRate500KHz = 500e3; % Sample rate of 500 KHz
sampleRate20KHz = 20e3; % Sample rate of 20 KHz
maxDopplerShift = 200; % Max Doppler shift of diffuse components (Hz)
delayVector = (0:5:15)*1e-6; % Discrete delays of four-path channel (s)
gainVector = [0 -3 -6 -9]; % Average path gains (dB)

The maximum Doppler shift is computed as v × f /c, where v is the mobile speed, f is the carrier
frequency, and c is the speed of light. For example, a maximum Doppler shift of 200 Hz (as above)
corresponds to a mobile speed of 65 mph (30 m/s) and a carrier frequency of 2 GHz.

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. In some outdoor multipath
environments, reflected paths can be up to several kilometers longer than the shortest path. With the
path delays specified above, the last path is 4.5 Km longer than the shortest path, and thus arrives 15
microseconds later.

Together, the path delays and path gains specify the average delay profile of the channel. Typically,
the average path gains decay exponentially with delay (dB values decay linearly), but the specific
delay profile depends on the propagation environment. In the delay profile specified above, we
assume a 3 dB decrease in average power for every 5 microseconds of path delay.

The following variables control the Rician channel System object. The Doppler shift of the specular
component is typically smaller than the maximum Doppler shift (above) and depends on the direction
of travel of the mobile relative to the direction of the specular component. The K-factor specifies the
linear ratio of average received power from the specular component relative to that of the associated
diffuse components.

KFactor = 10; % Linear ratio of specular to diffuse power
specDopplerShift = 100; % Doppler shift of specular component (Hz)

 Multipath Fading Channel

1-193

Create Channel System Objects

Create comm.RayleighChannel and comm.RicianChannel System objects using the variables
defined above. Configure the objects to use their self-contained random stream with a specified seed
for path gain generation.

rayChan = comm.RayleighChannel(...
 SampleRate=sampleRate500KHz, ...
 PathDelays=delayVector, ...
 AveragePathGains=gainVector, ...
 MaximumDopplerShift=maxDopplerShift, ...
 RandomStream="mt19937ar with seed", ...
 Seed=10, ...
 PathGainsOutputPort=true);

ricChan = comm.RicianChannel(...
 SampleRate=sampleRate500KHz, ...
 PathDelays=delayVector, ...
 AveragePathGains=gainVector, ...
 KFactor=KFactor, ...
 DirectPathDopplerShift=specDopplerShift, ...
 MaximumDopplerShift=maxDopplerShift, ...
 RandomStream="mt19937ar with seed", ...
 Seed=100, ...
 PathGainsOutputPort=true);

Modulation and Channel Filtering

Generate a frame of signal data by using the randi function. In the code here, a frame refers to a
vector of information bits. Specify the number of bits transmitted per frame to be 1000. For QPSK
modulation, this corresponds to 500 symbols per frame. QPSK-modulate the frame of data, specifying
π/4 phase offset and bit input, by using the pskmod function. Apply Rayleigh and Rician channel
filtering to the modulated data without visualizing the data.

M = 4; % QPSK modulation
phaseoffset = pi/4; % Phase offset for QPSK
bitsPerFrame = 1000;
msg = randi([0 1],bitsPerFrame,1);

modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
rayChan(modSignal);
ricChan(modSignal);

Visualization of Channel Response

The fading channel System objects have built-in visualization to show the channel impulse response,
frequency response, or Doppler spectrum when the object runs. To invoke it, set the Visualization
property to the desired value before calling the object. To reconfigure the Rayleigh and Rician
channel System objects release the objects, and then change their property values.

release(rayChan);
release(ricChan);

Setting the Visualization property to "Impulse response" shows the bandlimited impulse
response (yellow circles). The visualization also shows the delays and magnitudes of the underlying
fading path gains (pink stembars) clustered around the peak of the impulse response. Note that the
path gains do not equal the AveragePathGains property value because the Doppler effect causes
the gains to fluctuate over time.

1 Communications Toolbox Featured Examples

1-194

Similarly, setting the Visualization property to "Frequency response" shows the frequency
response (DFT transformation) of the impulses. You can also set Visualization to "Impulse and
frequency responses" to display both impulse and frequency responses side by side.

Setting the Visualization property to "Doppler spectrum" shows the Doppler spectrum for the
first discrete path, which is a statistical characterization of the fading process. Instantaneous
empirical measurements are plotted of the Doppler spectrum (blue stars). Over time with more
samples processed, the average of this measurement better approximates the theoretical Doppler
spectrum (yellow curve).

Visualization settings allow you to tradeoff between optimal plot accuracy and simulation speed. The
SamplesToDisplay property controls the percentage of the input samples to be visualized. In
general, the smaller the percentage, the faster the simulation runs. If you want to see the channel
response for every input sample, set SamplesToDisplay to "100%", but this leads to longer
simulation run time and is typically not necessary for representative signal plots.

Wideband or Frequency-Selective Fading

Display the impulse and frequency response of the QPSK-modulated signal after Rayleigh fading. The
channel frequency response is not flat and may have deep fades over the 500 KHz bandwidth.
Because the power level varies over the bandwidth of the signal, it is referred to as wideband or
frequency-selective fading.

rayChan.Visualization = "Impulse and frequency responses";
rayChan.SamplesToDisplay = "100%";
% Display impulse and frequency responses for 2 frames
numFrames = 2;
for i = 1:numFrames
 % Create random data
 msg = randi([0 1],bitsPerFrame,1);
 % Modulate data
 modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
 % Filter data through channel and show channel responses
 rayChan(modSignal);
end

 Multipath Fading Channel

1-195

1 Communications Toolbox Featured Examples

1-196

Display a statistical characterization of the fading process for the same channel specification by
releasing the Rayleigh channel object and reconfiguring the object to display the Doppler spectrum
for its first discrete path.

release(rayChan);
rayChan.Visualization = "Doppler spectrum";

% Display Doppler spectrum from 5000 frame transmission
numFrames = 5000;
for i = 1:numFrames
 msg = randi([0 1],bitsPerFrame,1);

 Multipath Fading Channel

1-197

 modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
 rayChan(modSignal);
end

Narrowband or Frequency-Flat Fading

When the bandwidth is too small for the signal to resolve the individual components, the frequency
response is approximately flat because of the minimal time dispersion caused by the multipath
channel. This kind of multipath fading is often referred to as narrowband fading, or frequency-flat
fading.

Reduce the signal bandwidth from 500 Kb/s (250 Ksym/s) to 20 Kb/s (10 Ksym/s), so the delay span
(15 microseconds) of the channel is much smaller than the QPSK symbol period (100 microseconds).
The resultant impulse response has very small intersymbol interference (ISI) and the frequency
response is approximately flat.

release(rayChan);
rayChan.Visualization = "Impulse and frequency responses";
rayChan.SampleRate = sampleRate20KHz;
rayChan.SamplesToDisplay = "25%"; % Display one of every four samples

% Display impulse and frequency responses for 2 frames
numFrames = 2;
for i = 1:numFrames
 msg = randi([0 1],bitsPerFrame,1);
 modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
 rayChan(modSignal);
end

1 Communications Toolbox Featured Examples

1-198

 Multipath Fading Channel

1-199

For narrowband fading channels, a single-path fading model can accurately represent the channel. To
simplify and speed up simulations when the channel has narrowband fading, consider replacing a
multipath fading model with a single-path fading model. The following settings correspond to a
narrowband fading channel and, as shown by the plot, the frequency response is completely flat.

release(rayChan);
rayChan.PathDelays = 0; % Single fading path with zero delay
rayChan.AveragePathGains = 0; % Average path gain of 1 (0 dB)

Display impulse and frequency responses for 2 frames.

1 Communications Toolbox Featured Examples

1-200

for i = 1:numFrames
 msg = randi([0 1],bitsPerFrame,1);
 modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
 rayChan(modSignal);
end

 Multipath Fading Channel

1-201

The Rician fading channel System object models line-of-sight propagation in addition to diffuse
multipath scattering. This results in a smaller variation in the magnitude of path gains. To compare
the variation between Rayleigh and Rician channels, view their path gains over time by using a
timescope object.

Observe the magnitude fluctuates over approximately a 10 dB range for the Rician fading channel
(blue curve), compared with 30-40 dB for the Rayleigh fading channel (yellow curve). For the Rician
fading channel, this variation would be further reduced by increasing the K-factor (currently set to
10).

1 Communications Toolbox Featured Examples

1-202

release(rayChan);
rayChan.Visualization = "Off"; % Turn off Rayliegh object visualization
ricChan.Visualization = "Off"; % Turn off Rician object visualization

% Same sample rate and delay profile for the Rayleigh and Rician objects
ricChan.SampleRate = rayChan.SampleRate;
ricChan.PathDelays = rayChan.PathDelays;
ricChan.AveragePathGains = rayChan.AveragePathGains;

% Configure a Time Scope System object to show path gain magnitude
gainScope = timescope(...
 SampleRate=rayChan.SampleRate, ...
 TimeSpanSource="Property",...
 TimeSpan=bitsPerFrame/2/rayChan.SampleRate, ... % One frame span
 Name="Multipath Gain", ...
 ChannelName=["Rayleigh","Rician"], ...
 ShowGrid=true, ...
 YLimits=[-40 10], ...
 YLabel="Gain (dB)");

% Compare the path gain outputs from both objects for one frame
msg = randi([0 1],bitsPerFrame,1);
modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
[~,rayPathGain] = rayChan(modSignal);
[~,ricPathGain] = ricChan(modSignal);
% Form the path gains as a two-channel input to the time scope
gainScope(10*log10(abs([rayPathGain,ricPathGain]).^2));

 Multipath Fading Channel

1-203

Fading Channel Impact on Signal Constellation

Return to the original four-path Rayleigh fading channel and show the impact of narrowband fading
on the signal constellation by using a comm.ConstellationDiagram System object. To slow down
the channel dynamics for visualization purposes, we reduce the maximum Doppler shift to 5 Hz.
Compared with the QPSK channel input signal, you can observe signal attenuation and rotation at the
channel output, as well as some signal distortion due to the small amount of ISI in the received
signal.

release(rayChan);

rayChan.PathDelays = delayVector;
rayChan.AveragePathGains = gainVector;
rayChan.MaximumDopplerShift = 5;

constDiag = comm.ConstellationDiagram(...
 Name="Received Signal After Rayleigh Fading");

numFrames = 16;
for n = 1:numFrames
 msg = randi([0 1],bitsPerFrame,1);
 modSignal = pskmod(msg,M,phaseoffset,InputType='bit');
 rayChanOut = rayChan(modSignal);
 constDiag(rayChanOut);
end

1 Communications Toolbox Featured Examples

1-204

release(rayChan);
release(constDiag);

Adjust the Rayliegh channel sample rate back to 500 KHz. This increases the signal bandwidth to 500
Kb/s, which corresponds to 250 Ksym/s for the QPSK-modulated signal. Replot the constellation
diagram to observe much greater distortion in the signal constellation due to the ISI associated with
the time dispersion of the wideband signal. The delay span (15 microseconds) of the channel is now
larger than the QPSK symbol period (4 microseconds), so the resultant bandlimited impulse response
is no longer approximately flat.

rayChan.SampleRate = sampleRate500KHz;

for n = 1:numFrames
 msg = randi([0 1],bitsPerFrame,1);
 modSignal = pskmod(msg,M,phaseoffset,InputType='bit');

 Multipath Fading Channel

1-205

 rayChanOut = rayChan(modSignal);
 constDiag(rayChanOut);
end

1 Communications Toolbox Featured Examples

1-206

Adjacent and Co-Channel Interference

This model uses PSK-modulated signals to show the effects of adjacent and co-channel interference
on a transmitted signal. You can view the effect of adjacent channel interferer and co-channel
interferer together or individually.

Exploring the Example

The communication system in this example includes these components:

• Transmitter - Creates a PSK-modulated signal and applies a square root raised cosine filter. The
interference is added to this Primary signal.

• Interferer1 - Creates a PSK-modulated interference signal.
• Interferer2 - Creates a PSK-modulated interference signal.
• Multiband Combiner - Combines all the signals without introducing signal distortion and enables

interference modeling. The Multiband Combiner block interpolates input signals, frequency shifts
the signals by the value specified in the "Frequency offsets" parameter, and then combines the
signals into one output signal.

• AWGN Channel - Adds noise to the transmitted signals.
• Receiver - Filters, downsamples, and demodulates the received signal.
• Error Rate Calculation - Computes the bit error rate.

Results and Displays

When you run the simulation, the block labeled BER Display shows the bit error rate for the original
signal. The BER Display block shows a three-element vector containing the calculated bit error rate
(BER), the number of errors observed, and the number of bits processed.

Scope blocks in the model display the spectra of the primary and interfering signals, spectrum of the
received combined signal, and constellation diagram of the received signal.

 Adjacent and Co-Channel Interference

1-207

• The spectra of the primary and interfering signals. The corresponding systems generate these
signals at baseband. Their relative spacing in the frequency domain and resulting interference is
modeled by the Multiband Combiner block.

• The spectrum of the received and filtered signals. The lowpass Raised Cosine Receive Filter block
filters out interfering signals.

• A scatter plot of the received signal, after it is filtered to recover the primary signal.

1 Communications Toolbox Featured Examples

1-208

Experimenting with the Example

To deactivate an interferer, double-click the switch block that corresponds to that interferer. In the
"Received signal" spectrum analyzer, notice the effect of omitting the interfering signal.

To change the spectral overlap between primary signal and interfering signals, set the "Frequency
offsets" parameter of Multiband Combiner block. As you decrease the offset, the "Received signal"
spectrum analyzer shows the interfering signal slowly moving from the adjacent channel into the
frequency band of the original signal and eventually causing co-channel interference. The values
reported in the BER Display block slowly deteriorate as the offset decreases, because the 8-PSK
constellation points become difficult to demodulate correctly.

To change the power gain of an interfering signal, double-click the dB Gain block and change the
Gain parameter. Observe the effect on the "Transmitted signal" and the "Received signal" spectrum
analyzers. If you decrease the negative dB gain, the BER worsens, especially in the presence of co-
channel interference.

 Adjacent and Co-Channel Interference

1-209

Multipath Fading Channel in Simulink

This model shows how to use the SISO Fading Channel block from the Communications Toolbox™ to
simulate multipath Rayleigh and Rician fading channels, which are useful models of real-world
phenomena in wireless communications. These phenomena include multipath scattering effects, time
dispersion, and Doppler shifts that arise from relative motion between the transmitter and receiver.
The model also shows how to visualize channel characteristics such as the impulse and frequency
responses, Doppler spectrum and component gains.

Model and Parameters

The example model simulates QPSK transmission over a multipath Rayleigh fading channel and a
multipath Rician fading channel. Both the channel blocks are configured from the SISO Fading
Channel library block. You can control transmission and channel parameters via workspace variables.

The following variables control the "Bit Source" block. By default, the bit rate is 10M b/s (5M sym/s)
and each transmitted frame is 2000 bits long (1000 symbols).

bitRate =

 10000000

bitsPerFrame =

 2000

The following variables control both the Rayleigh and Rician fading channel blocks. By default, the
channels are modeled as four fading paths, each representing a cluster of multipath components
received at around the same delay.

1 Communications Toolbox Featured Examples

1-210

delayVector =

 1.0e-06 *

 0 0.2000 0.4000 0.8000

gainVector =

 0 -3 -6 -9

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. In some outdoor multipath
environments, reflected paths can be up to several kilometers longer than the shortest path. With the
path delays specified above, the last path is 240 m longer than the shortest path, and thus arrives 0.8
microseconds later.

Together, the path delays and average path gains specify the delay profile of the channel. Typically,
the average path gains decay exponentially with delay (i.e., the dB values decay linearly), but the
specific delay profile depends on the propagation environment. On each channel block, we have also
turned on the option to normalize the average path gains so that their average gain is 0 dB over time.

The following variable controls the maximum Doppler shift which is computed as v*f/c, where v is the
mobile speed, f is the carrier frequency, and c is the speed of light. The default maximum Doppler
shift in the model is 200 Hz which corresponds to a mobile speed of 65 mph (30 m/s) and a carrier
frequency of 2 GHz.

maxDopplerShift =

 200

The following variables apply to the Rician fading channel block. The Doppler shift of the line-of-sight
component is typically smaller than the maximum Doppler shift, maxDopplerShift, and depends on
the direction of travel of the mobile relative to the direction of the line-of-sight path. The K-factor
specifies the ratio of average received power from the line-of-sight path relative to that of the
associated diffuse components.

LOSDopplerShift =

 100

KFactor =

 10

The SISO Fading Channel block can visualize channel impulse response, frequency response, and
Doppler spectrum while the model is running. To invoke it, set the Channel visualization
parameter to the desired channel characteristic(s) before running the model. Note that turning on
channel visualization may slow down your simulation.

 Multipath Fading Channel in Simulink

1-211

Wideband or Frequency-Selective Fading

By default, the delay span (0.8 microseconds) of the channel is larger than the input QPSK symbol
period (0.2 microseconds), and causes considerable intersymbol interference (ISI). So the resultant
channel frequency response is not flat and may have deep fades over the 10M Hz signal bandwidth.
Because the power level varies over the bandwidth, it is referred to as frequency-selective fading.

Setting the Channel visualization parameter of the channel block to 'Impulse response' shows
the bandlimited impulse response (yellow circles). The visualization also shows the delays and
magnitudes of the underlying fading path gains (pink stems) clustered around the peak of the impulse
response. Note that the path gains do not equal the Average path gains (dB) parameter value
because the Doppler effect causes the gains to fluctuate over time.

As displayed, the channel impulse response coincides with the path gains for this delay profile
because the discrete path delays are all integer multiples of the input symbol period. In this case,
there is also no channel filter delay.

Similarly, setting the Channel visualization parameter to 'Frequency response' shows the
frequency response of the channel. You can also set Channel visualization to 'Impulse and
frequency responses' to display both impulse and frequency responses side by side. You can see that
the power level of the channel varies across the whole bandwidth.

1 Communications Toolbox Featured Examples

1-212

As shown in the channel visualization plots, you can also control the percentage of the input samples
to be visualized by changing the Percentage of samples to display parameter of the channel
block. In general, the smaller the percentage, the faster the model runs. Once the visualization figure
opens, click the Playback button and turn off the Reduce Updates to Improve Performance or
Reduce Plot Rate to Improve Performance option to further improve display accuracy. The
option is on by default for faster simulation. To see the channel response for every input sample,
uncheck this option and set Percentage of samples to display to '100%'.

For the same channel specification, we now display the Doppler spectrum for its first discrete path,
which is a statistical characterization of the fading process. The channel block makes periodic
measurements of the Doppler spectrum (blue stars). Over time with more samples processed by the
block, the average of this measurement better approximates the theoretical Doppler spectrum (yellow
curve).

 Multipath Fading Channel in Simulink

1-213

By opening the constellation diagram following the Rayleigh channel block, you can see the impact of
wideband fading on the signal constellation. To slow down the channel dynamics for visualization
purposes, we reduce the maximum Doppler shift to 5 Hz. Compared with the QPSK channel input
signal, you can observe obvious distortion in the channel output signal, due to the ISI from the time
dispersion of the wideband signal.

1 Communications Toolbox Featured Examples

1-214

Narrowband or Frequency-Flat Fading

When the bandwidth is too small for the signal to resolve the individual components, the frequency
response is approximately flat because of the minimal time dispersion and very small ISI from the
impulse response. This kind of multipath fading is often referred to as narrowband fading, or
frequency-flat fading.

To observe the effect, we now reduce the signal bandwidth from 10M b/s (5M sym/s) to 1M b/s (500K
sym/s), so the delay span (0.8 microseconds) of the channel is much smaller than the QPSK symbol
period (2 microseconds). Effectively, all delayed components combine at a single delay (in this case,
at zero).

bitRate =

 1000000

We can visually validate this narrowband fading behavior by setting the Channel visualization
parameter to 'Impulse and frequency responses' for the Rayleigh channel block and then running the
model.

 Multipath Fading Channel in Simulink

1-215

1 Communications Toolbox Featured Examples

1-216

For narrowband fading channels, a single-path fading model can accurately represent the channel. To
simplify and speed up simulations when the channel has narrowband fading, consider replacing a
multipath fading model with a single-path fading model. The following settings correspond to a
narrowband fading channel with a completely flat frequency response.

 Multipath Fading Channel in Simulink

1-217

1 Communications Toolbox Featured Examples

1-218

Return to the original four-path fading channel and observe how narrowband fading causes signal
attenuation and phase rotation, by viewing the constellation diagram after the Rayleigh channel
block. In addition to attenuation and rotation, you can see some signal distortion because of the small
amount of ISI in the channel output signal. The distortion is far less than that seen above for a
wideband channel.

 Multipath Fading Channel in Simulink

1-219

Compare Path Gain Variation for Rician and Rayleigh Fading

The Rician fading channel block models line-of-sight propagation in addition to diffuse multipath
scattering. This results in a smaller variation in the magnitude of path gains. Compare the variation
between Rayleigh and Rician channels by reconfiguring the channel blocks to model a single-path
delay. Use a Time Scope block to view the fluctuation of the path gain magnitude over the duration of
the simulation. There is less than 5dB variation of the path gain magnitude for the Rician fading
channel and close to 15 dB for the Rayleigh fading channel. For the Rician fading channel, this
variation would be further reduced by increasing the K-factor (currently set to 10).

1 Communications Toolbox Featured Examples

1-220

 Multipath Fading Channel in Simulink

1-221

RF Satellite Link

This model shows a satellite link, using the blocks from the Communications Toolbox™ to simulate
the following impairments:

• Memoryless nonlinearity
• Free space path loss
• Doppler error
• Receiver thermal noise
• Phase noise
• In-phase and quadrature imbalances
• DC offsets

The model optionally corrects most of these impairments.

By modeling the gains and losses on the link, this model implements link budget calculations that
determine whether a downlink can be closed with a given bit error rate (BER). The gain and loss
blocks, including the Free Space Path Loss block and the Receiver Thermal Noise block, determine
the data rate that can be supported on the link in an additive white Gaussian noise channel.

Structure of the Example

The example highlights both the satellite link model and its signal scopes. The model consists of a
Satellite Downlink Transmitter, Downlink Path, and Ground Station Downlink Receiver.

1 Communications Toolbox Featured Examples

1-222

The blocks that correspond to each of these sections are

Satellite Downlink Transmitter

• Bernoulli Binary Generator - Creates a random binary data stream.
• Rectangular QAM Modulator Baseband - Maps the data stream to 16-QAM constellation.
• Raised Cosine Transmit Filter - Upsamples and shapes the modulated signal using the square root

raised cosine pulse shape.
• HPA Nonlinearity with Optional Digital Predistortion (High Power Amplifier) -

Models a traveling wave tube amplifier (TWTA) using the Saleh model option of the Memoryless
Nonlinearity and optionally corrects the AM/AM and AM/PM with a Digital Predistortion block.

• Gain (Tx Dish Antenna Gain) - Applies gain of the transmitter parabolic dish antenna.

Downlink Path

• Free Space Path Loss (Downlink Path) - Attenuates the signal by the free space path loss.
• Phase/Frequency Offset (Doppler Error) - Rotates the signal to model Doppler error on the link.

Ground Station Downlink Receiver

• Gain (Rx Dish Antenna Gain) - Applies gain of the receiver parabolic dish antenna.
• Receiver Thermal Noise (Satellite Receiver System Temp) - Adds white Gaussian noise that

represents the effective system temperature of the receiver.

 RF Satellite Link

1-223

• Phase Noise - Introduces random phase perturbations that result from 1/f or phase flicker noise.
• I/Q Imbalance - Introduces DC offset, amplitude imbalance, or phase imbalance to the signal.
• LNA (Low Noise Amplifier)- Applies low noise amplifier gain.
• Raised Cosine Receive Filter - Applies a matched filter to the modulated signal using the square

root raised cosine pulse shape.
• DC Blocker - Compensates for the DC offset in the I/Q Imbalance block.
• AGC - Sets the signal power to a desired level.
• I/Q Imbalance Compensator - Estimates and removes I/Q imbalance from the signal by a blind

adaptive algorithm.
• Doppler Correction - Uses the Carrier Synchronizer block to compensate for the carrier

frequency offset due to Doppler.
• Rectangular QAM Demodulator Baseband - Demaps the data stream from the 16-QAM

constellation space.

Exploring the Example

Double-click the block labeled Model Parameters to view the parameter settings for the model. All
these parameters are tunable. To make changes to the parameters as the model is running, apply
them in the dialog, then update the model via ctrl+d. The parameters are:

Satellite altitude (km) - Distance between the satellite and the ground station. Changing this
parameter updates the Free Space Path Loss block. The default setting is 35600.

Frequency (MHz) - Carrier frequency of the link. Changing this parameter updates the Free Space
Path Loss block. The default setting is 4000.

Transmit and receive antenna diameters (m) - The first element in the vector represents the
transmit antenna diameter and is used to calculate the gain in the Tx Dish Antenna Gain block. The
second element represents the receive antenna diameter and is used to calculate the gain in the Rx
Dish Antenna Gain block. The default setting is [.4 .4].

Noise temperature (K) - Allows you to select from four effective receiver system noise
temperatures. The selected noise temperature changes the Noise Temperature of the Receiver
Thermal Noise block. The default setting is 20 K. The choices are

• 0 (no noise) - Use this setting to view the other RF impairments without the perturbing effects
of noise.

• 20 (very low noise level) - Use this setting to view how easily a low level of noise can,
when combined with other RF impairments, degrade the performance of the link.

• 290 (typical noise level) - Use this setting to view how a typical quiet satellite receiver
operates.

• 500 (high noise level) - Use this setting to view the receiver behavior when the system
noise figure is 2.4 dB and the antenna noise temperature is 290K.

HPA backoff level - Allows you to select from three backoff levels. This parameter is used to
determine how close the satellite high power amplifier is driven to saturation. The selected backoff is
used to set the input and output gain of the Memoryless Nonlinearity block. The default setting is 30
dB (negligible nonlinearity). The choices are

• 30 dB (negligible nonlinearity) - Sets the average input power to 30 decibels below the
input power that causes amplifier saturation (that is, the point at which the gain curve becomes

1 Communications Toolbox Featured Examples

1-224

flat). This causes negligible AM-to-AM and AM-to-PM conversion. AM-to-AM conversion is an
indication of how the amplitude nonlinearity varies with the signal magnitude. AM-to-PM
conversion is a measure of how the phase nonlinearity varies with signal magnitude.

• 7 dB (moderate nonlinearity) - Sets the average input power to 7 decibels below the input
power that causes amplifier saturation. This causes moderate AM-to-AM and AM-to-PM
conversion, which is correctable with digital predistortion.

• 1 dB (severe nonlinearity) - Sets the average input power to 1 decibel below the input
power that causes amplifier saturation. This causes severe AM-to-AM and AM-to-PM conversion,
and is not correctable with digital predistortion.

Doppler error - Allows you to select one of two values of Doppler. The selection updates the Phase/
Frequency Offset (Doppler Error) block. The default setting is 0 Hz. The choices are

• 0 Hz - No Doppler on the link.
• 3 Hz - Adds 3 Hz carrier frequency offset.

Phase noise - Allows you to select from three values of phase noise at the receiver. The selection
updates the Phase Noise block. The default setting is Negligible (-100 dBc/Hz @ 100 Hz). The
choices are

• Negligible (-100 dBc/Hz @ 100 Hz) - Almost no phase noise.
• Low (-55 dBc/Hz @ 100 Hz) - Enough phase noise to be visible in both the spectral and I/Q

domains, and cause bit errors when combined with thermal noise or other RF impairments.
• High (-48 dBc/Hz @ 100 Hz) - Enough phase noise to cause errors without the addition of

thermal noise or other RF impairments.

I/Q imbalance and DC offset - Allows you to select from five types of in-phase and quadrature
imbalances at the receiver. The selection updates the I/Q Imbalance block. The default setting is
None. The choices are

• None - No imbalances.
• Amplitude imbalance (3 dB) - Applies a 1.5 dB gain to the in-phase signal and a -1.5 dB gain

to the quadrature signal.
• Phase imbalance (20 deg) - Rotates the in-phase signal by 10 degrees and the quadrature

signal by -10 degrees.
• In-phase DC offset (1e-8) - Adds a DC offset of 1e-8 to the in-phase signal amplitude. This
offset changes the received signal constellation diagram, but does not cause errors on the link
unless combined with thermal noise or other RF impairments.

• Quadrature DC offset (5e-8) - Adds a DC offset of 5e-8 to the quadrature signal amplitude.
This offset causes errors on the link even when not combined with thermal noise or another RF
impairment. This offset also causes a DC spike in the received signal spectrum.

Digital predistortion - Allows you to enable or disable the Digital Predistortion subsystem. The
default setting is Disabled.

DC offset correction - Allows you to enable or disable the DC Blocking subsystem. The default
setting is Disabled.

Doppler correction - Allows you to enable or disable the Doppler Correction subsystem. The default
setting is Disabled.

 RF Satellite Link

1-225

I/Q imbalance correction - Allows you to enable or disable the I/Q Imbalance Correction subsystem.
The default setting is Disabled.

Results and Displays

When you run this model, the following displays are active:

Power Spectrum - Double-clicking this Open Scopes block enables you to view the spectrum of the
modulated/filtered signal (yellow) and the received signal before demodulation (blue).

Comparing the two spectra allows you to view the effect of the following RF impairments:

• Spectral regrowth due to HPA nonlinearities caused by the Memoryless Nonlinearity block
• Thermal noise caused by the Receiver Thermal Noise block
• Phase flicker (that is, 1/f noise) caused by the Phase Noise block

HPA AM/AM and AM/PM - Double-clicking this Open Scopes block enables you to view the AM/AM
and AM/PM conversion after the HPA. These plots enable you to view the impact that the Digital
Predistortion block and HPA have on the linearity of the signal.

Constellation Before and After HPA - Double-clicking this Open Scopes block enables you to
compare the constellation of the transmitted signal before (yellow) and after (blue) the HPA. The
amplifier gain causes the HPA Output signal to be larger than the HPA Input signal. This plot enables
you to view the combined effect of both the HPA nonlinearity and digital predistortion.

1 Communications Toolbox Featured Examples

1-226

End to End Constellation - Double-clicking this Open Scopes block enables you to compare the
reference 16-QAM constellation (red) with the received QAM constellation before demodulation
(yellow). Comparing these constellation diagrams allows you to view the impact of all the RF
impairments on the received signal and the effectiveness of the compensations.

Bit error rate (BER) display - In the lower right corner of the model is a display of the BER of the
model. The BER computation can be reset manually by double-clicking the green "Double-click to
reset BER" button. This allows you to view the impact of the parameter changes as the model is
running.

Experimenting with the Example

This section describes some ways that you can change the model parameters to experiment with the
effects of the blocks from the RF Impairments library and other blocks in the model. You can double-
click the block labeled "Model Parameters" in the model and try some of the following scenarios:

Link gains and losses - Change Noise temperature to 290 (typical noise level), 0 (no
noise) or 500 (high noise level). Change the value of the Satellite altitude (km) or
Satellite frequency (MHz) parameters to change the free space path loss. In addition, increase or
decrease the Transmit and receive antenna diameters (m) parameter to increase or decrease the

 RF Satellite Link

1-227

received signal power. You can view the changes in the received constellation in the received signal
constellation diagram scope and the changes in received power in the spectrum analyzer.

Raised cosine pulse shaping - Make sure Noise temperature is set to 0 (no noise). Turn on
the Constellation Before and After HPA scopes. Observe that the square-root raised cosine filtering
results in intersymbol interference (ISI). This results in the points being scattered loosely around
ideal constellation points, which you can see in the After HPA constellation diagram. The square-root
raised cosine filter in the receiver, in conjunction with the transmit filter, controls the ISI, which you
can see in the received signal constellation diagram.

HPA AM-to-AM conversion and AM-to-PM conversion - Change the HPA backoff level
parameter to 7 dB (moderate nonlinearity) and observe the AM-to-AM and AM-to-PM
conversions by comparing the Transmit RRC filtered signal constellation diagram with the RRC signal
after HPA constellation diagram. Note how the AM-to-AM conversion varies according to the different
signal amplitudes. You can also view the effect of this conversion on the received signal in the
received signal constellation diagram. In addition, you can observe the spectral regrowth in the
received signal spectrum analyzer. You can also view the phase change in the received signal in the
received signal constellation diagram scope.

Digital predistortion With the Digital predistortion checkbox checked, change the HPA backoff
level parameter to 30 dB (negligible nonlinearity), 7 dB (moderate nonlinearity),
and 1 dB (severe nonlinearity) to view the effect of digital predistortion on the HPA
nonlinearity.

Phase noise plus AM-to-AM conversion - Set the Phase Noise parameter to High and observe
the increased variance in the tangential direction in the received signal constellation diagram. Also
note that this level of phase noise is sufficient to cause errors in an otherwise error-free channel.

DC offset and DC offset compensation - Set the I/Q imbalance and DC offset parameter to In-
phase DC offset (1e-8) and view the shift of the constellation in the received signal
constellation diagram. Set DC offset correction to Enabled and view the received signal
constellation diagram to view how the DC offset block estimates the DC offset value and removes it
from the signal. Set DC offset compensation to Disabled and change I/Q imbalance to
Quadrature DC offset (5e-8). View the changes in the received signal constellation diagram for
a large DC offset and the DC spike in the received signal spectrum. Note that the LNA amplifies the
small DC offsets so that they are visible on the constellation diagram with much larger axis limits. Set
DC offset compensation to Enabled and view the received signal constellation diagram and
spectrum analyzer to see how the DC component is removed.

Amplitude imbalance - With the I/Q imbalance correction disabled, set the I/Q Imbalance and
DC offset parameter to Amplitude imbalance (3 dB) to view the effect of unbalanced I and Q
gains in the received signal constellation diagram. Enable the I/Q imbalance correction to
compensate for the amplitude imbalance.

Doppler and Doppler compensation - Disable Doppler correction by unchecking the Doppler
correction check box. Set Doppler error to 3 Hz to show the effect of uncorrected Doppler on the
received signal constellation diagram. Enable Doppler correction to show that the carrier
synchronizer restores the received constellation. Repeat the exercise with different I/Q imbalance
and DC offsets.

Selected Bibliography

[1] Saleh, Adel A.M., "Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT
Amplifiers," IEEE® Transactions on Communications, Vol. COM-29, No. 11, November 1981.

1 Communications Toolbox Featured Examples

1-228

[2] Kasdin, N.J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/(f^alpha);
Power Law Noise Generation," The Proceedings of the IEEE, Vol. 83, No. 5, May, 1995.

[3] Kasdin, N. Jeremy, and Todd Walter, "Discrete Simulation of Power Law Noise," 1992 IEEE
Frequency Control Symposium.

[4] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood Cliffs, N.J.,
Prentice Hall, 1988.

 RF Satellite Link

1-229

Introduction to MIMO Systems

This example shows Multiple-Input-Multiple-Output (MIMO) systems, which use multiple antennas at
the transmitter and receiver ends of a wireless communication system. MIMO systems are
increasingly being adopted in communication systems for the potential gains in capacity they realize
when using multiple antennas. Multiple antennas use the spatial dimension in addition to the time
and frequency ones, without changing the bandwidth requirements of the system.

For a generic communications link, this example focuses on transmit diversity in lieu of traditional
receive diversity. Using the flat-fading Rayleigh channel, it illustrates the concept of Orthogonal
Space-Time Block Coding, which is employable when multiple transmitter antennas are used. It is
assumed here that the channel undergoes independent fading between the multiple transmit-receive
antenna pairs.

For a chosen system, it also provides a measure of the performance degradation when the channel is
imperfectly estimated at the receiver, compared to the case of perfect channel knowledge at the
receiver.

PART 1: Transmit Diversity vs. Receive Diversity

Using diversity reception is a well-known technique to mitigate the effects of fading over a
communications link. However, it has mostly been relegated to the receiver end. In [1], Alamouti
proposes a transmit diversity scheme that offers similar diversity gains, using multiple antennas at
the transmitter. This was conceived to be more practical as, for example, it would only require
multiple antennas at the base station in comparison to multiple antennas for every mobile in a
cellular communications system.

This section highlights this comparison of transmit vs. receive diversity by simulating coherent binary
phase-shift keying (BPSK) modulation over flat-fading Rayleigh channels. For transmit diversity, we
use two transmit antennas and one receive antenna (2x1 notationally), while for receive diversity we
employ one transmit antenna and two receive antennas (1x2 notationally).

The simulation covers an end-to-end system showing the encoded and/or transmitted signal, channel
model, and reception and demodulation of the received signal. It also provides the no-diversity link
(single transmit- receive antenna case) and theoretical performance of second-order diversity link for
comparison. It is assumed here that the channel is known perfectly at the receiver for all systems. We
run the simulation over a range of Eb/No points to generate BER results that allow us to compare the
different systems.

We start by defining some common simulation parameters

frmLen = 100; % frame length
numPackets = 1000; % number of packets
EbNo = 0:2:20; % Eb/No varying to 20 dB
N = 2; % maximum number of Tx antennas
M = 2; % maximum number of Rx antennas

and set up the simulation.

% Create comm.BPSKModulator and comm.BPSKDemodulator System objects(TM)
P = 2; % modulation order
bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('OutputDataType','double');

1 Communications Toolbox Featured Examples

1-230

% Create comm.OSTBCEncoder and comm.OSTBCCombiner System objects
ostbcEnc = comm.OSTBCEncoder;
ostbcComb = comm.OSTBCCombiner;

% Convert Eb/No values to SNR values. The output of the BPSK modulator
% generates unit power signals.
SNR = convertSNR(EbNo,"ebno","BitsPerSymbol",1);

% Create comm.ErrorRate calculator System objects to evaluate BER.
errorCalc1 = comm.ErrorRate;
errorCalc2 = comm.ErrorRate;
errorCalc3 = comm.ErrorRate;

% Since the AWGN function as well as the RANDI function use the default
% random stream, the following commands are executed so that the results
% will be repeatable, i.e., same results will be obtained for every run of
% the example. The default stream will be restored at the end of the
% example.
s = rng(55408);

% Pre-allocate variables for speed
H = zeros(frmLen, N, M);
ber_noDiver = zeros(3,length(EbNo));
ber_Alamouti = zeros(3,length(EbNo));
ber_MaxRatio = zeros(3,length(EbNo));
ber_thy2 = zeros(1,length(EbNo));

% Set up a figure for visualizing BER results
fig = figure;
grid on;
ax = fig.CurrentAxes;
hold(ax,'on');

ax.YScale = 'log';
xlim(ax,[EbNo(1), EbNo(end)]);
ylim(ax,[1e-4 1]);
xlabel(ax,'Eb/No (dB)');
ylabel(ax,'BER');
fig.NumberTitle = 'off';
fig.Renderer = 'zbuffer';
fig.Name = 'Transmit vs. Receive Diversity';
title(ax,'Transmit vs. Receive Diversity');
set(fig, 'DefaultLegendAutoUpdate', 'off');
fig.Position = figposition([15 50 25 30]);

% Loop over several EbNo points
for idx = 1:length(EbNo)
 reset(errorCalc1);
 reset(errorCalc2);
 reset(errorCalc3);
 % Loop over the number of packets
 for packetIdx = 1:numPackets
 % Generate data vector per frame
 data = randi([0 P-1], frmLen, 1);

 % Modulate data
 modData = bpskMod(data);

 Introduction to MIMO Systems

1-231

 % Alamouti Space-Time Block Encoder
 encData = ostbcEnc(modData);

 % Create the Rayleigh distributed channel response matrix
 % for two transmit and two receive antennas
 H(1:N:end, :, :) = (randn(frmLen/2, N, M) + ...
 1i*randn(frmLen/2, N, M))/sqrt(2);
 % assume held constant for 2 symbol periods
 H(2:N:end, :, :) = H(1:N:end, :, :);

 % Extract part of H to represent the 1x1, 2x1 and 1x2 channels
 H11 = H(:,1,1);
 H21 = H(:,:,1)/sqrt(2);
 H12 = squeeze(H(:,1,:));

 % Pass through the channels
 chanOut11 = H11 .* modData;
 chanOut21 = sum(H21.* encData, 2);
 chanOut12 = H12 .* repmat(modData, 1, 2);

 % Add AWGN
 rxSig11 = awgn(chanOut11,SNR(idx));
 rxSig21 = awgn(chanOut21,SNR(idx));
 rxSig12 = awgn(chanOut12,SNR(idx));

 % Alamouti Space-Time Block Combiner
 decData = ostbcComb(rxSig21, H21);

 % ML Detector (minimum Euclidean distance)
 demod11 = bpskDemod(rxSig11.*conj(H11));
 demod21 = bpskDemod(decData);
 demod12 = bpskDemod(sum(rxSig12.*conj(H12), 2));

 % Calculate and update BER for current EbNo value
 % for uncoded 1x1 system
 ber_noDiver(:,idx) = errorCalc1(data, demod11);
 % for Alamouti coded 2x1 system
 ber_Alamouti(:,idx) = errorCalc2(data, demod21);
 % for Maximal-ratio combined 1x2 system
 ber_MaxRatio(:,idx) = errorCalc3(data, demod12);

 end % end of FOR loop for numPackets

 % Calculate theoretical second-order diversity BER for current EbNo
 ber_thy2(idx) = berfading(EbNo(idx), 'psk', 2, 2);

 % Plot results
 semilogy(ax,EbNo(1:idx), ber_noDiver(1,1:idx), 'r*', ...
 EbNo(1:idx), ber_Alamouti(1,1:idx), 'go', ...
 EbNo(1:idx), ber_MaxRatio(1,1:idx), 'bs', ...
 EbNo(1:idx), ber_thy2(1:idx), 'm');
 legend(ax,'No Diversity (1Tx, 1Rx)', 'Alamouti (2Tx, 1Rx)',...
 'Maximal-Ratio Combining (1Tx, 2Rx)', ...
 'Theoretical 2nd-Order Diversity');

 drawnow;
end % end of for loop for EbNo

1 Communications Toolbox Featured Examples

1-232

% Perform curve fitting and replot the results
fitBER11 = berfit(EbNo, ber_noDiver(1,:));
fitBER21 = berfit(EbNo, ber_Alamouti(1,:));
fitBER12 = berfit(EbNo, ber_MaxRatio(1,:));
semilogy(ax,EbNo, fitBER11, 'r', EbNo, fitBER21, 'g', EbNo, fitBER12, 'b');
hold(ax,'off');

% Restore default stream
rng(s);

The transmit diversity system has a computation complexity very similar to that of the receive
diversity system.

The resulting simulation results show that using two transmit antennas and one receive antenna
provides the same diversity order as the maximal-ratio combined (MRC) system of one transmit
antenna and two receive antennas.

Also observe that transmit diversity has a 3 dB disadvantage when compared to MRC receive
diversity. This is because we modeled the total transmitted power to be the same in both cases. If we
calibrate the transmitted power such that the received power for these two cases is the same, then
the performance would be identical. The theoretical performance of second-order diversity link
matches the transmit diversity system as it normalizes the total power across all the diversity
branches.

The accompanying functional scripts, mrc1m.m and ostbc2m.m aid further exploration for the
interested users.

PART 2: Space-Time Block Coding with Channel Estimation

Building on the theory of orthogonal designs, Tarokh et al. [2] generalized Alamouti's transmit
diversity scheme to an arbitrary number of transmitter antennas, leading to the concept of Space-
Time Block Codes. For complex signal constellations, they showed that Alamouti's scheme is the only
full-rate scheme for two transmit antennas.

 Introduction to MIMO Systems

1-233

In this section, we study the performance of such a scheme with two receive antennas (i.e., a 2x2
system) with and without channel estimation. In the realistic scenario where the channel state
information is not known at the receiver, this has to be extracted from the received signal. We assume
that the channel estimator performs this using orthogonal pilot signals that are prepended to every
packet [3]. It is assumed that the channel remains unchanged for the length of the packet (i.e., it
undergoes slow fading).

A simulation similar to the one described in the previous section is employed here, which leads us to
estimate the BER performance for a space-time block coded system using two transmit and two
receive antennas.

Again we start by defining the common simulation parameters

frmLen = 100; % frame length
maxNumErrs = 300; % maximum number of errors
maxNumPackets = 3000; % maximum number of packets
EbNo = 0:2:12; % Eb/No varying to 12 dB
N = 2; % number of Tx antennas
M = 2; % number of Rx antennas
pLen = 8; % number of pilot symbols per frame
W = hadamard(pLen);
pilots = W(:, 1:N); % orthogonal set per transmit antenna

and set up the simulation.

% Create a comm.MIMOChannel System object to simulate the 2x2 spatially
% independent flat-fading Rayleigh channel
chan = comm.MIMOChannel(...
 'MaximumDopplerShift', 0, ...
 'SpatialCorrelationSpecification', 'None', ...
 'NumTransmitAntennas', N, ...
 'NumReceiveAntennas', M, ...
 'PathGainsOutputPort', true);

% Change the NumReceiveAntennas property value of the hAlamoutiDec System
% object to M that is 2
release(ostbcComb);
ostbcComb.NumReceiveAntennas = M;

% Set the global random stream for repeatability
s = rng(55408);

% Pre-allocate variables for speed
HEst = zeros(frmLen, N, M);
ber_Estimate = zeros(3,length(EbNo));
ber_Known = zeros(3,length(EbNo));

% Set up a figure for visualizing BER results
fig = figure;
grid on;
ax = fig.CurrentAxes;
hold(ax,'on');

ax.YScale = 'log';
xlim(ax,[EbNo(1), EbNo(end)]);
ylim(ax,[1e-4 1]);
xlabel(ax,'Eb/No (dB)');
ylabel(ax,'BER');

1 Communications Toolbox Featured Examples

1-234

fig.NumberTitle = 'off';
fig.Name = 'Orthogonal Space-Time Block Coding';
fig.Renderer = 'zbuffer';
title(ax,'Alamouti-coded 2x2 System');
set(fig,'DefaultLegendAutoUpdate','off');
fig.Position = figposition([41 50 25 30]);

% Loop over several EbNo points
for idx = 1:length(EbNo)
 reset(errorCalc1);
 reset(errorCalc2);

 % Loop till the number of errors exceed 'maxNumErrs'
 % or the maximum number of packets have been simulated
 while (ber_Estimate(2,idx) < maxNumErrs) && ...
 (ber_Known(2,idx) < maxNumErrs) && ...
 (ber_Estimate(3,idx)/frmLen < maxNumPackets)
 % Generate data vector per frame
 data = randi([0 P-1], frmLen, 1);

 % Modulate data
 modData = bpskMod(data);

 % Alamouti Space-Time Block Encoder
 encData = ostbcEnc(modData);

 % Prepend pilot symbols for each frame
 txSig = [pilots; encData];

 % Pass through the 2x2 channel
 reset(chan);
 [chanOut, H] = chan(txSig);

 % Add AWGN
 rxSig = awgn(chanOut,SNR(idx));

 % Channel Estimation
 % For each link => N*M estimates
 HEst(1,:,:) = pilots(:,:).' * rxSig(1:pLen, :) / pLen;
 % assume held constant for the whole frame
 HEst = HEst(ones(frmLen, 1), :, :);

 % Combiner using estimated channel
 decDataEst = ostbcComb(rxSig(pLen+1:end,:), HEst);

 % Combiner using known channel
 decDataKnown = ostbcComb(rxSig(pLen+1:end,:), ...
 squeeze(H(pLen+1:end,:,:,:)));

 % ML Detector (minimum Euclidean distance)
 demodEst = bpskDemod(decDataEst); % estimated
 demodKnown = bpskDemod(decDataKnown); % known

 % Calculate and update BER for current EbNo value
 % for estimated channel
 ber_Estimate(:,idx) = errorCalc1(data, demodEst);
 % for known channel
 ber_Known(:,idx) = errorCalc2(data, demodKnown);

 Introduction to MIMO Systems

1-235

 end % end of FOR loop for numPackets

 % Plot results
 semilogy(ax,EbNo(1:idx), ber_Estimate(1,1:idx), 'ro');
 semilogy(ax,EbNo(1:idx), ber_Known(1,1:idx), 'g*');
 legend(ax,['Channel estimated with ' num2str(pLen) ' pilot symbols/frame'],...
 'Known channel');
 drawnow;
end % end of for loop for EbNo

% Perform curve fitting and replot the results
fitBEREst = berfit(EbNo, ber_Estimate(1,:));
fitBERKnown = berfit(EbNo, ber_Known(1,:));
semilogy(ax,EbNo, fitBEREst, 'r', EbNo, fitBERKnown, 'g');
hold(ax,'off');

% Restore default stream
rng(s)

For the 2x2 simulated system, the diversity order is different than that seen for either 1x2 or 2x1
systems in the previous section.

Note that with 8 pilot symbols for each 100 symbols of data, channel estimation causes about a 1 dB
degradation in performance for the selected Eb/No range. This improves with an increase in the
number of pilot symbols per frame but adds to the overhead of the link. In this comparison, we keep
the transmitted SNR per symbol to be the same in both cases.

The accompanying functional script, ostbc2m_e.m aids further experimentation for the interested
users.

1 Communications Toolbox Featured Examples

1-236

PART 3: Orthogonal Space-Time Block Coding and Further Explorations

In this final section, we present some performance results for orthogonal space-time block coding
using four transmit antennas (4x1 system) using a half-rate code, G4, as per [4].

We expect the system to offer a diversity order of 4 and will compare it with 1x4 and 2x2 systems,
which have the same diversity order also. To allow for a fair comparison, we use quaternary PSK with
the half-rate G4 code to achieve the same transmission rate of 1 bit/sec/Hz.

These results take some time to generate on a single core. If you do not have Parallel Computing
Toolbox™ (PCT) installed, we load the results from a prior simulation. The functional script
ostbc4m.m is included, which, along with mrc1m.m and ostbc2m.m, was used to generate these
results. If PCT is installed, these simulations are performed in parallel. In this case the functional
scripts ostbc4m_pct.m, mrc1m_pct.m and ostbc2m_pct.m are used. The user is urged to use these
scripts as a starting point to study other codes and systems.

[licensePCT,~] = license('checkout' , 'Distrib_Computing_Toolbox');
if (licensePCT && ~isempty(ver('parallel')))
 EbNo = 0:2:20;
 [ber11, ber14, ber22, ber41] = mimoOSTBCWithPCT(100,4e3,EbNo);
else
 load ostbcRes.mat;
end

% Set up a figure for visualizing BER results
fig = figure;
grid on;
ax = fig.CurrentAxes;
hold(ax,'on');
fig.Renderer = 'zbuffer';
ax.YScale = 'log';
xlim(ax,[EbNo(1), EbNo(end)]);
ylim(ax,[1e-5 1]);
xlabel(ax,'Eb/No (dB)');
ylabel(ax,'BER');
fig.NumberTitle = 'off';
fig.Name = 'Orthogonal Space-Time Block Coding(2)';
title(ax,'G4-coded 4x1 System and Other Comparisons');
set(fig,'DefaultLegendAutoUpdate','off');
fig.Position = figposition([30 15 25 30]);

% Theoretical performance of fourth-order diversity for QPSK
BERthy4 = berfading(EbNo, 'psk', 4, 4);

% Plot results
semilogy(ax,EbNo, ber11, 'r*', EbNo, ber41, 'ms', EbNo, ber22, 'c^', ...
 EbNo, ber14, 'ko', EbNo, BERthy4, 'g');
legend(ax,'No Diversity (1Tx, 1Rx), BPSK', 'OSTBC (4Tx, 1Rx), QPSK', ...
 'Alamouti (2Tx, 2Rx), BPSK', 'Maximal-Ratio Combining (1Tx, 4Rx), BPSK', ...
 'Theoretical 4th-Order Diversity, QPSK');

% Perform curve fitting
fitBER11 = berfit(EbNo, ber11);
fitBER41 = berfit(EbNo(1:9), ber41(1:9));
fitBER22 = berfit(EbNo(1:8), ber22(1:8));
fitBER14 = berfit(EbNo(1:7), ber14(1:7));
semilogy(ax,EbNo, fitBER11, 'r', EbNo(1:9), fitBER41, 'm', ...

 Introduction to MIMO Systems

1-237

 EbNo(1:8), fitBER22, 'c', EbNo(1:7), fitBER14, 'k');
hold(ax,'off');

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

As expected, the similar slopes of the BER curves for the 4x1, 2x2 and 1x4 systems indicate an
identical diversity order for each system.

Also observe the 3 dB penalty for the 4x1 system that can be attributed to the same total transmitted
power assumption made for each of the three systems. If we calibrate the transmitted power such
that the received power for each of these systems is the same, then the three systems would perform
identically. Again, the theoretical performance matches the simulation performance of the 4x1 system
as the total power is normalized across the diversity branches.

Appendix

This example uses the following helper functions:

• mrc1m.m
• ostbc2m.m
• ostbc4m.m
• mimoOSTBCWithPCT.m
• mrc1m_pct.m
• ostbc2m_pct.m
• ostbc4m_pct.m

References

1 S. M. Alamouti, "A simple transmit diversity technique for wireless communications", IEEE®
Journal on Selected Areas in Communications, Vol. 16, No. 8, Oct. 1998, pp. 1451-1458.

1 Communications Toolbox Featured Examples

1-238

2 V. Tarokh, H. Jafarkhami, and A.R. Calderbank, "Space-time block codes from orthogonal
designs", IEEE Transactions on Information Theory, Vol. 45, No. 5, Jul. 1999, pp. 1456-1467.

3 A.F. Naguib, V. Tarokh, N. Seshadri, and A.R. Calderbank, "Space-time codes for high data rate
wireless communication: Mismatch analysis", Proceedings of IEEE International Conf. on
Communications, pp. 309-313, June 1997.

4 V. Tarokh, H. Jafarkhami, and A.R. Calderbank, "Space-time block codes for wireless
communications: Performance results", IEEE Journal on Selected Areas in Communications, Vol.
17, No. 3, Mar. 1999, pp. 451-460.

 Introduction to MIMO Systems

1-239

Spatial Multiplexing

This example shows spatial multiplexing schemes wherein the data stream is subdivided into
independent sub-streams, one for each transmit antenna employed. As a consequence, these schemes
provide a multiplexing gain and do not require explicit orthogonalization as needed for space-time
block coding.

Spatial multiplexing requires powerful decoding techniques at the receiver though. Of the many
proposed [1], this example highlights two ordered Successive Interference Cancellation (SIC)
detection schemes. These schemes are similar to the original Bell Labs Layered Space-Time (BLAST)
techniques as per [2], [3].

For expositional benefits the example uses the basic 2x2 MIMO system employing two transmit and
two receive antennas. For an uncoded QPSK modulated system it employs flat Rayleigh fading over
independent transmit-receive links. At the receiver end, we assume perfect channel knowledge with
no feedback to the transmitter, i.e., an open-loop spatial multiplexing system.

The example shows two nonlinear interference cancellation methods - Zero-Forcing (ZF) and
Minimum-Mean-Square-Error (MMSE) - with symbol cancellation and compares their performance
with the Maximum-Likelihood (ML) optimum receiver.

Simulation

We start by defining some common simulation parameters

N = 2; % Number of transmit antennas
M = 2; % Number of receive antennas
EbNoVec = 2:3:8; % Eb/No in dB
modOrd = 2; % constellation size = 2^modOrd

and set up the simulation.

% Create a local random stream to be used by random number generators for
% repeatability.
stream = RandStream('mt19937ar');

% Create PSK modulator and demodulator System objects
pskModulator = comm.PSKModulator(...
 'ModulationOrder', 2^modOrd, ...
 'PhaseOffset', 0, ...
 'BitInput', true);
pskDemodulator = comm.PSKDemodulator(...
 'ModulationOrder', 2^modOrd, ...
 'PhaseOffset', 0, ...
 'BitOutput', true);

% Calculate SNR from EbNo for each independent transmission link
snrIndB = convertSNR(EbNoVec,'ebno','BitsPerSymbol',modOrd);
snrLinear = 10.^(0.1*snrIndB);

% Create error rate calculation System objects for 3 different receivers
zfBERCalc = comm.ErrorRate;
mmseBERCalc = comm.ErrorRate;
mlBERCalc = comm.ErrorRate;

1 Communications Toolbox Featured Examples

1-240

% Get all bit and symbol combinations for ML receiver
allBits = int2bit(0:2^(modOrd*N)-1, modOrd*N);
allTxSig = reshape(pskModulator(allBits(:)), N, 2^(modOrd*N));

% Pre-allocate variables to store BER results for speed
[BER_ZF, BER_MMSE, BER_ML] = deal(zeros(length(EbNoVec), 3));

The simulation loop below simultaneously evaluates the BER performance of the three receiver
schemes for each Eb/No value using the same data and channel realization. A short range of Eb/No
values are used for simulation purposes. Results for a larger range, using the same code, are
presented later.

% Set up a figure for visualizing BER results
fig = figure;
grid on;
hold on;
ax = fig.CurrentAxes;
ax.YScale = 'log';
xlim([EbNoVec(1)-0.01 EbNoVec(end)]);
ylim([1e-3 1]);
xlabel('Eb/No (dB)');
ylabel('BER');
fig.NumberTitle = 'off';
fig.Renderer = 'zbuffer';
fig.Name = 'Spatial Multiplexing';
title('2x2 Uncoded QPSK System');
set(fig,'DefaultLegendAutoUpdate','off');

% Loop over selected EbNo points
for idx = 1:length(EbNoVec)
 % Reset error rate calculation System objects
 reset(zfBERCalc);
 reset(mmseBERCalc);
 reset(mlBERCalc);

 while (BER_ZF(idx, 3) < 1e5) && ((BER_MMSE(idx, 2) < 100) || ...
 (BER_ZF(idx, 2) < 100) || (BER_ML(idx, 2) < 100))
 % Create random bit vector to modulate
 msg = randi(stream, [0 1], [N*modOrd, 1]);

 % Modulate data
 txSig = pskModulator(msg);

 % Flat Rayleigh fading channel with independent links
 rayleighChan = (randn(stream, M, N) + 1i*randn(stream, M, N))/sqrt(2);

 % Add noise to faded data
 rxSig = awgn(rayleighChan*txSig, snrIndB(idx), 0, stream);

 % ZF-SIC receiver
 r = rxSig;
 H = rayleighChan; % Assume perfect channel estimation
 % Initialization
 estZF = zeros(N*modOrd, 1);
 orderVec = 1:N;
 k = N+1;
 % Start ZF nulling loop
 for n = 1:N

 Spatial Multiplexing

1-241

 % Shrink H to remove the effect of the last decoded symbol
 H = H(:, [1:k-1,k+1:end]);
 % Shrink order vector correspondingly
 orderVec = orderVec(1, [1:k-1,k+1:end]);
 % Select the next symbol to be decoded
 G = (H'*H) \ eye(N-n+1); % Same as inv(H'*H), but faster
 [~, k] = min(diag(G));
 symNum = orderVec(k);

 % Hard decode the selected symbol
 decBits = pskDemodulator(G(k,:) * H' * r);
 estZF(modOrd * (symNum-1) + (1:modOrd)) = decBits;

 % Subtract the effect of the last decoded symbol from r
 if n < N
 r = r - H(:, k) * pskModulator(decBits);
 end
 end

 % MMSE-SIC receiver
 r = rxSig;
 H = rayleighChan;
 % Initialization
 estMMSE = zeros(N*modOrd, 1);
 orderVec = 1:N;
 k = N+1;
 % Start MMSE nulling loop
 for n = 1:N
 H = H(:, [1:k-1,k+1:end]);
 orderVec = orderVec(1, [1:k-1,k+1:end]);
 % Order algorithm (matrix G calculation) is the only difference
 % with the ZF-SIC receiver
 G = (H'*H + ((N-n+1)/snrLinear(idx))*eye(N-n+1)) \ eye(N-n+1);
 [~, k] = min(diag(G));
 symNum = orderVec(k);

 decBits = pskDemodulator(G(k,:) * H' * r);
 estMMSE(modOrd * (symNum-1) + (1:modOrd)) = decBits;

 if n < N
 r = r - H(:, k) * pskModulator(decBits);
 end
 end

 % ML receiver
 r = rxSig;
 H = rayleighChan;
 [~, k] = min(sum(abs(repmat(r,[1,2^(modOrd*N)]) - H*allTxSig).^2));
 estML = allBits(:,k);

 % Update BER
 BER_ZF(idx, :) = zfBERCalc(msg, estZF);
 BER_MMSE(idx, :) = mmseBERCalc(msg, estMMSE);
 BER_ML(idx, :) = mlBERCalc(msg, estML);
 end

 % Plot results
 semilogy(EbNoVec(1:idx), BER_ZF(1:idx, 1), 'r*', ...

1 Communications Toolbox Featured Examples

1-242

 EbNoVec(1:idx), BER_MMSE(1:idx, 1), 'bo', ...
 EbNoVec(1:idx), BER_ML(1:idx, 1), 'gs');
 legend('ZF-SIC', 'MMSE-SIC', 'ML');
 drawnow;
end

% Draw the lines
semilogy(EbNoVec, BER_ZF(:, 1), 'r-', ...
 EbNoVec, BER_MMSE(:, 1), 'b-', ...
 EbNoVec, BER_ML(:, 1), 'g-');
hold off;

We observe that the ML receiver is the best in performance followed by the MMSE-SIC and ZF-SIC
receivers, as also seen in [4]. In terms of receiver complexity, ML grows exponentially with the
number of transmit antennas while the ZF-SIC and MMSE-SIC are linear receivers combined with
successive interference cancellation. Optimized ZF-SIC and MMSE-SIC algorithms for reduced
complexity can be found in [5].

Simulation results comparing the three schemes for a larger range of Eb/No values are displayed
next. These curves allow you to gauge the diversity order attained from the slope of the BER curve.

openfig('spatMuxResults.fig');

 Spatial Multiplexing

1-243

Some areas of further exploration would be to try these methods for a larger number of antennas,
with and without channel estimation.

Selected References

1 George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC Press, Boca
Raton, FL, 2006.

2 G. J. Foschini, "Layered space-time architecture for wireless communication in a fading
environment when using multiple antennas," The Bell Sys. Tech. Journal, 1996, No. 1, pp. 41-59.

3 P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, "V-BLAST: An Architecture for
realizing very high data rates over the rich scattering wireless channel," 1998 URSI International
Symposium on Signals, Systems, and Electronics, 29 Sep.-2 Oct. 1998, pp. 295-300.

4 X. Li, H. C. Huang, A. Lozano, G. J. Foschini, "Reduced-complexity detection algorithms for
systems using multi-element arrays", IEEE® Global Telecommunications Conference, 2000.
Volume 2, 27 Nov.-1 Dec. 2000, pp. 1072-76.

5 Y. Shang and X.-G. Xia, "On fast recursive algorithms for V-BLAST with optimal ordered SIC
detection," IEEE Trans. Wireless Communications, vol. 8, no. 6, pp. 2860-2865, Jun. 2009.

1 Communications Toolbox Featured Examples

1-244

OSTBC Transmission with Antenna Coupling

This example shows how the antenna mutual coupling affects the performance of an orthogonal
space-time block code (OSTBC) transmission over a multiple-input multiple-output (MIMO) channel.
The transmitter and receiver have two dipole antenna elements each. The BER vs. SNR curves are
plotted under different correlation and coupling scenarios. To run this example, you need Antenna
Toolbox™.

System Parameters

A QPSK modulated Alamouti OSTBC is simulated over a 2x2 quasi-static frequency-flat Rayleigh
channel [1 on page 1-251]. The system operates at 2.4 GHz. The SNR range to be simulated is 0 to
10 dB.

fc = 2.4e9; % Center frequency
Nt = 2; % Number of Tx antennas
Nr = 2; % Number of Rx antennas
blkLen = 2; % Alamouti code block length
snr = 0:10; % SNR range
maxNumErrs = 3e2; % Maximum number of errors
maxNumBits = 5e4; % Maximum number of bits

Create objects to perform QPSK modulation and demodulation, Alamouti encoding and combining,
AWGN channel as well as BER calculation.

qpskMod = comm.QPSKModulator;
qpskDemod = comm.QPSKDemodulator;
alamoutiEnc = comm.OSTBCEncoder(...
 'NumTransmitAntennas', Nt);
alamoutiDec = comm.OSTBCCombiner(...
 'NumTransmitAntennas', Nt, ...
 'NumReceiveAntennas', Nr);
awgnChanNC = comm.AWGNChannel(... % For no coupling case
 'NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SignalPower', 1);
berCalcNC = comm.ErrorRate; % For no coupling case

% Clone objects for mutual coupling case
awgnChanMC = clone(awgnChanNC);
berCalcMC = clone(berCalcNC);

Antenna Arrays and Coupling Matrices

A two-element resonant dipole array is used at both transmit (Tx) and receive (Rx) side. At Tx, the
dipoles are spaced a half-wavelength apart. At Rx, the spacing is a tenth of a wavelength.

txSpacing = 0.5;
rxSpacing = 0.1;
lambda = physconst('lightspeed')/fc;
antElement = dipole(...
 'Length', lambda/2, ...
 'Width', lambda/100);
txArray = linearArray(...
 'Element', antElement,...
 'NumElements', Nt,...
 'ElementSpacing', txSpacing*lambda);

 OSTBC Transmission with Antenna Coupling

1-245

rxArray = linearArray(...
 'Element', antElement,...
 'NumElements', Nr,...
 'ElementSpacing', rxSpacing*lambda);

The coupling matrix is calculated based on a circuit model of the array as per [2 on page 1-251]. The
s-parameter calculation is performed for the transmit and receive arrays and from this the impedance
matrix representation of the array is derived.

txMCMtx = helperCalculateCouplingMatrix(txArray, fc, [1 Nt]);
rxMCMtx = helperCalculateCouplingMatrix(rxArray, fc, [1 Nr]);

Spatial Correlation Matrices

The transmit and receive spatial correlation matrices capture the propagation environment of the
channel. Without coupling, it is assumed that the two elements at Tx are uncorrelated and the two
elements at Rx have high correlation. The combined/overall correlation matrix for the whole channel
is their Kronecker product.

txCorrMtx = eye(2);
rxCorrMtx = [1 0.9; 0.9 1];
combCorrMtx = kron(txCorrMtx, rxCorrMtx);

With coupling, we use the approach in [3 on page 1-251] to modify the Tx and Rx correlation
matrices by pre and post-multiplying them by the corresponding coupling matrices. This is valid
under the assumption that the correlation and coupling can be modeled independently.

txMCCorrMtx = txMCMtx * txCorrMtx * txMCMtx';
rxMCCorrMtx = rxMCMtx * rxCorrMtx * rxMCMtx';

The combined spatial correlation with coupling is kron(txMCCorr, rxMCCorr). Alternatively, we
can treat the Tx/Rx coupling matrix as being "absorbed" into the Tx/Rx correlation matrix and derive
the combined correlation matrix as follows:

txSqrtCorrMtx = txMCMtx * sqrtm(txCorrMtx);
rxSqrtCorrMtx = rxMCMtx * sqrtm(rxCorrMtx);
combMCCorrMtx = kron(txSqrtCorrMtx, rxSqrtCorrMtx);
combMCCorrMtx = combMCCorrMtx * combMCCorrMtx';

MIMO Channel Modeling

Create two comm.MIMOChannel objects to simulate the 2x2 MIMO channels with and without
coupling. The combined spatial correlation matrix is assigned in each case. The
MaximumDopplerShift property of the objects is set to 0 to model a quasi-static channel.

mimoChanNC = comm.MIMOChannel(... % For no coupling case
 'MaximumDopplerShift', 0, ...
 'SpatialCorrelationSpecification', 'Combined', ...
 'SpatialCorrelationMatrix', combCorrMtx,...
 'PathGainsOutputPort', true);

% Clone objects for mutual coupling case
mimoChanMC = clone(mimoChanNC);
mimoChanMC.SpatialCorrelationMatrix = combMCCorrMtx;

Simulations

Simulate the QPSK modulated Alamouti code for each SNR value with and without antenna coupling.
One Alamouti code is simulated through the MIMO channel in each iteration. To model a quasi-static

1 Communications Toolbox Featured Examples

1-246

channel, we reset the comm.MIMOChannel object to obtain a new set of channel gains for each code
transmission (iteration).

% Set up a figure to visualize BER results
h1 = figure; grid on; hold on;
ax = gca;
ax.YScale = 'log';
xlim([snr(1), snr(end)]); ylim([1e-3 1]);
xlabel('SNR (dB)'); ylabel('BER');
h1.NumberTitle = 'off';
h1.Name = 'Orthogonal Space-Time Block Coding';
h1.Renderer = 'zbuffer';
title('Alamouti-coded 2x2 System - High Coupling, High Correlation');

s = rng(108); % For repeatability
[berNC, berMC] = deal(zeros(3,length(snr)));

% Loop over SNR values
for idx = 1:length(snr)
 awgnChanNC.SNR = snr(idx);
 awgnChanMC.SNR = snr(idx);
 reset(berCalcNC);
 reset(berCalcMC);

 while min(berNC(2,idx),berMC(2,idx)) <= maxNumErrs && (berNC(3,idx) <= maxNumBits)
 % Generate random data
 txData = randi([0 3], blkLen, 1);

 % Perform QPSK modulation and Alamouti encoding
 txSig = alamoutiEnc(qpskMod(txData));

 % Pass through MIMO channel
 reset(mimoChanNC); reset(mimoChanMC);
 [chanOutNC, estChanNC] = mimoChanNC(txSig);
 [chanOutMC, estChanMC] = mimoChanMC(txSig);

 % Add AWGN
 rxSigNC = awgnChanNC(chanOutNC);
 rxSigMC = awgnChanMC(chanOutMC);

 % Perform Alamouti decoding with known channel state information
 decSigNC = alamoutiDec(rxSigNC, squeeze(estChanNC));
 decSigMC = alamoutiDec(rxSigMC, squeeze(estChanMC));

 % Perform QPSK demodulation
 rxDataNC = qpskDemod(decSigNC);
 rxDataMC = qpskDemod(decSigMC);

 % Update BER
 berNC(:, idx) = berCalcNC(txData, rxDataNC);
 berMC(:, idx) = berCalcMC(txData, rxDataMC);
 end

 % Plot results
 semilogy(snr(1:idx), berNC(1,1:idx), 'r*');
 semilogy(snr(1:idx), berMC(1,1:idx), 'bo');
 legend({'Channel Without Coupling', 'Channel With Coupling'});
 drawnow;

 OSTBC Transmission with Antenna Coupling

1-247

end

% Perform curve fitting
fitBERNC = berfit(snr, berNC(1,:));
fitBERMC = berfit(snr, berMC(1,:));
semilogy(snr, fitBERNC, 'r', snr, fitBERMC, 'b');
legend({'Channel Without Coupling', 'Channel With Coupling'});

rng(s); % Restore RNG

Further Exploration

The effect of correlation and mutual coupling on the BER performance can be further studied by
modifying the correlation coefficient and/or by changing the spacing between the elements. The
smaller the spacing is, the higher the coupling is. Similar to what has been done above for high
correlation (0.9) and high coupling (spacing = 0 . 1λ) at Rx, we now show the BER vs. SNR results for
low correlation (0.1) and/or low coupling (spacing = 0 . 5λ).

• High Coupling (spacing = 0 . 1λ), Low Correlation (0.1)

1 Communications Toolbox Featured Examples

1-248

• Low Coupling (spacing = 0 . 5λ), High Correlation (0.9)

 OSTBC Transmission with Antenna Coupling

1-249

• Low Coupling (spacing = 0 . 5λ), Low Correlation (0.1)

1 Communications Toolbox Featured Examples

1-250

Conclusion

The simulation results are similar to those reported in [1 on page 1-251]. A spacing of 0 . 5λ has a
negligible impact on BER under both high and low correlation conditions. For the case with high
coupling, i.e., 0 . 1λ element spacing, the results indicate that depending on the correlation
conditions, the BER could be either higher or lower than if coupling were not considered.

Appendix

This example uses the following helper functions:

• helperCalculateCouplingMatrix.m

References

1 - A. A. Abouda, H. M. El-Sallabi, and S. G. Haggman, "Effect of Mutual Coupling on BER
Performance of Alamouti Scheme," IEEE International Symposium on Antennas and Propagation, July
2006.

2 - I. J. Gupta and A. A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays,"
IEEE Trans. on Antennas and Propagation, vol. 31, no. 5, pp. 785-791, 1989.

 OSTBC Transmission with Antenna Coupling

1-251

3 - Y. Wu, J. P. Linnartz, J. W. M. Bergmans, and S. Attallah, "Effects of Antenna Mutual Coupling on
the Performance of MIMO Systems," Proc. 29th Symposium on Information Theory in the Benelux,
May 2008.

1 Communications Toolbox Featured Examples

1-252

Concatenated OSTBC with TCM

This example shows an orthogonal space-time block code (OSTBC) concatenated with trellis-coded
modulation (TCM) for information transmission over a multiple-input multiple-output (MIMO) channel
with 2 transmit antennas and 1 receive antenna. The example uses communications System objects™
to simulate this system.

Introduction

OSTBCs [1], [2] are an attractive technique for MIMO wireless communications. They exploit full
spatial diversity order and enjoy symbol-wise maximum likelihood (ML) decoding. However, they offer
no coding gain. The combiner for OSTBC at the receiver side provides soft information of the
transmitted symbols, which can be utilized for decoding or demodulation of an outer code.

TCM [3] is a bandwidth efficient scheme that integrates coding and modulation to provide a large
coding gain. Concatenating TCM with an inner code will usually offer an improved performance.

This example illustrates the advantages of an OSTBC and TCM concatenation scheme: the spatial
diversity gain offered by OSTBC and the coding gain offered by TCM. For comparison, two reference
systems containing only TCM or OSTBC are also provided. The diversity and coding gains of the
concatenation scheme over the reference models can be clearly observed from the simulation results.
More discussions about concatenating OSTBC and TCM can be found in, for example, [4], [5] and
references therein.

The configureTCMOSTBCDemo.m script creates System objects used to simulate the concatenated
OSTBC system. It also initializes some simulation parameters.

% Trellis structure of the TCM modulator
trellis = poly2trellis([2, 3], [1, 2, 0; 4, 1, 2]);

% Create System objects of the concatenated OSTBC system and set simulation
% parameters such as SNR and frame length.
configureTCMOSTBCDemo

PSK TCM Modulator and Demodulator

The PSK TCM modulator System object modulates the random message data to a PSK constellation
that has unit average energy. The TrellisStructure property accepts a MATLAB® structure to specify
the trellis of the TCM. The ModulationOrder property specifies the size of the PSK constellation. This
example uses the Ungerboeck TCM scheme for 8-PSK constellation with 8 trellis states [3], and sets
the corresponding TrellisStructure property to the result of poly2trellis([2 3], [1 2 0; 4 1 2]). This
object has an output length of 50, as every two input bits produce one symbol.

The PSK TCM demodulator System object uses the Viterbi algorithm for TCM to decode the signals
from the OSTBC combiner. The example sets the TerminationMethod property to 'Truncated';
therefore treats each frame independently. The example also sets the TracebackDepth property to 30,
which compared to the constraint length of the TCM, is long enough to ensure an almost lossless
performance.

psktcmMod = comm.PSKTCMModulator(trellis, ...
 'TerminationMethod', 'Truncated');

psktcmDemod = comm.PSKTCMDemodulator(trellis, ...
 'TerminationMethod', 'Truncated', ...

 Concatenated OSTBC with TCM

1-253

 'TracebackDepth', 30, ...
 'OutputDataType', 'logical');

Orthogonal Space-Time Block Codes (OSTBC)

The OSTBC encoder System object encodes the information symbols from the TCM Encoder by using
the Alamouti code [1] for 2 transmit antennas. The output of this object is a 50x2 matrix, where
entries on each column correspond to the data transmitted from one antenna.

The OSTBC combiner System object uses a single antenna and decodes the received signal utilizing
the channel state information (CSI). The output of the object represents the estimates of the
transmitted symbols, which are then fed into the PSK TCM demodulator. In this example, the CSI is
assumed perfectly known at the receiver side.

ostbcEnc = comm.OSTBCEncoder;
ostbcComb = comm.OSTBCCombiner;

2x1 MIMO Fading Channel

The 2x1 MIMO fading channel System object simulates the spatially independent flat Rayleigh fading
channel from the 2 transmit antennas to the 1 receive antenna.

The example sets the maximumDopplerShift property of the channel object to 30. The reason for
using this value is to make the MIMO channel behave like a quasi-static fading channel, i.e., it keeps
constant during one frame transmission and varies along multiple frames. The example sets the
PathGainsOutputPort property to true to use the channel path gain values as perfect estimates of CSI.
The example also sets the RandomStream property to 'mt19937ar with seed' so that the object uses a
self-contained random number generator to generate repeatable channel coefficients. The 2x1 MIMO
channel has normalized path gains.

mimoChan = comm.MIMOChannel(...
 'SampleRate', 1/Tsamp, ...
 'MaximumDopplerShift', maxDopp, ...
 'SpatialCorrelationSpecification', 'None', ...
 'NumReceiveAntennas', 1, ...
 'RandomStream', 'mt19937ar with seed', ...
 'PathGainsOutputPort', true);

Concatenated OSTBC with TCM

This section of the code calls the processing loop for a concatenated OSTBC system. The main loop
processes the data frame-by-frame, where the transmitter modulates the random data using an 8-PSK
TCM modulator and then applies Alamouti coding. The two transmitted signals from the OSTBC
encoder pass through the 2x1 MIMO Rayleigh fading channel and are also impaired by AWGN. The
OSTBC combiner uses one receive antenna and provides soft inputs to the 8-PSK TCM demodulator.
The example compares the output of the demodulator with the generated random data to obtain
frame error rate (FER).

Stream Processing

fer = zeros(3,1);
while (fer(3) < maxNumFrms) && (fer(2) < maxNumErrs)
 data = logical(randi([0 1], frameLen, 1)); % Generate data
 modData = psktcmMod(data); % Modulate
 txSignal = ostbcEnc(modData); % Apply Alamouti coding
 [chanOut, chanEst] = mimoChan(txSignal); % 2x1 fading channel

1 Communications Toolbox Featured Examples

1-254

 rxSignal = awgnChan(chanOut); % Add receiver noise
 modDataRx = ostbcComb(rxSignal, ...
 squeeze(chanEst)); % Decode
 dataRx = psktcmDemod(modDataRx); % Demodulate
 frameErr = any(dataRx - data); % Check frame error
 fer = FERData(false, frameErr); % Update frame error rate
end

The error rate measurement System object, FERData, outputs a 3-by-1 vector containing updates of
the measured FER value, the number of errors, and the total number of frame transmissions. Display
FER values.

frameErrorRate = fer(1)

frameErrorRate =

 0.1481

TCM over Flat Fading Channel

This section of the example simulates the TCM in the previous concatenation scheme over a single-
input single-output (SISO) flat Rayleigh fading channel, without space-time coding. The fading
channel has the same specification as one subchannel of the 2x1 MIMO fading channel in the
previous system. So this section of the example sets the NumTransmitAntennas property of the fading
channel System object to 1 after releasing it. This section of the example also sets the SignalPower
property of the AWGN channel System object to 1, as there is only one symbol transmitted per symbol
period.

Initialize the processing loop

release(mimoChan);
mimoChan.NumTransmitAntennas = 1;
awgnChan.SignalPower = 1;
reset(FERData)
fer = zeros(3,1);

Stream Processing Loop

while (fer(3) < maxNumFrms) && (fer(2) < maxNumErrs)
 data = logical(randi([0 1], frameLen, 1)); % Generate data
 modData = psktcmMod(data); % Modulate
 [chanOut, chanEst] = mimoChan(modData); % SISO fading channel
 rxSignal = awgnChan(chanOut); % Add receiver noise
 modDataRx = (rxSignal.*conj(chanEst)) / ...
 (chanEst'*chanEst); % Equalize
 dataRx = psktcmDemod(modDataRx); % Demodulate
 frameErr = any(dataRx - data); % Check frame error
 fer = FERData(false, frameErr); % Update frame error rate
end

OSTBC over 2x1 Flat Rayleigh Fading Channel

This section of the example replaces the TCM in the previous concatenation scheme by a QPSK
modulation so that both systems have the same symbol (frame) rate. It uses the same 2x1 flat
Rayleigh fading channel as in the TCM-OSTBC concatenation model. The QPSK modulator System

 Concatenated OSTBC with TCM

1-255

object, qpskMod, maps the information bits to a QPSK constellation and the QPSK demodulator
System object, QPSKDemod, demodulates the signals from the OSTBC Combiner.

Initialize the processing loop

release(mimoChan);
mimoChan.NumTransmitAntennas = 2;
awgnChan.SignalPower = 2;
reset(FERData)
fer = zeros(3,1);

Stream Processing Loop

while (fer(3) < maxNumFrms) && (fer(2) < maxNumErrs)
 data = logical(randi([0 1], frameLen, 1)); % Generate data
 modData = qpskMod(data); % Modulate
 txSignal = ostbcEnc(modData); % Apply Alamouti coding
 [chanOut, chanEst] = mimoChan(txSignal); % 2x1 fading channel
 rxSignal = awgnChan(chanOut); % Add receiver noise
 modDataRx = ostbcComb(rxSignal, ...
 squeeze(chanEst)); % Decode
 dataRx = qpskDemod(modDataRx); % Demodulate
 frameErr = any(dataRx - data); % Check frame error
 fer = FERData(false, frameErr); % Update frame error rate
end

You can add a for-loop around the previous processing loops to run simulations for a set of SNR
values. Simulations were run offline for SNR values of (10:2:24) dB, target number of errors equal to
1000, and maximum number of transmissions equal to 5e6. The following figure shows the results
from this simulation.

1 Communications Toolbox Featured Examples

1-256

Summary

This example utilized several System objects to simulate a concatenated OSTBC with TCM over a 2x1
flat Rayleigh fading channel. This base system was modified to model a TCM system over a SISO flat
fading channel and an OSTBC system over the same 2x1 flat Rayleigh fading channel. System
performance was measured using the FER curves obtained with the error rate measurement System
object. This example showed that the concatenation scheme provides a significant diversity gain over
the TCM scheme and about 2dB coding gain over the Alamouti code.

Appendix

This example uses the following script and helper function:

• configureTCMOSTBCDemo.m

Selected Bibliography

1 S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE®
Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

2 V. Tarokh, H. Jafarkhami, and A. R. Calderbank, "Space-time block codes from orthogonal
designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.

3 G. Ungerboeck, "Channel coding with multilevel/phase signals," IEEE Transactions on
Information Theory, vol. IT-28, no. 1, pp. 55?67, Jan. 1982.

 Concatenated OSTBC with TCM

1-257

4 S. M. Alamouti, V. Tarokh, and P. Poon, "Trellis-coded modulation and transmit diversity: Design
criteria and performance evaluation," in Proceedings of IEEE International Conference on
Universal Personal Communications (ICUPC'98), Florence, Italy, vol. 1, Oct. 5-9, 1998, pp.
703-707.

5 Y. Gong and K. B. Letaief, "Concatenated space-time block coding with trellis coded modulation in
fading channels," IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 580-590, Oct.
2002.

1 Communications Toolbox Featured Examples

1-258

Concatenated OSTBC with TCM in Simulink

This model shows an orthogonal space-time block code (OSTBC) concatenated with trellis-coded
modulation (TCM) for information transmission over a multiple-input multiple-output (MIMO) channel
with 2 transmit antennas and 1 receive antenna.

Introduction

OSTBCs [1], [2] are an attractive technique for MIMO wireless communications. They exploit full
spatial diversity order and enjoy symbol-wise maximum likelihood (ML) decoding. However, they offer
no coding gain. The combiner for OSTBC at the receiver side provides soft information of the
transmitted symbols, which can be utilized for decoding or demodulation of an outer code.

TCM [3] is a bandwidth efficient scheme that integrates coding and modulation to provide a large
coding gain. Concatenating TCM with an inner code will usually offer an improved performance.

This example illustrates the advantages of an OSTBC and TCM concatenation scheme: the spatial
diversity gain offered by OSTBC and the coding gain offered by TCM. For comparison, two reference
models containing only TCM or OSTBC are also provided. The diversity and coding gains of the
concatenation scheme over the reference models can be clearly observed from the simulation results.
More discussions about concatenating OSTBC and TCM can be found in, for example, [4], [5] and
references therein.

Structure of the Example

The individual tasks performed by the model include:

 Concatenated OSTBC with TCM in Simulink

1-259

Random Data Generation

The Bernoulli Binary Generator block produces the information source for this simulation. The block
generates a frame of 100 random bits. The Samples per frame parameter determines the length of
the output frame (100 in this case).

Trellis-Coded Modulation (TCM)

The M-PSK TCM Encoder block modulates the message data from the Bernoulli Binary Generator to a
PSK constellation that has unit average energy. The Trellis structure parameter accepts a
MATLAB® structure to specify the trellis of the TCM. The M-ary number parameter specifies the
size of the PSK constellation. In this example, we use the Ungerboeck TCM scheme for 8-PSK
constellation with 8 trellis states [3]. Correspondingly, the Trellis structure parameter is set to
poly2trellis([2 3], [1 2 0; 4 1 2]). This block has an output frame length of 50 as every
two input bits produce one symbol.

The M-PSK TCM Decoder block uses the Viterbi algorithm for TCM to decode the signals from the
OSTBC Combiner. The Operation mode parameter is set to Truncated to treat each frame
independently. The Traceback depth parameter is set to 30 that, compared with the constraint
length of the TCM, is long enough to ensure an almost lossless performance.

Orthogonal Space-Time Block Codes (OSTBC)

The OSTBC Encoder block encodes the information symbols from the TCM Encoder by using the
Alamouti code [1] for 2 transmit antennas. The output of this block is a 50x2 matrix whose entries
on each column correspond to the data transmitted over one antenna.

The OSTBC Combiner block combines the received signals from the receive antenna with the channel
state information (CSI) to output the estimates of the transmitted symbols, which are then fed into
the M-PSK TCM Decoder. In this example, the CSI is assumed perfectly known at the receiver side.

2x1 MIMO Channel

The MIMO Fading Channel block simulates a 2x1 frequency-flat Rayleigh fading channel. The Sample
rate (Hz) parameter is set to 500000 that is calculated based on the input signal length and model
sample time. The Maximum Doppler shift (Hz) parameter is set to 30. The reason for using this
value is to make the MIMO channel behave like a quasi-static fading channel, i.e., it keeps constant
during one frame transmission and varies along multiple frames.

Receiver Noise

The AWGN Channel block adds white Gaussian noises at the receiver side. The Mode parameter is set
to Signal to noise ratio (SNR) mode and the Input signal power, referenced to 1
ohm (watts) parameter is set to 2 because the PSK constellation for TCM has unit average energy
and the path gains of the MIMO channel are normalized.

Frame Error Rate (FER) Calculation

The Frame Error Rate (FER) Calculation subsystem compares the decoded bits with the original
source bits per frame to detect errors and dynamically updates the FER along the simulation. The
output of this subsystem is a three-element vector containing the FER, the number of error frames
observed and the number of frames processed. This vector is from the Error Rate Calculation block
and also saved as a MATLAB® workspace variable FER_Data to ease the simulation for multiple SNR
values described below.

1 Communications Toolbox Featured Examples

1-260

The Stop simulation parameter is checked to control the duration of the simulation. The
simulation stops upon detecting a target number of error frames (specified by the Target number
of errors parameter) or a maximum number of frames (specified by the Maximum number of
symbols parameter), whichever comes first.

We now briefly describe the two reference models used for comparison.

TCM over Flat Rayleigh Fading Channel

The model commtcm.slx simulates the TCM in the above concatenation scheme over a single-input
single-output (SISO) flat Rayleigh fading channel. No space-time coding is used. The SISO Fading
Channel block has the same specification as one subchannel of the 2x1 MIMO channel in the above
model. The Input signal power, referenced to 1 ohm (watts) parameter of the AWGN
Channel block is set to 1 as there is only one symbol transmitted per symbol period.

 Concatenated OSTBC with TCM in Simulink

1-261

Channel Equalizer

The Channel Equalizer subsystem compensates the fading channel effect at the receiver side and its
output is fed into the M-PSK TCM Decoder block for decoding. Note that the channel is flat Rayleigh
fading in this model.

OSTBC over 2x1 Flat Rayleigh Fading Channel

The model commostbc.slx replaces the TCM in the above concatenation scheme by a QPSK
modulation so that both the models have the same symbol (frame) rate. It uses the same 2x1 MIMO
Fading Channel block as in the TCM-OSTBC concatenation model. The QPSK Modulator Baseband
block maps the information bits to a QPSK constellation and the QPSK Demodulator Baseband block
demodulates the signals from the OSTBC Combiner.

1 Communications Toolbox Featured Examples

1-262

Performance Results

Creating a FER vs. SNR performance curve requires simulations for multiple SNR values, which can
be performed by using the sim command. We start by defining some simulation parameters

 SNRRange = 10:2:24;
 maxNumErrs = 1e3; % Number of frame errors
 maxNumFrms = 5e6; % Number of frames processed

and then initialize a figure in order to visualize the performance results.

 fig = figure;
 grid on;
 hold on;
 ax = fig.CurrentAxes;
 ax.YScale = 'log';
 xlim([SNRRange(1), SNRRange(end)]);
 ylim([1e-4 1]);

 xlabel('SNR (dB)');
 ylabel('FER');
 fig.NumberTitle = 'off';
 fig.Rrenderer = 'zbuffer';
 fig.Name = 'Concatenated OSTBC with TCM';
 title('Concatenated OSTBC with TCM');

To simulate the OSTBC-TCM concatenated model, we execute the following commands that run the
simulation multiple times and plot the results.

 FERTCMOSTBC = zeros(length(SNRRange), 3);
 for idx = 1:length(SNRRange)
 SNR = SNRRange(idx);
 sim('commtcmostbc');
 FERTCMOSTBC(idx, :) = FER_Data;
 h1 = semilogy(SNRRange(1:idx), FERTCMOSTBC(1:idx, 1), 'r+');
 end
 fitFERTCMOSTBC = berfit(SNRRange, FERTCMOSTBC(:, 1)');
 semilogy(SNRRange, fitFERTCMOSTBC, 'r');

Similarly, we can simulate the two reference models via executing

 FERTCM = zeros(length(SNRRange), 3);
 for idx = 1:length(SNRRange)
 SNR = SNRRange(idx);
 sim('commtcm');
 FERTCM(idx, :) = FER_Data;
 h2 = semilogy(SNRRange(1:idx), FERTCM(1:idx, 1), 'gp');
 end
 fitFERTCM = berfit(SNRRange, FERTCM(:, 1)');
 semilogy(SNRRange, fitFERTCM, 'g');

 FEROSTBC = zeros(length(SNRRange), 3);
 for idx = 1:length(SNRRange)
 SNR = SNRRange(idx);
 sim('commostbc');
 FEROSTBC(idx, :) = FER_Data;
 h3 = semilogy(SNRRange(1:idx), FEROSTBC(1:idx, 1), 'bo');
 end

 Concatenated OSTBC with TCM in Simulink

1-263

 fitFEROSTBC = berfit(SNRRange, FEROSTBC(:, 1)');
 semilogy(SNRRange, fitFEROSTBC, 'b');

 legend([h1, h2, h3], 'TCM + OSTBC', 'TCM', 'OSTBC');

The FER vs. SNR performance result is presented in the following figure.

As expected, the concatenation scheme provides a significant diversity gain over the TCM scheme
and about 2dB coding gain over the Alamouti code.

Further Exploration

Upon loading the simulation models, variables are created in the MATLAB® workspace which can be
modified to explore the effects of different parameter settings such as Samples per frame
(variable frameLen), Trellis structure (variable trellis) or Maximum Doppler shift (Hz)
(variable maxDopp) on the system performance.

Selected Bibliography

1 S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE®
Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

2 V. Tarokh, H. Jafarkhami, and A. R. Calderbank, "Space-time block codes from orthogonal
designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.

3 G. Ungerboeck, "Channel coding with multilevel/phase signals," IEEE Transactions on
Information Theory, vol. IT-28, no. 1, pp. 55-67, Jan. 1982.

1 Communications Toolbox Featured Examples

1-264

4 S. M. Alamouti, V. Tarokh, and P. Poon, "Trellis-coded modulation and transmit diversity: Design
criteria and performance evaluation," in Proc. IEEE International Conference on Universal
Personal Communications (ICUPC'98), Florence, Italy, Oct. 1998, pp. 703-707.

5 Y. Gong and K. B. Letaief, "Concatenated space-time block coding with trellis coded modulation in
fading channels," IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 580-590, Oct.
2002.

 Concatenated OSTBC with TCM in Simulink

1-265

BER Performance of Different Equalizers

This example shows the BER performance of several types of equalizers in a static channel with a null
in the passband. The example constructs and implements a linear equalizer object and a decision
feedback equalizer (DFE) object. It also initializes and invokes a maximum likelihood sequence
estimation (MLSE) equalizer. The MLSE equalizer is first invoked with perfect channel knowledge,
then with a straightforward but imperfect channel estimation technique.

As the simulation progresses, it updates a BER plot for comparative analysis between the equalization
methods. It also shows the signal spectra of the linearly equalized and DFE equalized signals. It also
shows the relative burstiness of the errors, indicating that at low BERs, both the MLSE algorithm and
the DFE algorithm suffer from error bursts. In particular, the DFE error performance is burstier with
detected bits fed back than with correct bits fed back. Finally, during the "imperfect" MLSE portion of
the simulation, it shows and dynamically updates the estimated channel response.

To experiment with this example, you can change such parameters as the channel impulse response,
the number of equalizer tap weights, the recursive least squares (RLS) forgetting factor, the least
mean square (LMS) step size, the MLSE traceback length, the error in estimated channel length, and
the maximum number of errors collected at each Eb/No value.

Code Structure

This example relies on these helper scripts and functions to perform link simulations over a range of
Eb/No values.

eqber_adaptive.m - a script that runs link simulations for linear and DFE equalizers

eqber_mlse.m - a script that runs link simulations for ideal and imperfect MLSE equalizers

eqber_siggen.m - a script that generates a binary phase shift keying (BPSK) signal with no pulse
shaping, then processes it through the channel and adds noise

eqber_graphics.m - a function that generates and updates plots showing the performance of the
linear, DFE, and MLSE equalizers.

The scripts eqber_adaptive and eqber_mlse illustrate how to use adaptive and MLSE equalizers
across multiple blocks of data such that state information is retained between data blocks.

Signal and Channel Parameters

Set parameters related to the signal and channel. Use BPSK without any pulse shaping, and a 5-tap
real-valued symmetric channel impulse response. (See section 10.2.3 of Digital Communications by J.
Proakis, 4th Ed., for more details on the channel.) Set initial states of data and noise generators. Set
the Eb/No range.

% System simulation parameters
Fs = 1; % sampling frequency (notional)
nBits = 2048; % number of BPSK symbols per vector
maxErrs = 200; % target number of errors at each Eb/No
maxBits = 1e6; % maximum number of symbols at each Eb/No

% Modulated signal parameters
M = 2; % order of modulation
Rs = Fs; % symbol rate

1 Communications Toolbox Featured Examples

1-266

nSamp = Fs/Rs; % samples per symbol
k = log2(M); % Bits per symbol
Rb = Rs*k; % bit rate

% Channel parameters
chnl = [0.227 0.460 0.688 0.460 0.227]'; % channel impulse response
chnlLen = length(chnl); % channel length, in samples
EbNo = 0:14; % in dB
BER = zeros(size(EbNo)); % initialize values

% Create BPSK modulator
bpskMod = comm.BPSKModulator;

% Specify a seed for the random number generators to ensure repeatability.
rng(12345)

Adaptive Equalizer Parameters

Set parameter values for the linear and DFE equalizers. Use a 31-tap linear equalizer, and a DFE with
15 feedforward and feedback taps. Use the recursive least squares (RLS) algorithm for the first block
of data to ensure rapid tap convergence. Use the least mean square (LMS) algorithm thereafter to
ensure rapid execution speed.

% Linear equalizer parameters
nWts = 31; % number of weights
algType = 'RLS'; % RLS algorithm
forgetFactor = 0.999999; % parameter of RLS algorithm

% DFE parameters - use same update algorithms as linear equalizer
nFwdWts = 15; % number of feedforward weights
nFbkWts = 15; % number of feedback weights

MLSE Equalizer & Channel Estimation Parameters and Initial Visualization

Set the parameters of the MLSE equalizer. Use a traceback length of six times the length of the
channel impulse response. Initialize the equalizer states. Set the equalization mode to "continuous",
to enable seamless equalization over multiple blocks of data. Use a cyclic prefix in the channel
estimation technique, and set the length of the prefix. Assume that the estimated length of the
channel impulse response is one sample longer than the actual length.

% MLSE equalizer parameters
tbLen = 30; % MLSE equalizer traceback length
numStates = M^(chnlLen-1); % number of trellis states
[mlseMetric,mlseStates,mlseInputs] = deal([]);
const = constellation(bpskMod); % signal constellation
mlseType = 'ideal'; % perfect channel estimates at first
mlseMode = 'cont'; % no MLSE resets

% Channel estimation parameters
chnlEst = chnl; % perfect estimation initially
prefixLen = 2*chnlLen; % cyclic prefix length
excessEst = 1; % length of estimated channel impulse response
% beyond the true length

% Initialize the graphics for the simulation. Plot the unequalized channel
% frequency response, and the BER of an ideal BPSK system.
idealBER = berawgn(EbNo,'psk',M,'nondiff');

 BER Performance of Different Equalizers

1-267

[hBER,hLegend,legendString,hLinSpec,hDfeSpec,hErrs,hText1,hText2, ...
 hFit,hEstPlot,hFig,hLinFig,hDfeFig] = eqber_graphics('init', ...
 chnl,EbNo,idealBER,nBits);

1 Communications Toolbox Featured Examples

1-268

Construct RLS and LMS Linear and DFE Equalizer Objects

The RLS update algorithm is used to adapt the equalizer tap weights and reference tap is set to
center tap.

linEq = comm.LinearEqualizer('Algorithm',algType, ...
 'ForgettingFactor',forgetFactor, ...
 'NumTaps',nWts, ...
 'Constellation',const, ...
 'ReferenceTap',round(nWts/2), ...
 'TrainingFlagInputPort',true);

dfeEq = comm.DecisionFeedbackEqualizer('Algorithm',algType, ...
 'ForgettingFactor',forgetFactor, ...
 'NumForwardTaps',nFwdWts, ...
 'NumFeedbackTaps',nFbkWts, ...
 'Constellation',const, ...
 'ReferenceTap',round(nFwdWts/2), ...
 'TrainingFlagInputPort',true);

Linear Equalizer

Run the linear equalizer, and plot the equalized signal spectrum, the BER, and the burst error
performance for each data block. Note that as the Eb/No increases, the linearly equalized signal
spectrum has a progressively deeper null. This highlights the fact that a linear equalizer must have
many more taps to adequately equalize a channel with a deep null. Note also that the errors occur
with small inter-error intervals, which is to be expected at such a high error rate.

See eqber_adaptive.m for a listing of the simulation code for the adaptive equalizers.

firstRun = true; % flag to ensure known initial states for noise and data
eqType = 'linear';
eqber_adaptive;

 BER Performance of Different Equalizers

1-269

1 Communications Toolbox Featured Examples

1-270

Decision Feedback Equalizer

Run the DFE, and plot the equalized signal spectrum, the BER, and the burst error performance for
each data block. Note that the DFE is much better able to mitigate the channel null than the linear
equalizer, as shown in the spectral plot and the BER plot. The plotted BER points at a given Eb/No
value are updated every data block, so they move up or down depending on the number of errors
collected in that block. Note also that the DFE errors are somewhat bursty, due to the error
propagation caused by feeding back detected bits instead of correct bits. The burst error plot shows
that as the BER decreases, a significant number of errors occurs with an inter-error arrival of five bits
or less. (If the DFE equalizer were run in training mode at all times, the errors would be far less
bursty.)

For every data block, the plot also indicates the average inter-error interval if those errors were
randomly occurring.

See eqber_adaptive.m for a listing of the simulation code for the adaptive equalizers.

close(hFig(ishghandle(hFig)));

eqType = 'dfe';
eqber_adaptive;

 BER Performance of Different Equalizers

1-271

1 Communications Toolbox Featured Examples

1-272

Ideal MLSE Equalizer, with Perfect Channel Knowledge

Run the MLSE equalizer with a perfect channel estimate, and plot the BER and the burst error
performance for each data block. Note that the errors occur in an extremely bursty fashion. Observe,
particularly at low BERs, that the overwhelming percentage of errors occur with an inter-error
interval of one or two bits.

See eqber_mlse.m for a listing of the simulation code for the MLSE equalizers.

close(hLinFig(ishghandle(hLinFig)),hDfeFig(ishghandle(hDfeFig)));

eqType = 'mlse';
mlseType = 'ideal';
eqber_mlse;

 BER Performance of Different Equalizers

1-273

MLSE Equalizer with an Imperfect Channel Estimate

Run the MLSE equalizer with an imperfect channel estimate, and plot the BER and the burst error
performance for each data block. These results align fairly closely with the ideal MLSE results. (The

1 Communications Toolbox Featured Examples

1-274

channel estimation algorithm is highly dependent on the data, such that an FFT of a transmitted data
block has no nulls.) Note how the estimated channel plots compare with the actual channel spectrum
plot.

See eqber_mlse.m for a listing of the simulation code for the MLSE equalizers.

mlseType = 'imperfect';
eqber_mlse;

 BER Performance of Different Equalizers

1-275

1 Communications Toolbox Featured Examples

1-276

OFDM Synchronization

This example shows a method for digital communication with OFDM synchronization based upon the
IEEE® 802.11a™ standard. System objects™ from the Communications Toolbox™ are utilized to
provide OFDM modulation and demodulation and help synchronization functionality. In particular,
this example illustrates methods to address real-world wireless communication issues like carrier
frequency recovery, timing recovery, and frequency domain equalization.

Implementations

This example describes a MATLAB® implementation of OFDM synchronization, based upon the IEEE
802.11a standard [3].

Introduction

The IEEE 802.11a standard describes the transmission of an OFDM modulated signal for information
exchange between systems in local and metropolitan area networks. This example utilizes the
physical layer outlined by that standard, specifically the preamble symbols and the OFDM grid
structure.

The purpose of this example is:

• To model a general OFDM wireless communication system that is able to successfully recover a
message, which was corrupted by various simulated channel impairments.

• To illustrate the use of key Communications Toolbox tools for OFDM system design and OFDM
symbol synchronization

• To illustrate the performance benefits of MATLAB Coder™

Initialization

Adjustable transmitter parameters including the payload message in each frame that consists of
several OFDM symbols and the number of transmitted frames.

message = 'Live long and prosper, from the Communications Toolbox Team at MathWorks!';
numFrames = 1e2;

% Adjustable channel parameters
EbN0dB = 12; % Channel noise level (dB)
frequencyOffset = 1e4; % Frequency offset (Hz)
phaseOffset = 15; % Phase offset (Degrees)
delay = 80; % Initial sample offset for entire data stream (samples)

% Display recovered messages
displayRecoveredMsg = false;

% Enable scope visualizations
useScopes = true;

% Check for MATLAB Coder license
useCodegen = checkCodegenLicense;
if useCodegen
 fprintf(['--MATLAB Coder license found. ',...
 'Transmitter and receiver functions will be compiled for ',...

 OFDM Synchronization

1-277

 'additional simulation acceleration.--\n']);
end

% By default the transmitter and receiver functions will be recompiled
% between every run, which is not always necessary. To disable receiver
% compilation, change "compileIt" to false.
compileIt = useCodegen;

--MATLAB Coder license found. Transmitter and receiver functions will be compiled for additional simulation acceleration.--

Code Architecture for the System

This example models a digital communication system based upon the IEEE 802.11a standard [3].
The system is broken down into four functions: generateOFDMSignal, applyOFDMChannel,
receiveOFDMSignal, and calculateOFDMBER.

1) generateOFDMSignal: set up and call an OFDMTransmitter System object. The object converts the
payload message into a bit stream which is first PSK modulated, then OFDM modulated, and finally
prepended by preamble OFDM symbols to form an individual frame. The transmitter repeats this
frame numFrames times.

2) applyOFDMChannel: models the channel with carrier offset, timing offset, and additive white
Gaussian noise (AWGN).

3) receiveOFDMSignal: set up and call an OFDMReceiver System object. The object models a series
of components at the receiver, including timing recovery, carrier frequency recovery, channel
equalization, and demodulation. The object can also be configured to show multiple scopes to
visualize the receiver processing. The output of the OFDMReceiver object is the decoded bit stream
from those detected frames.

4) calculateOFDMBER: calculate the system frame error rate (FER) and bit error rate (BER) based on
the original payload message in each frame and the bit output from the OFDMReceiver System
object.

Description of the Individual Components and Algorithms

Transmitter

The OFDMTransmitter System object generates an OFDM signal based upon the IEEE 802.11a
standard with a supplied ASCII payload. Each transmission frame is made up of several OFDM
symbols, including preamble and data symbols. Identical frames are repeated by the transmitter
based on the value supplied. Frames are padded to fill the OFDM grid when necessary.

Channel

This component simulates the effects of over-the-air transmission. It degrades the transmitted signal
with both phase and frequency offset, a delay to mimic channel delay between transmitter and
receiver, and AWGN. The noise level of the AWGN is given in dB.

Receiver

This OFDMReceiver System object recovers the original transmitted payload message. It is divided
into four primary operations in this order:

1) Timing Recovery: This component is responsible for determining the sample location of the start of
a given frame. More specifically, it utilizes a known preamble sequence in the received frame found

1 Communications Toolbox Featured Examples

1-278

through a cross-correlation. The cross-correlated data will contain a specific peak arrangement/
spacing which allows for identification. The preamble itself is designed to produce this specific shape
in the time domain. This identification method is based upon [1]. The locatePreamble method of the
object, which is responsible for this operation, uses a normalized minimum peak height, and a
minimum number of required peaks to provide a possible preamble match.

2) Carrier Frequency Recovery: Frequency estimation is accomplished by calculating the phase
difference in the time domain between halves of the long portion of the 802.11a preamble. This phase
difference Phi is then converted to a frequency offset. This is a common technique originally
published by Schmidl and Cox [2]. This implementation of the phase measurement assumes that the
true offset is within pi, or one frequency bin of the FFT. In the case of 802.11a a bin is 312.5kHz wide.

3) Frequency Domain Equalization: Since the frequency estimate can be inaccurate, additional phase
rotation will exist at the subcarrier level of the OFDM symbol. As well as phase rotations, channel
fading will also affect the received signal. Both of these impairments are corrected by a frequency
domain equalizer. The equalizer has two stages, utilizing both preamble and pilot data. First, the
received payload is equalized through the use of taps generated from the received long preamble
samples. Then the pilot subcarriers are extracted, and interpolated in frequency to provide a full
channel estimate. The payload is next equalized using these pilot estimates.

4) Data Decoder: Finally the OFDM subcarriers are demodulated and then, PSK demodulated into
bits, from which the original payload message can be recovered.

BER Calculation

This component calculates the system FER and BER based on the original payload message and the
decoded bit stream from the detected frames at the receiver. The undetected frames are not counted
in the calculation.

Display of Recovered Message

The recovered message at the receiver is displayed for each detected frame. Since the original
message length is not sent to the receiver, the padded bits in each frame are also recovered into
characters and displayed. So you may see up to 7 meaningless characters at the end of each
recovered message.

Scopes

• constellation diagrams showing the received signal before and after frequency domain
equalization

• vector plot of the equalizer taps used for a given frame

• a spectrum analyzer displaying detected frames of data

• a time plot displaying the start of detected frames

• a time plot displaying the frequency estimate of the transmitter's carrier offset for detected
frames

OFDM Synchronization Test Overview

A large data vector is regenerated for a given EbN0 value by the generateOFDMSignal function. This
data is then passed through the applyOFDMChannel function which introduces several common
channel impairments. Finally the data is passed to the receiver for recovery. The receiveOFDMSignal

 OFDM Synchronization

1-279

function operates by processing data on a frame-by-frame basis. This processing mechanism is self-
contained for performance benefits when using code generation and for code simplicity. This script by
default generates code for the transmitter and receiver functions; this is accomplished by using the
codegen command provided by the MATLAB Coder product. The codegen command translates
MATLAB functions to a C++ static or dynamic library, executable, or to a MEX file, producing a code
for accelerated execution. The generated C code runs several times faster than the original MATLAB
code.

During operation, the receiver will display a series of plots illustrating certain synchronization results
and effects on the signal.

% Compile transmitter with MATLAB Coder
if compileIt
 codegen generateOFDMSignal -args {coder.Constant(message), coder.Constant(numFrames)}
end

% Generate transmission signal
if useCodegen
 [txSig, frameLen] = generateOFDMSignal_mex(message, numFrames);
else
 [txSig, frameLen] = generateOFDMSignal(message, numFrames);
end

% Pass signal through channel
rxSig = applyOFDMChannel(txSig, EbN0dB, delay, frequencyOffset, phaseOffset);

% Compile receiver with MATLAB Coder
if compileIt
 codegen receiveOFDMSignal -args {rxSig, coder.Constant(frameLen), coder.Constant(displayRecoveredMsg), coder.Constant(useScopes)}
end

% Recover signal
if useCodegen
 [decMsgInBits, numFramesDetected] = receiveOFDMSignal_mex(rxSig, frameLen, displayRecoveredMsg, useScopes);
else
 [decMsgInBits, numFramesDetected] = receiveOFDMSignal(rxSig, frameLen, displayRecoveredMsg, useScopes);
end

% Calculate average BER
[FER, BER] = calculateOFDMBER(message, decMsgInBits, numFramesDetected);
fprintf('\nAt EbNo = %5.2fdB, %d frames detected among the %d transmitted frames with FER = %f and BER = %f\n', ...
 EbN0dB, numFramesDetected, numFrames, FER, BER);

Code generation successful.

Code generation successful.

At EbNo = 12.00dB, 100 frames detected among the 100 transmitted frames with FER = 0.010000 and BER = 0.000098

1 Communications Toolbox Featured Examples

1-280

 OFDM Synchronization

1-281

1 Communications Toolbox Featured Examples

1-282

Summary

This example utilizes several MATLAB System objects to simulate digital communication with OFDM
over an AWGN channel. It shows how to model several parts of the OFDM system such as modulation,
frequency estimation, timing recovery, and equalization. The simulation also displays information
about the operation of the synchronization algorithms through a series of plots. This example also
utilizes code generation, allowing the simulation to run several times faster than the original MATLAB
code.

Appendix

The following System objects are used in this example:

• OFDMTransmitter.m
• OFDMReceiver.m
• OFDMScopes.m

The following helper functions are used in this example:

• generateOFDMSignal.m
• applyOFDMChannel.m
• receiveOFDMSignal.m
• processOFDMScopes.m
• calculateOFDMBER.m
• getOFDMPreambleAndPilot.m

 OFDM Synchronization

1-283

References

1 Minn, H.; Zeng, M.; Bhargava, V.K., "On timing offset estimation for OFDM systems,"
Communications Letters, IEEE , vol.4, no.7, pp.242,244, July 2000

2 Schmidl, T.M.; Cox, D.C., "Robust frequency and timing synchronization for OFDM,"
Communications, IEEE Transactions on , vol.45, no.12, pp.1613,1621, Dec 1997

3 IEEE Std 802.11a, "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications," 1999.

1 Communications Toolbox Featured Examples

1-284

QPSK Transmitter and Receiver

This example shows the implementation of a QPSK transmitter and receiver with MATLAB®. In
particular, this example illustrates methods to address real-world wireless communications issues like
carrier frequency and phase offset, timing recovery and frame synchronization. For the Simulink®
implementation of the same system, refer to the “QPSK Transmitter and Receiver in Simulink” on
page 1-292 example.

Introduction

The transmitted QPSK data undergoes impairments that simulate the effects of wireless transmission
such as addition of Additive White Gaussian Noise (AWGN), introduction of carrier frequency and
phase offset, and timing drift. To cope with these impairments, this example provides a reference
design of a practical digital receiver. The receiver includes correlation-based coarse frequency
compensation, PLL-based fine frequency compensation, PLL-based symbol timing recovery, frame
synchronization, and phase ambiguity resolution.

This example serves two main purposes:

• To model a general wireless communication system that is able to successfully recover a message,
which was corrupted by various simulated channel impairments.

• To illustrate the use of key Communications Toolbox™ synchronization components including
coarse and fine carrier frequency compensation, closed-loop timing recovery with bit stuffing and
stripping, frame synchronization and carrier phase ambiguity resolution.

Initialization

The commqpsktxrx_init.m script initializes simulation parameters and generates the structure
prmQPSKTxRx.

prmQPSKTxRx = commqpsktxrx_init %#ok<*NOPTS> % QPSK system parameters

useScopes = true; % true if scopes are to be used
printReceivedData = false; % true if the received data is to be printed
compileIt = false; % true if code is to be compiled
useCodegen = false; % true to run the generated mex file

prmQPSKTxRx =

 struct with fields:

 ModulationOrder: 4
 Interpolation: 2
 Decimation: 1
 Rsym: 50000
 Tsym: 2.0000e-05
 Fs: 100000
 TotalFrame: 1000
 BarkerCode: [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1]
 BarkerLength: 13
 HeaderLength: 26
 Message: 'Hello world'
 MessageLength: 16

 QPSK Transmitter and Receiver

1-285

 NumberOfMessage: 20
 PayloadLength: 2240
 FrameSize: 1133
 FrameTime: 0.0227
 RolloffFactor: 0.5000
 ScramblerBase: 2
 ScramblerPolynomial: [1 1 1 0 1]
 ScramblerInitialConditions: [0 0 0 0]
 RaisedCosineFilterSpan: 10
 PhaseOffset: 47
 EbNo: 13
 FrequencyOffset: 5000
 DelayType: 'Triangle'
 DesiredPower: 2
 AveragingLength: 50
 MaxPowerGain: 20
 MaximumFrequencyOffset: 6000
 PhaseRecoveryLoopBandwidth: 0.0100
 PhaseRecoveryDampingFactor: 1
 TimingRecoveryLoopBandwidth: 0.0100
 TimingRecoveryDampingFactor: 1
 TimingErrorDetectorGain: 5.4000
 PreambleDetectionThreshold: 20
 MessageBits: [11200x1 double]
 BerMask: [1540x1 double]

Code Architecture for the System Under Test

This example models a digital communication system using QPSK modulation. The function
runQPSKSystemUnderTest.m models this communication environment. The QPSK transceiver model
in this script is divided into the following four main components.

1) QPSKTransmitter.m: generates the bit stream and then encodes, modulates and filters it.

2) QPSKChannel.m: models the channel with carrier offset, timing offset, and AWGN.

3) QPSKReceiver.m: models the receiver, including components for phase recovery, timing recovery,
decoding, demodulation, etc.

4) QPSKScopes.m: optionally visualizes the signal using time scopes, frequency scopes, and
constellation diagrams.

Each component is modeled using a System object. To see the construction of the four main System
object components, refer to runQPSKSystemUnderTest.m.

Description of the Individual Components

Transmitter

This component generates a message using ASCII characters, converts the characters to bits, and
prepends a Barker code for receiver frame synchronization. This data is then modulated using QPSK
and filtered with a square root raised cosine filter.

Channel

1 Communications Toolbox Featured Examples

1-286

This component simulates the effects of over-the-air transmission. It degrades the transmitted signal
with both phase and frequency offset, a time-varying delay to mimic clock skew between transmitter
and receiver, and AWGN.

Receiver

This component regenerates the original transmitted message. It is divided into six subcomponents.

1) Automatic Gain Control: Sets its output power to a level ensuring that the equivalent gains of the
phase and timing error detectors keep constant over time. The AGC is placed before the Raised
Cosine Receive Filter so that the signal amplitude can be measured with an oversampling factor of
two. This process improves the accuracy of the estimate.

2) Coarse frequency compensation: Uses a correlation-based algorithm to roughly estimate the
frequency offset and then compensate for it. The estimated coarse frequency offset is averaged so
that fine frequency compensation is allowed to lock/converge. Hence, the coarse frequency offset is
estimated using a comm.CoarseFrequencyCompensator System object and an averaging formula;
the compensation is performed using a comm.PhaseFrequencyOffset System object.

3) Timing recovery: Performs timing recovery with closed-loop scalar processing to overcome the
effects of delay introduced by the channel, using a comm.SymbolSynchronizer System object. The
object implements a PLL to correct the symbol timing error in the received signal. The rotationally-
invariant Gardner timing error detector is chosen for the object in this example; thus, timing recovery
can precede fine frequency compensation. The input to the object is a fixed-length frame of samples.
The output of the object is a frame of symbols whose length can vary due to bit stuffing and stripping,
depending on actual channel delays.

4) Fine frequency compensation: Performs closed-loop scalar processing and compensates for the
frequency offset accurately, using a comm.CarrierSynchronizer System object. The object
implements a phase-locked loop (PLL) to track the residual frequency offset and the phase offset in
the input signal.

5) Frame Synchronization: Detects the location of the known Barker code in the input and performs
frame synchronization using a FrameSynchronizer System object. It also converts the variable-
length symbol inputs into fixed-length outputs. The object has a secondary output that is a boolean
scalar indicating if the first frame output is valid.

6) Data decoder: Performs phase ambiguity resolution and demodulation. Also, the data decoder
compares the regenerated message with the transmitted one and calculates the BER.

Scopes

This component provides optional visualization to plot:

• A spectrum scope depicting the received signal before and after square root raised cosine
filtering,

• Constellation diagrams showing the received signal after receiver filtering, after timing recovery
and then after fine frequency compensation.

For more information about the system components, refer to the “QPSK Transmitter and Receiver in
Simulink” on page 1-292 Simulink example.

System Under Test

The main loop in the system under test script processes the data frame-by-frame. Set the MATLAB
variable compileIt to true in order to generate code. This can be accomplished by using the

 QPSK Transmitter and Receiver

1-287

codegen command provided by the MATLAB Coder™ product. The codegen command translates
MATLAB® functions to a MEX file, producing code for accelerated execution. The generated C code
runs several times faster than the original MATLAB code. For this example, set useCodegen to true
to use the code generated by codegen instead of the MATLAB code.

The inner loop of runQPSKSystemUnderTest.m uses the four System objects previously mentioned. In
this file, there is a for-loop around the system under test to process one frame at a time.

for count = 1:prmQPSKTxRx.FrameCount
 transmittedSignal = qpskTx();
 rcvdSignal = qpskChan(transmittedSignal, count);
 [RCRxSignal, timingRecSignal, freqRecSignal, BER] = qpskRx(rcvdSignal); % Receiver
 if useScopes
 runQPSKScopes(qpskScopes, rcvdSignal, RCRxSignal, timingRecSignal,
 freqRecSignal); % Plots all the scopes
 end
end

Execution and Results

To run the System Under Test script and obtain BER values for the simulated QPSK communication,
the following code is executed. When you run the simulations, it displays the bit error rate data, and
some graphical results. The displayed scopes are constellation diagrams of the Raised Cosine
Receive Filter output, the Symbol Synchronizer output, and the Fine Frequency Compensation
output, and the power spectrum of the Raised Cosine Receive Filter output.

if compileIt
 codegen -report runQPSKSystemUnderTest.m -args {coder.Constant(prmQPSKTxRx),coder.Constant(useScopes),coder.Constant(printReceivedData)} %#ok
end
if useCodegen
 BER = runQPSKSystemUnderTest_mex(prmQPSKTxRx,useScopes,printReceivedData);
else
 BER = runQPSKSystemUnderTest(prmQPSKTxRx,useScopes,printReceivedData);
end
fprintf('Error rate = %f.\n',BER(1));
fprintf('Number of detected errors = %d.\n',BER(2));
fprintf('Total number of compared samples = %d.\n',BER(3));

Error rate = 0.000238.
Number of detected errors = 366.
Total number of compared samples = 1536920.

1 Communications Toolbox Featured Examples

1-288

 QPSK Transmitter and Receiver

1-289

Alternate Execution Options

As already mentioned in the section System Under Test, by using the variables at the beginning of
the example, it is possible to interact with the code to explore different aspects of System objects and
coding options.

By default, the variables useScopes and printReceivedData are set to true and false,
respectively. The useScopes variable enables MATLAB scopes to be opened during the example
execution. Using the scopes, you can see how the simulated subcomponents behave and also obtain a
better understanding of how the system functions in simulation time. When you set this variable to
false, the scopes will not open during the example execution. When you set printReceivedData to
true, you can also see the decoded received packets printed in the command window. The other two
variables, compileIt and useCodegen, are related to speed performance and can be used to
analyze design tradeoffs.

When you set compileIt to true, this example script will use MATLAB Coder™ capabilities to
compile the script runQPSKSystemUnderTest for accelerated execution. This command will create a
MEX file (runQPSKSystemUnderTest_mex) and save it in the current folder. Once you set
useCodegen to true to run the mex file, the example is able to run the system implemented in
MATLAB much faster. This feature is essential for implementation of real-time systems and is an
important simulation tool. To maximize simulation speed, set useScopes to false and useCodegen to
true to run the mex file.

For other exploration options, refer to the “QPSK Transmitter and Receiver in Simulink” on page 1-
292 example.

Summary

This example simulates digital communication over an AWGN channel. It shows how to model several
parts of the QPSK system such as modulation, frequency and phase recovery, timing recovery, and
frame synchronization. It measures the system performance by calculating BER. It also shows that
the generated C code runs several times faster than the original MATLAB code.

Appendix

This example uses the following script and helper functions:

• runQPSKSystemUnderTest.m
• QPSKTransmitter.m

1 Communications Toolbox Featured Examples

1-290

• QPSKChannel.m
• QPSKReceiver.m
• QPSKScopes.m
• QPSKBitsGenerator.m
• QPSKDataDecoder.m
• FrameSynchronizer.m

References

1. Rice, Michael. Digital Communications - A Discrete-Time Approach. 1st ed. New York, NY: Prentice
Hall, 2008.

 QPSK Transmitter and Receiver

1-291

QPSK Transmitter and Receiver in Simulink

This model shows the implementation of a QPSK transmitter and receiver with Simulink®. The
receiver addresses practical issues in wireless communications, such as carrier frequency and phase
offset, timing drift and frame synchronization. The receiver demodulates the received symbols and
outputs a simple message to the Diagnostic Viewer. For the MATLAB® implementation of the same
system, refer to the “QPSK Transmitter and Receiver” on page 1-285.

Overview

This example model performs all processing at complex baseband to handle a static frequency offset,
a timing drift, and Gaussian noise. To cope with the above-mentioned impairments, this example
provides a reference design of a practical digital receiver, which includes correlation-based coarse
frequency compensation, PLL-based fine frequency compensation, PLL-based symbol timing recovery,
frame synchronization, and phase ambiguity resolution. The example showcases a few library blocks
in Communications Toolbox™ that implement synchronization algorithms in the receiver processing.

Structure of the Example

The top-level structure of the model is shown in the following figure, which includes the Transmitter
subsystem, the channel subsystem, and the Receiver subsystem.

The detailed structures of the Transmitter subsystem and the Receiver subsystem are illustrated in
the following figures.

1 Communications Toolbox Featured Examples

1-292

The components are further described in the following sections.

Transmitter

• Bit Generation - Generates the bits for each frame
• QPSK Modulator - Modulates the bits into QPSK symbols

 QPSK Transmitter and Receiver in Simulink

1-293

• Raised Cosine Transmit Filter - Uses a rolloff factor of 0.5, and upsamples the QPSK symbols by
two

Channel

• AWGN Channel with Frequency Offset and Variable Time Delay - Applies the frequency
offset, a timing drift, and additive white Gaussian noise to the signal

Receiver

• Raised Cosine Receive Filter - Uses a rolloff factor of 0.5
• Coarse Frequency Compensation - Estimates an approximate frequency offset of the received

signal and corrects it
• Symbol Synchronizer - Resamples the input signal according to a recovered timing strobe so

that symbol decisions are made at the optimum sampling instants
• Carrier Synchronizer - Compensates for the residual frequency offset and the phase offset
• Frame Synchronizer - Aligns the frame boundaries at the known frame header
• Data Decoding - Resolves the phase ambiguity caused by the Carrier Synchronizer,

demodulates the signal, and decodes the text message

Transmitter

The transmitter includes the Bit Generation subsystem, the QPSK Modulator block, and the
Raised Cosine Transmit Filter block. The Bit Generation subsystem uses a MATLAB workspace
variable as the payload of a frame, as shown in the figure below. Each frame contains 20 'Hello world
###' messages and a header. The first 26 bits are header bits, a 13-bit Barker code that has been
oversampled by two. The Barker code is oversampled by two in order to generate precisely 13 QPSK
symbols for later use in the Data Decoding subsystem of the receiver model. The remaining bits are
the payload. The payload corresponds to the ASCII representation of 'Hello world ###', where '###'
is a repeating sequence of '000', '001', '002', ..., '099'. The payload is scrambled to guarantee a
balanced distribution of zeros and ones for the timing recovery operation in the receiver model. The
scrambled bits are modulated by the QPSK Modulator (with Gray mapping). The modulated symbols
are upsampled by two by the Raised Cosine Transmit Filter with a roll-off factor 0.5. The symbol
rate of the transmitter system is 50k symbols per second, and the sample rate after the Raised
Cosine Transmit Filter is 100k samples per second.

1 Communications Toolbox Featured Examples

1-294

AWGN Channel with Frequency Offset and Variable Delay

The AWGN Channel with Frequency Offset and Variable Delay subsystem first applies the
frequency offset and a preset phase offset to the transmit signal. Then it adds a variable delay with a
choice of the following two types of delay to the signal:

• Ramp delay - This type of delay is initialized at DelayStart samples, and increases linearly at a
rate of DelayStep samples in each frame. When the actual delay reaches one frame, the delay
buffer is full, and it maintains a delay of one frame.

• Triangle delay - This type of delay linearly changes back and forth between MinDelay samples
and MaxDelay samples at a rate of DelayStep samples in each frame

The use of multiple delay characteristics allows you to investigate their effects on receiver
performance, particularly on the Symbol Synchronizer block. The delayed signal is processed
through an AWGN Channel. The diagram of the AWGN Channel with Frequency Offset and
Variable Delay subsystem is as shown in the following.

 QPSK Transmitter and Receiver in Simulink

1-295

Receiver

Raised Cosine Receive Filter

The Raised Cosine Receive Filter provides matched filtering for the transmitted waveform with a
rolloff factor of 0.5.

AGC

The received signal amplitude affects the accuracy of the carrier and symbol synchronizer. Therefore
the signal amplitude should be stabilized to ensure an optimum loop design. The AGC output power is
set to a value ensuring that the equivalent gains of the phase and timing error detectors keep
constant over time. The AGC is placed before the Raised Cosine Receive Filter so that the signal
amplitude can be measured with an oversampling factor of two, thus improving the accuracy of the
estimate. You can refer to Chapter 7.2.2 and Chapter 8.4.1 of [1] for details on how to design the
phase detector gain.

Coarse Frequency Compensation

The Coarse Frequency Compensation subsystem corrects the input signal with a rough estimate of
the frequency offset. The following diagram shows the subsystem, in which the frequency offset is
estimated by averaging the output of the correlation-based algorithm of the Coarse Frequency
Compensator block. The compensation is performed by the Phase/Frequency Offset block. There is
usually a residual frequency offset even after the coarse frequency compensation, which would cause
a slow rotation of the constellation. The Carrier Synchronizer block compensates for this residual
frequency.

The accuracy of the Coarse Frequency Compensator decreases with its maximum frequency offset
value. Ideally, this value should be set just above the expected frequency offset range. For example,
this model introduces a 5 kHz frequency offset and the Coarse Frequency Compensator is
configured with a 6 kHz maximum frequency offset.

Symbol Synchronizer

The timing recovery is performed by a Symbol Synchronizer library block, which implements a PLL,
described in Chapter 8 of [1], to correct the timing error in the received signal. The timing error
detector is estimated using the Gardner algorithm, which is rotationally invariant. In other words,
this algorithm can be used before or after frequency offset compensation. The input to the block is
oversampled by two. On average, the block generates one output symbol for every two input samples.
However, when the channel timing error (delay) reaches symbol boundaries, there will be one extra

1 Communications Toolbox Featured Examples

1-296

or missing symbol in the output frame. In that case, the block implements bit stuffing/skipping thus
the output of this block is a variable-size signal.

The Damping factor, Normalized loop bandwidth, and Detector gain parameters of the block are
tunable. Their default values are set to 1 (critical damping), 0.01 and 5.4 respectively, so that the PLL
quickly locks to the correct timing while introducing little timing jitter.

Carrier Synchronizer

The fine frequency compensation is performed by a Carrier Synchronizer library block, which
implements a phase-locked loop (PLL), described in Chapter 7 of [1], to track the residual frequency
offset and the phase offset in the input signal. The PLL uses a Direct Digital Synthesizer (DDS) to
generate the compensating phase that offsets the residual frequency and phase offsets. The phase
offset estimate from DDS is the integral of the phase error output of a Loop Filter.

The Damping factor and Normalized loop bandwidth parameters of the block are tunable. Their
default values are set to 1 (critical damping) and 0.01 respectively, so that the PLL quickly locks to
the intended phase while introducing little phase noise.

Frame Synchronizer

The frame synchronization is performed by a MATLAB System block using a FrameSynchronizer
System object™. The block uses the known frame header (QPSK-modulated Barker code) to correlate
against the received QPSK symbols in order to find the location of the frame header. The block uses
this location information to align the frame boundaries. It also transforms the variable-size output of
the Symbol Synchronizer block into a fixed-size frame, which is necessary for the downstream
processing. The second output of the block is a Boolean scalar indicating if the first output is a valid
frame with the desired header and if so, enables the Data Decoding subsystem to run.

Data Decoding

The Data Decoding enabled subsystem performs phase ambiguity resolution, demodulation and text
message decoding. The Carrier Synchronizer block may lock to the unmodulated carrier with a
phase shift of 0, 90, 180, or 270 degrees, which can cause a phase ambiguity. For details of phase
ambiguity and its resolution, please refer to Chapter 7.2.2 and 7.7 in [1]. The Phase Offset
Estimator subsystem determines this phase shift. The Phase Ambiguity Correction &
Demodulation subsystem rotates the input signal by the estimated phase offset and demodulates the
corrected data. The payload bits are descrambled, and printed out to the Simulink Diagnostic Viewer
at the end of the simulation.

 QPSK Transmitter and Receiver in Simulink

1-297

Results and Displays

When you run the simulation, it displays bit error rate and numerous graphical results.

These following scopes illustrate the spectrum of the received signal before and after filtering, as well
as the signal constellation after filtering, after timing recovery and after fine frequency
compensation.

1 Communications Toolbox Featured Examples

1-298

In the following are the constellation diagrams at the output of the Symbol Synchronizer and
Carrier Synchronizer blocks respectively.

Exploring the Example

The example allows you to experiment with multiple system capabilities to examine their effect on bit
error rate performance. For example, you can view the effect of changing the frequency offset, delay
type and on the various displays.

This example models a static frequency offset. In practice, the frequency offset might vary over time.
This model can still track a time-varying frequency drift via the Coarse Frequency Compensation
subsystem. If the actual frequency offset exceeds the maximum frequency offset that can be tracked
by the current coarse frequency compensation subsystem, you can increase its tracking range by
increasing the oversampling factor. Alternatively, you can change the algorithm from correlation-
based to FFT-based, in the Model Parameters block. The FFT-based algorithm performs better than
the correlation-based algorithm at low Eb/No.

 QPSK Transmitter and Receiver in Simulink

1-299

You can also tune the Normalized loop bandwidth and Damping factor parameters of the Symbol
Synchronizer and Carrier Synchronizer blocks, to assess their convergence time and estimation
accuracy. In addition, you can assess the pull-in range of the Carrier Synchronizer block. With a
large Normalized loop bandwidth and Damping factor, the PLL can acquire over a greater frequency
offset range. However a large Normalized loop bandwidth allows more noise, which leads to a large
mean squared error in the phase estimation. "Underdamped systems (with Damping Factor less than
one) have a fast settling time, but exhibit overshoot and oscillation; overdamped systems (with
Damping Factor greater than one) have a slow settling time but no oscillations." [1]. For more detail
on the design of these PLL parameters, you can refer to Appendix C in [1].

References

1. Michael Rice, "Digital Communications - A Discrete-Time Approach", Prentice Hall, April 2008.

1 Communications Toolbox Featured Examples

1-300

Raised Cosine Filtering

This example shows the intersymbol interference (ISI) rejection capability of the raised cosine filter,
and how to split the raised cosine filtering between transmitter and receiver, using raised cosine
transmit and receive filter System objects.

Raised Cosine Filter Specifications

The main parameter of a raised cosine filter is its roll-off factor, which indirectly specifies the
bandwidth of the filter. Ideal raised cosine filters have an infinite number of taps. Therefore, practical
raised cosine filters are windowed. The window length is controlled using the
FilterSpanInSymbols property. In this example, we specify the window length as six symbol
durations because the filter spans six symbol durations. Such a filter also has a group delay of three
symbol durations. Raised cosine filters are used for pulse shaping, where the signal is upsampled.
Therefore, we also need to specify the upsampling factor. The following is a list of parameters used to
design the raised cosine filter for this example.

Nsym = 6; % Filter span in symbol durations
beta = 0.5; % Roll-off factor
sampsPerSym = 8; % Upsampling factor

We use a raised cosine transmit filter System object™ and set its properties to obtain the desired
filter characteristics. We also use fvtool to visualize filter characteristics.

rctFilt = comm.RaisedCosineTransmitFilter(...
 'Shape','Normal', ...
 'RolloffFactor',beta, ...
 'FilterSpanInSymbols',Nsym, ...
 'OutputSamplesPerSymbol',sampsPerSym)

rctFilt =
 comm.RaisedCosineTransmitFilter with properties:

 Shape: 'Normal'
 RolloffFactor: 0.5000
 FilterSpanInSymbols: 6
 OutputSamplesPerSymbol: 8
 Gain: 1

% Visualize the impulse response
fvtool(rctFilt,'Analysis','impulse')

 Raised Cosine Filtering

1-301

This object designs a direct-form polyphase FIR filter with unit energy. The filter has an order of
Nsym*sampsPerSym, or Nsym*sampsPerSym+1 taps. You can utilize the Gain property to normalize
the filter coefficients so that the filtered and unfiltered data matches when overlayed.

% Normalize to obtain maximum filter tap value of 1
b = coeffs(rctFilt);
rctFilt.Gain = 1/max(b.Numerator);

% Visualize the impulse response
fvtool(rctFilt,'Analysis','impulse')

1 Communications Toolbox Featured Examples

1-302

Pulse Shaping with Raised Cosine Filters

We generate a bipolar data sequence. We use the raised cosine filter to shape the waveform without
introducing ISI.

% Parameters
DataL = 20; % Data length in symbols
R = 1000; % Data rate
Fs = R * sampsPerSym; % Sampling frequency

% Create a local random stream to be used by random number generators for
% repeatability
hStr = RandStream('mt19937ar','Seed',0);

% Generate random data
x = 2*randi(hStr,[0 1],DataL,1)-1;
% Time vector sampled at symbol rate in milliseconds
tx = 1000 * (0: DataL - 1) / R;

The plot compares the digital data and the interpolated signal. It is difficult to compare the two
signals because the peak response of the filter is delayed by the group delay of the filter (Nsym/
(2*R)). Note that we append Nsym/2 zeros at the end of input x to flush all the useful samples out of
the filter.

% Filter
yo = rctFilt([x; zeros(Nsym/2,1)]);
% Time vector sampled at sampling frequency in milliseconds

 Raised Cosine Filtering

1-303

to = 1000 * (0: (DataL+Nsym/2)*sampsPerSym - 1) / Fs;
% Plot data
fig1 = figure;
stem(tx, x, 'kx'); hold on;
% Plot filtered data
plot(to, yo, 'b-'); hold off;
% Set axes and labels
axis([0 30 -1.7 1.7]); xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Upsampled Data','Location','southeast')

This step compensates for the raised cosine filter group delay by delaying the input signal. Now it is
easy to see how the raised cosine filter upsamples and filters the signal. The filtered signal is
identical to the delayed input signal at the input sample times. This shows the raised cosine filter
capability to band-limit the signal while avoiding ISI.

% Filter group delay, since raised cosine filter is linear phase and
% symmetric.
fltDelay = Nsym / (2*R);
% Correct for propagation delay by removing filter transients
yo = yo(fltDelay*Fs+1:end);
to = 1000 * (0: DataL*sampsPerSym - 1) / Fs;
% Plot data.
stem(tx, x, 'kx'); hold on;
% Plot filtered data.
plot(to, yo, 'b-'); hold off;
% Set axes and labels.
axis([0 25 -1.7 1.7]); xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Upsampled Data','Location','southeast')

1 Communications Toolbox Featured Examples

1-304

Roll-off Factor

This step shows the effect that changing the roll-off factor from .5 (blue curve) to .2 (red curve) has
on the resulting filtered output. The lower value for roll-off causes the filter to have a narrower
transition band causing the filtered signal overshoot to be greater for the red curve than for the blue
curve.

% Set roll-off factor to 0.2
rctFilt2 = comm.RaisedCosineTransmitFilter(...
 'Shape', 'Normal', ...
 'RolloffFactor', 0.2, ...
 'FilterSpanInSymbols', Nsym, ...
 'OutputSamplesPerSymbol', sampsPerSym);
% Normalize filter
b = coeffs(rctFilt2);
rctFilt2.Gain = 1/max(b.Numerator);
% Filter
yo1 = rctFilt2([x; zeros(Nsym/2,1)]);
% Correct for propagation delay by removing filter transients
yo1 = yo1(fltDelay*Fs+1:end);
% Plot data
stem(tx, x, 'kx'); hold on;
% Plot filtered data
plot(to, yo, 'b-',to, yo1, 'r-'); hold off;
% Set axes and labels
axis([0 25 -2 2]); xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','beta = 0.5','beta = 0.2',...
 'Location','southeast')

 Raised Cosine Filtering

1-305

Square-Root Raised Cosine Filters

A typical use of raised cosine filtering is to split the filtering between transmitter and receiver. Both
transmitter and receiver employ square-root raised cosine filters. The combination of transmitter and
receiver filters is a raised cosine filter, which results in minimum ISI. We specify a square-root raised
cosine filter by setting the shape as 'Square root'.

% Design raised cosine filter with given order in symbols
rctFilt3 = comm.RaisedCosineTransmitFilter(...
 'Shape', 'Square root', ...
 'RolloffFactor', beta, ...
 'FilterSpanInSymbols', Nsym, ...
 'OutputSamplesPerSymbol', sampsPerSym);

The data stream is upsampled and filtered at the transmitter using the designed filter. This plot shows
the transmitted signal when filtered using the square-root raised cosine filter.

% Upsample and filter.
yc = rctFilt3([x; zeros(Nsym/2,1)]);
% Correct for propagation delay by removing filter transients
yc = yc(fltDelay*Fs+1:end);
% Plot data.
stem(tx, x, 'kx'); hold on;
% Plot filtered data.
plot(to, yc, 'm-'); hold off;
% Set axes and labels.
axis([0 25 -1.7 1.7]); xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Sqrt. Raised Cosine','Location','southeast')

1 Communications Toolbox Featured Examples

1-306

The transmitted signal (magenta curve) is then filtered at the receiver. We did not decimate the filter
output to show the full waveform. The default unit energy normalization ensures that the gain of the
combination of the transmit and receive filters is the same as the gain of a normalized raised cosine
filter. The filtered received signal, which is virtually identical to the signal filtered using a single
raised cosine filter, is depicted by the blue curve at the receiver.

% Design and normalize filter.
rcrFilt = comm.RaisedCosineReceiveFilter(...
 'Shape', 'Square root', ...
 'RolloffFactor', beta, ...
 'FilterSpanInSymbols', Nsym, ...
 'InputSamplesPerSymbol', sampsPerSym, ...
 'DecimationFactor', 1);
% Filter at the receiver.
yr = rcrFilt([yc; zeros(Nsym*sampsPerSym/2, 1)]);
% Correct for propagation delay by removing filter transients
yr = yr(fltDelay*Fs+1:end);
% Plot data.
stem(tx, x, 'kx'); hold on;
% Plot filtered data.
plot(to, yr, 'b-',to, yo, 'm:'); hold off;
% Set axes and labels.
axis([0 25 -1.7 1.7]); xlabel('Time (ms)'); ylabel('Amplitude');
legend('Transmitted Data','Rcv Filter Output', ...
 'Raised Cosine Filter Output','Location','southeast')

 Raised Cosine Filtering

1-307

Computational Cost

In the following table, we compare the computational cost of a polyphase FIR interpolation filter and
polyphase FIR decimation filter.

C1 = cost(rctFilt3);
C2 = cost(rcrFilt);

--
 Implementation Cost Comparison
--
 Multipliers Adders Mult/Symbol Add/Symbol
Multirate Interpolator 49 41 49 41
Multirate Decimator 49 48 6.125 6

1 Communications Toolbox Featured Examples

1-308

CORDIC-Based QPSK Carrier Synchronization

This model shows the use of a CORDIC (COordinate Rotation DIgital Computer) rotation algorithm in
a digital PLL (Phase Locked Loop) implementation for QPSK carrier synchronization. Fixed-Point
Designer™ is needed to run this model.

Introduction

The structure of a digital PLL is essentially equivalent to that of a continuous-time PLL. A PLL has the
following components: a phase error detector (PED), a loop filter, and a controlled oscillator.

In the case of QPSK carrier (phase and frequency) synchronization, implementing the loop filter as a
digital P+I (proportional-plus-integrator) filter produces a second order PLL. The controlled oscillator
(Phase Accumulator) adjusts the angle of the received QPSK signal via a complex rotation.

You can implement the complex rotation using a variety of approaches, including direct complex
multiplication by exp(j*theta). However, such an implementation can be relatively expensive in
terms of hardware (e.g., FPGA or ASIC) resources. An alternative approach uses a CORDIC-based
rotation algorithm to implement the complex multiplication. This example uses this approach, via the
Fixed-Point Designer™ CORDICROTATE function. This results in a multiplier-less complex rotation
approximation, where the trade-off is in terms of speed. A small number of CORDIC iterations may
often be enough to achieve a good digital PLL response, without the full hardware resource cost of a
true complex multiplication.

 CORDIC-Based QPSK Carrier Synchronization

1-309

Structure of the Example

1 Communications Toolbox Featured Examples

1-310

Tx Data Source

The PN Sequence Generator library block from the Communications Toolbox™ is the Tx Data
Source, generating unsigned 2-bit integer symbols.

QPSK Modulator

The QPSK Modulator Baseband library block from the Communications Toolbox uses a pi/4 phase
offset and binary ordering to compute signed 12-bit fixed-point modulator output values.

Raised Cosine Tx Filter

The Raised Cosine Transmit Filter library block from the Communications Toolbox performs
square root FIR filtering with an upsampling factor of 8.

Transmitter Impairments

The Phase/Frequency Offset library block from the Communications Toolbox simulates the
associated transmitter impairments. You can tune the Phase offset and Frequency offset
parameter values to see the effect on the PLL Phase Error time scope and the receive signal
scatter plot displays.

AWGN Channel

The AWGN Channel library block from the Communications Toolbox simulates a noisy channel. You
can tune the block Eb/No parameter to see the effect on the PLL Phase Error time scope and the
receive signal scatter plot displays.

Raised Cosine Rx Filter

The Raised Cosine Receive Filter library block from the Communications Toolbox performs
square root FIR filtering with a downsampling factor of 8.

 CORDIC-Based QPSK Carrier Synchronization

1-311

CORDIC-Based PLL Subsystem

The CORDIC-Based PLL subsystem consists of a Phase Error Detector (PED), P+I Loop
Filter, Phase Accumulator, and CORDICROTATE to form the corrected complex signal output
values.

CORDIC-Based PLL

Phase Error Detector

The Phase Error Detector is implemented using a MATLAB® function.

1 Communications Toolbox Featured Examples

1-312

P+I Loop Filter

A P+I Loop Filter implements a second order PLL. The loop constants K1 (P gain) and K2 (I gain)
are derived from the Normalized loop bandwidth and Damping factor parameters of the
masked CORDIC-Based PLL subsystem.

 CORDIC-Based QPSK Carrier Synchronization

1-313

Phase Accumulator

The Phase Accumulator computes the angle Theta.

CORDICROTATE

The MATLAB function CORDICROTATE rotates the complex received signal by Theta using an
iterative, multiplier-less, CORDIC-based algorithm.

1 Communications Toolbox Featured Examples

1-314

Results and Displays

Phase Error

Use the Phase Error time scope block to view the time-varying PLL Phase Error Detector
output values.

 CORDIC-Based QPSK Carrier Synchronization

1-315

Scatter Plots

1 Communications Toolbox Featured Examples

1-316

Use the Before Carrier Synchronization and After Carrier Synchronization scope
blocks to observe the effects of tuning the Transmitter Impairments and AWGN Channel
parameters.

 CORDIC-Based QPSK Carrier Synchronization

1-317

Experimenting with the Example

Transmitter Impairments

To see the effects of transmitter phase and frequency offset impairments, change the Phase offset
and Frequency offset parameter values while the model is running. Set the model StopTime to
inf and use the PLL Enable/Disable switch to observe changes in the transient response.

AWGN Channel

To see the effects of a noisy channel, change the Eb/No parameter value while the model is running.
Set the model StopTime to inf and use the PLL Enable/Disable switch to observe changes in the
transient response.

CORDIC-Based PLL

Vary the PLL Normalized loop bandwidth and Damping factor parameters to tune the
underlying P+I Loop Filter behavior while the model is running. Set the model StopTime to inf
and use the PLL Enable/Disable switch to observe changes in the transient response.

Note that the phase-locked QPSK receive signal output contains phase ambiguity. For further analysis
(e.g., symbol error rate computations), this phase ambiguity may be resolved using one of a number
of well known methods, including known training (preamble) signals, varying demodulator phase
offsets, constellation re-ordering, etc.

Selected Bibliography

Rice, Michael, "Discrete-Time Phase Locked Loops", Digital Communications: A Discrete-Time
Approach, Appendix C, Sec. C.3, Pearson Prentice Hall, 2008.

Andraka, Ray, "A survey of CORDIC algorithm for FPGA based computers", Proceedings of the
1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, 191 -
200, Feb. 22-24, 1998.

1 Communications Toolbox Featured Examples

1-318

Volder, Jack E., "The CORDIC Trigonometric Computing Technique", IRE Transactions on
Electronic Computers, Volume EC-8, 330 - 334, September 1959.

 CORDIC-Based QPSK Carrier Synchronization

1-319

Defense Communications: US MIL-STD-188-110A Receiver

This model shows a communications system compliant with the U. S. MIL-STD-188-110A military
standard. In particular, the model implements a full receiver that demodulates and outputs a text
message, which was modulated by a reference transmitter and captured with data acquisition
equipment. This model supports a 1200 bps data rate. It also implements an interleaver length of 0.6
s.

The system described in this standard is intended for long-haul and tactical communications over HF
(high frequency) channels. The system is compatible with the NATO standard STANAG 4539.

Structure of the Example

This example consists of the following pieces, further described in the sections below:

• Acquired Passband Waveform - Outputs a bandpass MIL-STD-188-110A waveform centered at
1800 Hz

• Frequency Translator and Channel - Downconverts the signal to complex baseband and
processes it with a choice of channels

• Receiver - Performs synchronization and baseband processing, and outputs a text message

Acquired Passband Waveform

The Acquired Passband Waveform subsystem uses a MATLAB® workspace variable to stream as
an output. This variable represents data that has been generated by a standard-compliant transmitter
and captured with data acquisition equipment. The nominal sample rate of the A/D is 9600 sps, but
the actual A/D sampling rate is somewhat offset from that value, resulting in a symbol timing
frequency offset.

1 Communications Toolbox Featured Examples

1-320

Frequency Translator and Channel

This subsystem performs ideal downconversion to complex baseband, then processes the input signal
with a choice of four successively degraded channels:

• a noiseless channel
• an AWGN channel
• a static frequency selective channel plus AWGN
• a fading frequency selective channel plus AWGN

The fading frequency selective channel is implemented by the SISO Fading Channel library block.

The use of multiple channels allows you to investigate their effects on receiver performance,
especially that of the symbol synchronization blocks. The noiseless channel most effectively isolates
the operation of the receiver, and the AWGN-only and static frequency selective channels show a
graceful degradation in performance. The fading frequency selective channel models the moderate
Watterson channel described in [2].

Receiver

The MIL-STD-188-110A receiver consists of four subsystems:

• RRC Filter and AGC
• Preamble Detect to Enable Downstream Processing
• Carrier Recovery, Timing Recovery, and Equalization
• Demodulation and Error Correction

The RRC Filter and AGC subsystem performs square root raised cosine filtering on the received
signal, providing matched filtering for the transmitted waveform. The AGC ensures that the average
signal power into the equalizer is 1 watt. This operation ensures that the constellation of the
equalizer input signal is most closely matched to the ideal constellation against which it makes
symbol decisions.

The Preamble Detect to Enable Downstream Processing subsystem performs a correlation on the
known 0.6 sec synchronization preamble, which consists of three virtually identical 0.2 sec data
segments. It detects three consecutive correlation peaks at 0.2, 0.4, and 0.6 sec in order to declare
preamble detection. Once the preamble is detected, the subsystem sends a control signal to turn on
the downstream processing, including: carrier recovery, timing recovery, equalization, demodulation,
and error correction. The three consecutive peaks are detected with the Stateflow® state machine
shown below. The block diagram shows the state machine in context with the preamble correlator,
and the state machine is below the block diagram.

 Defense Communications: US MIL-STD-188-110A Receiver

1-321

The Carrier Recovery, Timing Recovery, and Equalization subsystem uses a switchable NCO to
generate a compensating sinusoid to remove the relatively constant carrier frequency offset. The
NCO control signal is generated by estimating the phase error between the output of the RLS
equalizer and its input. The RLS equalizer is implemented by the Decision Feedback Equalizer library
block. The estimation is performed by computing the cross-spectrum between the equalizer input and
its output, and performing a linear least squares fit on the resulting phase characteristic. The phase
error is then filtered by a proportional-integral (PI) controller and fed to the carrier recovery NCO.

To compensate for the timing frequency error inherent in the acquired waveform, the Carrier
Recovery, Timing Recovery, and Equalization subsystem uses a switchable timing control unit to
generate a fractional delay value and a symbol clock. The fractional delay value is used to drive a
variable delay block that uses a Farrow filter structure to interpolate its input. The variable delay is
implemented by the Variable Fractional Delay library block.

The symbol clock, which runs at 9600 sps, is used to downsample the input signal, which is
oversampled by four, down to the symbol rate of 2400 sym/sec. The clock typically goes high every
four samples, but because of the timing frequency offset, it periodically goes high every five samples.
The clock drives a rebuffering operation that creates symbol-spaced data in frames 40 samples long.
These frames are ideally suited for processing by the RLS equalizer, since it has 40 taps. The
rebuffering occurs in the Carrier Recovery, Timing Recovery, and Equalization -> Equalize and
Re-Buffer subsystem. This subsystem also generates a frame clock that enables the RLS equalizer.
This frame clock also runs at the oversampled rate of 9600 sps, but goes high nominally every 160
samples. Because of the timing frequency offset, it periodically goes high every 161 samples.

The pattern of using a high rate clock to drive a lower rate processing system can be used liberally in
communications receiver designs. This pattern is shown in a more fundamental form in the DSP
System Toolbox™ example “WWV Digital Receiver - Synchronization and Detection”. The Carrier

1 Communications Toolbox Featured Examples

1-322

Recovery, Timing Recovery, and Equalization -> Equalize and Re-Buffer subsystem is shown
below:

The time delay incurred by the RLS equalizer is estimated once again by a cross-spectral technique,
and is used to drive the NCO of the timing control unit. A linear least squares fit is made to the phase
characteristic of the cross spectrum between the equalizer input and its output. The slope of this
phase estimates the delay induced by the equalizer.

The Decision Feedback Equalizer block is configured to use the RLS algorithm' and has 20
feedforward and 20 feedback taps. A DFE structure is necessary because of the deep spectral nulls
induced by the Watterson channel. The quickly converging RLS weight update algorithm is needed to
combat the rapid fading of the Watterson channel. Half the data that the equalizer processes is
training data. This large percentage of training data is necessary because of the rapidly fluctuating
HF channel. Once the training data is discarded, the equalizer output rate is nominally 1200 sps.
Also, the equalizer subsystem performs descrambling to undo the scrambling performed by the
transmitter.

The Equalize and Re-Buffer subsystem also generates a frame clock to enable the downstream
processing performed in the Demodulation and Error Correction subsystem. The data into that
downstream subsystem is packaged in frames of 720 samples long, which corresponds to a time
duration of 0.6 sec. This second frame clock, as with the first one, also runs at the oversampled rate
of 9600 sps, but goes high nominally every 5760 samples. However, due to the previous
downsampling by four to derive symbol-rate data, and the effective downsampling by two from
discarding equalizer training data, the clock triggers roughly every 5760 / 8 = 720 samples. However,
because of the timing frequency offset, the clock actually goes high either every 5762 or every 5763
samples.

The Demodulation and Error Correction subsystem performs the following functions:

 Defense Communications: US MIL-STD-188-110A Receiver

1-323

• Symbol extraction via QPSK demodulation
• Modified Gray encoding
• Block deinterleaving
• Viterbi decoding of the rate 1/2, constraint length 7 convolutional code
• Byte error rate calculations
• End-of-message detection
• Printing of the text message that drove the transmitter

Results and Displays

When you run the simulation, it displays these numerical or graphical results:

• The byte error rate
• The power spectrum of the channel output
• The estimate of the cross-spectral phase between the equalizer input and its output
• The control signal used to drive the Farrow fractional delay
• A scatter plot of the equalizer input
• A scatter plot of the equalizer output
• A scatter plot of the descrambler output
• A window showing the demodulated, decoded text message

These plots are shown below, starting with the channel output power spectrum.

Below is the estimate of the cross-spectral phase between the equalizer input and its output.

1 Communications Toolbox Featured Examples

1-324

Below is the control signal used to drive the Farrow fractional delay.

Below is the scatter plot of the equalizer input.

 Defense Communications: US MIL-STD-188-110A Receiver

1-325

Below is the scatter plot of the equalizer output.

Below is the scatter plot of the descrambler output. Note that the 8PSK constellation has been
collapsed to a QPSK constellation, per the MIL-STD-188-110A spec for this data rate.

1 Communications Toolbox Featured Examples

1-326

Below is an excerpt from the demodulated message, which is taken from the MIL-STD-188-110a
standard [1].

Exploring the Example

The example allows you to experiment with multiple system capabilities to examine their effect on
byte error rate performance. For instance, you can view the effect of changing the channel model on
the various displays. In particular, when you select the fading frequency selective channel, the
channel phase estimate, the Farrow control signal, and the scatter plot displays are all noticeably
degraded.

You can also enable or disable the timing control unit and the Farrow fractional delay. When the
timing control unit is disabled, the demodulation operates properly for a time, but eventually the
symbol timing frequency offset exceeds the length of the equalizer, which can no longer compensate
for the delay. At that point, the demodulation process breaks down completely. When the Farrow
fractional delay is disabled, and the timing control unit is enabled, the effect is more nuanced.
However, in that case you can see the scatter plots flicker when the symbol timing crosses a symbol
boundary. This is most easily seen in the noiseless case.

Take note of the quality of the demodulated message in the MATLAB figure window. For successively
degraded channel and/or receiver configurations, the demodulated message becomes progressively
more unreadable.

To generate executable code for this model, you will need to disable the display of the text message,
via the Model Parameters subsystem. The block that performs the text printing is implemented with
the Interpreted MATLAB Function block, which does not generate code.

Selected Bibliography

[1] MIL-STD-188-110B: Interoperability and Performance Standards for Data Modems, U. S.
Department of Defense, 2000. (A superset of the MIL-STD-188-110A standard)

 Defense Communications: US MIL-STD-188-110A Receiver

1-327

[2] ITU-R Recommendation 520-2: Use of High Frequency Ionospheric Channel Simulators,
1978/1982/1992.

See Also

The “Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link” on page 1-424
example shows both a MIL-STD-188-110B transmitter and receiver, without the synchronization
operations. It also enables a flexible choice of data rates, whereas this example has a fixed data rate
of 1200 bps.

1 Communications Toolbox Featured Examples

1-328

cdma2000 Waveform Generation

This example shows how to generate standard-compliant forward (downlink) and reverse (uplink)
cdma2000® waveforms using the Communications Toolbox™.

Introduction

The Communications Toolbox can be used to generate preset or customized standard-compliant
forward and reverse cdma2000 waveforms. Specifically, the following channels are supported:

Forward cdma2000:

• Forward Pilot Channel (F-PICH)
• Forward Auxiliary Pilot Channel (F-APICH)
• Forward Transmit Diversity Pilot Channel (F-TDPICH)
• Forward Auxiliary Transmit Diversity Pilot Channel (F-ATDPICH)
• Forward Sync Channel (F-SYNC)
• Forward Paging Channel (F-PCH)
• Forward Quick Paging Channel (F-QPCH)
• Forward Broadcast Control Channel (F-BCCH)
• Forward Common Control Channel (F-CCCH)
• Forward Dedicated Control Channel (F-DCCH)
• Forward Common Power Control Channel (F-CPCCH)
• Forward Fundamental Traffic Channel (F-FCH), including Power Control Subchannel
• Forward Supplemental Code Channel (F-SCCH)
• Forward Supplemental Channel (F-SCH)
• Forward Packet Data Common Control Channel (F-PDCCH)
• Forward Orthogonal Channel Noise (F-OCNS)

Reverse cdma2000:

• Reverse Pilot Channel (R-PICH), including Power Control Subchannel
• Reverse Access Channel (R-ACH)
• Reverse Enhanced Access Channel (R-EACH)
• Reverse Common Control Channel (R-CCCH)
• Reverse Dedicated Control Channel (R-DCCH)
• Reverse Fundamental Traffic Channel (R-FCH)
• Reverse Supplemental Code Channel (R-SCCH)
• Reverse Supplemental Channel (R-SCH)

The generated waveforms can be used for the following applications:

• Golden reference for transmitter implementations
• Receiver testing and algorithm development

 cdma2000 Waveform Generation

1-329

• Testing RF hardware and software
• Interference testing

Waveform Generation Techniques

• Waveforms can be generated using the cdma2000ForwardWaveformGenerator and
cdma2000ReverseWaveformGenerator functions. The input of these functions is a structure
containing top-level waveform parameters as well as substructures containing channel-specific
parameters. This example will illustrate how such structures can be constructed from scratch.

• Preset structure configurations can be created using the
cdma2000ForwardReferenceChannels and cdma2000ReverseReferenceChannels
functions. Such preset configurations can represent common Test and Measurement scenarios or
provide a good starting point (wizard) for customizing a waveform configuration.

Generation of Preset-driven Forward and Reverse cdma2000 Waveforms

The preset structure configurations can then be passed to the waveform generation functions. For
example, the following commands generate all forward and reverse channels allowable for Radio
Configuration 4:

forwardPresetConfig = cdma2000ForwardReferenceChannels('ALL-RC4');
forwardPresetWaveform = cdma2000ForwardWaveformGenerator(forwardPresetConfig);

reversePresetConfig = cdma2000ReverseReferenceChannels('ALL-RC4');
reversePresetWaveform = cdma2000ReverseWaveformGenerator(reversePresetConfig);

Generation of a Forward cdma2000 Waveform Using Full Parameter List

Next, we illustrate the creation of equivalent configuration structures from scratch (for forward
cdma2000). This is also useful for customizing the preset configurations.

fManualConfig.SpreadingRate = 'SR1'; % Spreading Rate 1 or 3
fManualConfig.Diversity = 'NTD'; % No Transmit Diversity (other options are 'OTD', 'STS')
fManualConfig.QOF = 'QOF1'; % Quasi-orthogonal function 1, 2 or 3
fManualConfig.PNOffset = 0; % PN offset of Base station
fManualConfig.LongCodeState = 0; % Initial long code state
fManualConfig.PowerNormalization = 'Off'; % Power normalization: 'Off', 'NormalizeTo0dB' or 'NoiseFillTo0dB'
fManualConfig.OversamplingRatio = 4; % Upsampling factor
fManualConfig.FilterType = 'cdma2000Long'; % Filter coefficients: 'cdma2000Long', 'cdma2000Short', 'Custom' or 'Off'
fManualConfig.InvertQ = 'Off'; % Negate the imaginary part of the waveform
fManualConfig.EnableModulation = 'Off'; % Enable carrier modulation
fManualConfig.ModulationFrequency = 0; % Modulation frequency (Hz)
fManualConfig.NumChips = 1000; % Number of chips in the waveform

fpich.Enable = 'On'; % Enable the F-PICH channel
fpich.Power = 0; % Relative channel power (dBW)
fManualConfig.FPICH = fpich; % Add the channel to the waveform configuration

fapich.Enable = 'On'; % Enable the F-APICH channel
fapich.Power = 0; % Relative channel power (dBW)
fapich.WalshCode = 10; % Unique Walsh code number
fapich.WalshLength = 64; % Walsh code length
fManualConfig.FAPICH = fapich; % Add the channel to the waveform configuration

ftdpich.Enable = 'On'; % Enable the F-TDPICH channel
ftdpich.Power = 0; % Relative channel power (dBW)

1 Communications Toolbox Featured Examples

1-330

fManualConfig.FTDPICH = ftdpich; % Add the channel to the waveform configuration

fatdpich.Enable = 'On'; % Enable the F-ATDPICH channel
fatdpich.Power = 0; % Relative channel power (dBW)
fatdpich.WalshCode = 11; % Unique Walsh code number
fatdpich.WalshLength = 64; % Walsh code length
fManualConfig.FATDPICH = fatdpich; % Add the channel to the waveform configuration

fpch.Enable = 'On'; % Enable the F-PCH channel
fpch.Power = 0; % Relative channel power (dBW)
fpch.LongCodeMask = 0; % Long code mask
fpch.DataRate = 4800; % Data rate (bps)
fpch.EnableCoding = 'On'; % Enable channel coding
fpch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fpch.WalshCode = 1; % Unique Walsh code number
fManualConfig.FPCH = fpch; % Add the channel to the waveform configuration

fsync.Enable = 'On'; % Enable the F-SYNC channel
fsync.Power = 0; % Relative channel power (dBW)
fsync.EnableCoding = 'On'; % Enable channel coding
fsync.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed}, numerical vector or 'SyncMessage'
fManualConfig.FSYNC = fsync; % Add the channel to the waveform configuration

fbcch.Enable = 'On'; % Enable the F-BCCH channel
fbcch.Power = 0; % Relative channel power (dBW)
fbcch.LongCodeMask = 0; % Long code mask
fbcch.DataRate = 4800; % Data rate (bps)
fbcch.FrameLength = 160; % Frame length (ms)
fbcch.EnableCoding = 'On'; % Enable channel coding
fbcch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fbcch.WalshCode = 2; % Unique Walsh code number
fbcch.CodingType = 'conv'; % Coding type: 'conv' or 'turbo'
fManualConfig.FBCCH = fbcch; % Add the channel to the waveform configuration

fcach.Enable = 'On'; % Enable the F-CACH channel
fcach.Power = 0; % Relative channel power (dBW)
fcach.LongCodeMask = 0; % Long code mask
fcach.EnableCoding = 'On'; % Enable channel coding
fcach.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fcach.WalshCode = 3; % Unique Walsh code number
fcach.CodingType = 'conv'; % Coding type: 'conv' or 'turbo'
fManualConfig.FCACH = fcach; % Add the channel to the waveform configuration

fccch.Enable = 'On'; % Enable the F-CCCH channel
fccch.Power = 0; % Relative channel power (dBW)
fccch.LongCodeMask = 0; % Long code mask
fccch.DataRate = 9600; % Data rate (bps)
fccch.FrameLength = 20; % Frame length (ms)
fccch.EnableCoding = 'On'; % Enable channel coding
fccch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fccch.WalshCode = 4; % Unique Walsh code number
fccch.CodingType = 'conv'; % Coding type: 'conv' or 'turbo'
fManualConfig.FCCCH = fccch; % Add the channel to the waveform configuration

fcpcch.Enable = 'On'; % Enable the F-CPCCH channel
fcpcch.Power = 0; % Relative channel power (dBW)
fcpcch.LongCodeMask = 0; % Long code mask
fcpcch.EnableCoding = 'On'; % Enable channel coding

 cdma2000 Waveform Generation

1-331

fcpcch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fcpcch.WalshCode = 5; % Unique Walsh code number
fManualConfig.FCPCCH = fcpcch; % Add the channel to the waveform configuration

fqpch.Enable = 'On'; % Enable the F-QPCH channel
fqpch.Power = 0; % Relative channel power (dBW)
fqpch.LongCodeMask = 0; % Long code mask
fqpch.DataRate = 2400; % Data rate (bps)
fqpch.EnableCoding = 'On'; % Enable channel coding
fqpch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fqpch.WalshCode = 6; % Unique Walsh code number
fManualConfig.FQPCH = fqpch; % Add the channel to the waveform configuration

ffch.Enable = 'On'; % Enable the F-FCH channel
ffch.Power = 0; % Relative channel power (dBW)
ffch.RadioConfiguration = 'RC4'; % Radio Configuration: 1-9
ffch.DataRate = 9600; % Data rate (bps)
ffch.FrameLength = 20; % Frame length (ms)
ffch.LongCodeMask = 0; % Long code mask
ffch.EnableCoding = 'On'; % Enable channel coding
ffch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
ffch.WalshCode = 7; % Unique Walsh code number
ffch.EnableQOF = 'Off'; % Enable QOF spreading
ffch.PowerControlEnable = 'Off'; % Enable the Power Control Subchannel
fManualConfig.FFCH = ffch; % Add the channel to the waveform configuration

focns.Enable = 'On'; % Enable the F-OCNS channel
focns.Power = -30; % Relative channel power (dBW)
focns.WalshCode = 12; % Unique Walsh code number
focns.WalshLength = 128; % Walsh code length
fManualConfig.FOCNS = focns; % Add the channel to the waveform configuration

fdcch.Enable = 'On'; % Enable the F-DCCH channel
fdcch.Power = 0; % Relative channel power (dBW)
fdcch.RadioConfiguration = 'RC4'; % Radio Configuration: 1-9
fdcch.LongCodeMask = 0; % Long code mask
fdcch.DataRate = 9600; % Data rate (bps)
fdcch.FrameLength = 5; % Frame length (ms)
fdcch.EnableCoding = 'On'; % Enable channel coding
fdcch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fdcch.WalshCode = 8; % Unique Walsh code number
fdcch.EnableQOF = 'off'; % Enable QOF spreading
fManualConfig.FDCCH = fdcch; % Add the channel to the waveform configuration

fsch.Enable = 'On'; % Enable the F-SCH channel
fsch.Power = 0; % Relative channel power (dBW)
fsch.RadioConfiguration = 'RC4'; % Radio Configuration: 1-9
fsch.DataRate = 9600; % Data rate (bps)
fsch.FrameLength = 20; % Frame length (ms)
fsch.LongCodeMask = 0; % Long code mask
fsch.EnableCoding = 'On'; % Enable channel coding
fsch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
fsch.WalshCode = 9; % Unique Walsh code number
fsch.EnableQOF = 'Off'; % Enable QOF spreading
fsch.CodingType = 'conv'; % Coding type: 'conv' or 'turbo'
fManualConfig.FSCH = fsch; % Add the channel to the waveform configuration

forwardManualWaveform = cdma2000ForwardWaveformGenerator(fManualConfig);

1 Communications Toolbox Featured Examples

1-332

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(forwardPresetConfig, fManualConfig))
 disp(['Configuration structures generated with and without the ' ...
 'cdma2000ForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the cdma2000ForwardReferenceChannels function are the same.

Generation of a Reverse cdma2000 Waveform Using Full Parameter List

rManualConfig.RadioConfiguration = 'RC4'; % Radio Configuration: 1-6
rManualConfig.PowerNormalization = 'Off'; % Power normalization: 'Off', 'NormalizeTo0dB' or 'NoiseFillTo0dB'
rManualConfig.OversamplingRatio = 4; % Upsampling factor
rManualConfig.FilterType = 'cdma2000Long'; % Filter coefficients: 'cdma2000Long', 'cdma2000Short', 'Custom' or 'Off'
rManualConfig.InvertQ = 'Off'; % Negate the imaginary part of the waveform
rManualConfig.EnableModulation = 'Off'; % Enable carrier modulation
rManualConfig.ModulationFrequency = 0; % Modulation frequency (Hz)
rManualConfig.NumChips = 1000; % Number of chips in the waveform

rfch.Enable = 'On'; % Enable the R-FCH channel
rfch.Power = 0; % Relative channel power (dBW)
rfch.LongCodeMask = 0; % Long code mask
rfch.EnableCoding = 'On'; % Enable channel coding
rfch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
rfch.DataRate = 14400; % Data rate (bps)
rfch.FrameLength = 20; % Frame length (ms)
rfch.WalshCode = 1; % Unique Walsh code number
rManualConfig.RFCH = rfch; % Add the channel to the waveform configuration

rpich.Enable = 'On'; % Enable the R-PICH channel
rpich.Power = 0; % Relative channel power (dBW)
rpich.LongCodeMask = 0; % Long code mask
rpich.PowerControlEnable = 'Off'; % Enable the Power Control Subchannel
rManualConfig.RPICH = rpich; % Add the channel to the waveform configuration

reach.Enable = 'On'; % Enable the R-EACH channel
reach.Power = 0; % Relative channel power (dBW)
reach.LongCodeMask = 0; % Long code mask
reach.EnableCoding = 'On'; % Enable channel coding
reach.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
reach.DataRate = 9600; % Data rate (bps)
reach.FrameLength = 20; % Frame length (ms)
reach.WalshCode = 2; % Unique Walsh code number
rManualConfig.REACH = reach; % Add the channel to the waveform configuration

rcch.Enable = 'On'; % Enable the R-CCH channel
rcch.Power = 0; % Relative channel power (dBW)
rcch.LongCodeMask = 0; % Long code mask
rcch.EnableCoding = 'On'; % Enable channel coding
rcch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
rcch.DataRate = 9600; % Data rate (bps)
rcch.FrameLength = 20; % Frame length (ms)
rcch.WalshCode = 3; % Unique Walsh code number
rManualConfig.RCCCH = rcch; % Add the channel to the waveform configuration

rdcch.Enable = 'On'; % Enable the R-DCCH channel
rdcch.Power = 0; % Relative channel power (dBW)

 cdma2000 Waveform Generation

1-333

rdcch.LongCodeMask = 0; % Long code mask
rdcch.EnableCoding = 'On'; % Enable channel coding
rdcch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
rdcch.DataRate = 14400; % Data rate (bps)
rdcch.FrameLength = 20; % Frame length (ms)
rdcch.WalshCode = 4; % Unique Walsh code number
rManualConfig.RDCCH = rdcch; % Add the channel to the waveform configuration

rsch1.Enable = 'On'; % Enable the R-SCH1 channel
rsch1.Power = 0; % Relative channel power (dBW)
rsch1.LongCodeMask = 0; % Long code mask
rsch1.EnableCoding = 'On'; % Enable channel coding
rsch1.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
rsch1.DataRate = 14400; % Data rate (bps)
rsch1.FrameLength = 20; % Frame length (ms)
rsch1.WalshLength = 8; % Walsh code length
rsch1.WalshCode = 5; % Unique Walsh code number
rManualConfig.RSCH1 = rsch1; % Add the channel to the waveform configuration

rsch2 = rsch1; % Apply the same settings with R-SCH1
rsch2.WalshCode = 6; % Except for the unique Walsh code number
rManualConfig.RSCH2 = rsch2; % Add the channel to the waveform configuration

reverseManualWaveform = cdma2000ReverseWaveformGenerator(rManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(reversePresetConfig, rManualConfig))
 disp(['Configuration structures generated with and without the ' ...
 'cdma2000ForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the cdma2000ForwardReferenceChannels function are the same.

Waveform Comparison

Compare the waveforms generated using both approaches described above and see that the
generated waveforms are identical

if(isequal(forwardPresetWaveform, forwardManualWaveform))
 disp(['Forward waveforms generated with and without the ' ...
 'cdma2000ForwardReferenceChannels function are the same.']);
end

Forward waveforms generated with and without the cdma2000ForwardReferenceChannels function are the same.

if(isequal(reversePresetWaveform, reverseManualWaveform))
 disp(['Reverse waveforms generated with and without the ' ...
 'cdma2000ReverseReferenceChannels function are the same.']);
end

Reverse waveforms generated with and without the cdma2000ReverseReferenceChannels function are the same.

Customization of Configuration

The configuration structures can be customized in order to create a waveform that better suits your
objective. You can also customize the preset waveforms in order to exploit additional capabilities,
such as:

1 Communications Toolbox Featured Examples

1-334

% 1. Specifying the message of the Sync channel:
fManualConfig2 = fManualConfig;
fsync.Enable = 'On'; % Enable the F-SYNC channel
fsync.Power = 0; % Relative channel power (dBW)
fsync.EnableCoding = 'On'; % Enable channel coding
fsync.DataSource = 'SyncMessage'; % Input message: {'PNX', Seed}, numerical vector or 'SyncMessage'
sm.P_REV = 6; % Protocol Revision field
sm.MIN_P_REV = 6; % Minimum Protocol Revision field
sm.SID = hex2dec('14B'); % System Identifier field
sm.NID = 1; % Network Identification field
sm.PILOT_PN = 0; % Pilot PN Offset field
sm.LC_STATE = hex2dec('20000000000'); % Long Code State field
sm.SYS_TIME = hex2dec('36AE0924C'); % System Time field
sm.LP_SEC = 0; % Leap Second field
sm.LTM_OFF = 0; % Local Time Offset field
sm.DAYLT = 0; % Daylight Savings Time Indicator field
sm.PRAT = 0; % Paging Channel Data Rate field
sm.CDMA_FREQ = hex2dec('2F6'); % CDMA Frequency field
sm.EXT_CDMA_FREQ = hex2dec('2F6'); % Extended CDMA Frequency field
fsync.SyncMessage = sm; % Sync channel message substructure, used if 'SyncMessage' is the data source
fManualConfig2.FSYNC = fsync; % Add the channel to the waveform configuration

% 2. Enabling the Power Control Subchannel of the Forward Fundamental Channel:
ffch.Enable = 'On'; % Enable the F-FCH channel
ffch.Power = 0; % Relative channel power (dBW)
ffch.RadioConfiguration = 'RC4'; % Radio Configuration: 1-9
ffch.DataRate = 9600; % Data rate (bps)
ffch.FrameLength = 20; % Frame length (ms)
ffch.LongCodeMask = 0; % Long code mask
ffch.EnableCoding = 'On'; % Enable channel coding
ffch.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
ffch.WalshCode = 7; % Unique Walsh code number
ffch.EnableQOF = 'Off'; % Enable QOF spreading
ffch.PowerControlEnable = 'On'; % Enable the Power Control Subchannel
ffch.PowerControlPower = 0; % Power control subchannel power (relative to F-FCH)
ffch.PowerControlDataSource = {'PN9',1}; % Power control subchannel data source
fManualConfig2.FFCH = ffch; % Add the channel to the waveform configuration

forwardManualWaveform2 = cdma2000ForwardWaveformGenerator(fManualConfig2);

Plot Spectrum of Forward cdma2000 Waveform

Plot the spectrum of the time domain signal forwardManualWaveform.

chiprate = 1.2288e6; % Chip rate of the baseband waveform (SR1)
fSpectrumPlot = spectrumAnalyzer('SampleRate', chiprate*fManualConfig.OversamplingRatio);
fSpectrumPlot.Title = 'Spectrum of Forward cdma2000 Waveform';
fSpectrumPlot.YLimits = [-160,40];
fSpectrumPlot(forwardManualWaveform);

 cdma2000 Waveform Generation

1-335

Plot Spectrum of Reverse cdma2000 Waveform

Plot the spectrum of the time domain signal reverseManualWaveform.

chiprate = 1.2288e6; % Chip rate of the baseband waveform (SR1)
rSpectrumPlot = spectrumAnalyzer('SampleRate', chiprate*rManualConfig.OversamplingRatio);
rSpectrumPlot.Title = 'Spectrum of Reverse cdma2000 Waveform';
rSpectrumPlot.YLimits = [-160,40];
rSpectrumPlot(reverseManualWaveform);

1 Communications Toolbox Featured Examples

1-336

Selected Bibliography

1 C.S0002-F v2.0: Physical Layer Standard for cdma2000 Spread Spectrum Systems.

 cdma2000 Waveform Generation

1-337

1xEV-DO Waveform Generation

This example shows how to generate standard-compliant forward (downlink) and reverse (uplink)
1xEV-DO waveforms using the Communications Toolbox™.

Introduction

The Communications Toolbox can be used to generate preset or customized standard-compliant
forward and reverse, Release 0 and Revision A 1xEV-DO waveforms.

The generated waveforms can be used for the following applications:

• Golden reference for transmitter implementations
• Receiver testing and algorithm development
• Testing RF hardware and software
• Interference testing

Waveform Generation Techniques

• Waveforms can be generated using the evdoForwardWaveformGenerator and
evdoReverseWaveformGenerator functions. The input of these functions is a structure
containing top-level waveform parameters as well as substructures containing channel- or packet-
specific parameters. This example will illustrate how such structures can be constructed from
scratch.

• Preset structure configurations can be created using the evdoForwardReferenceChannels and
evdoReverseReferenceChannels functions. Such preset configurations can represent common
Test and Measurement scenarios or provide a good starting point (wizard) for customizing a
waveform configuration.

Generation of Preset-driven Forward and Reverse 1xEV-DO Waveforms

The preset structure configurations can then be passed to the waveform generation functions. For
example, the following commands generate Revision A and Release 0 forward and reverse
waveforms, respectively.

numPackets = 10;
forwardPresetConfig = evdoForwardReferenceChannels('RevA-5120-2-64',numPackets);
forwardPresetWaveform = evdoForwardWaveformGenerator(forwardPresetConfig);

reversePresetConfig = evdoReverseReferenceChannels('Rel0-38400',numPackets);
reversePresetWaveform = evdoReverseWaveformGenerator(reversePresetConfig);

Generation of a Forward 1xEV-DO Waveform Using Full Parameter List

Next, we illustrate the creation of equivalent configuration structures from scratch. This is also useful
for customizing the preset configurations.

% Create top-level waveform parameters:
fManualConfig.Release = 'RevisionA'; % 'Release0' or 'RevisionA'
fManualConfig.PNOffset = 0; % PN Offset of the Base station
fManualConfig.IdleSlotsWithControl = 'Off';
fManualConfig.EnableControl = 'On';
fManualConfig.OversamplingRatio = 4; % Upsampling factor

1 Communications Toolbox Featured Examples

1-338

fManualConfig.FilterType = 'cdma2000Long'; % Filter coefficients:'cdma2000Long','cdma2000Short','Custom','Off'
fManualConfig.InvertQ = 'Off'; % Negate the imaginary output
fManualConfig.EnableModulation = 'Off'; % Enable modulation
fManualConfig.ModulationFrequency = 0; % Modulation frequency (Hz)
fManualConfig.NumChips = 41600; % Number of chips in the waveform

% Create a input message source for the packets:
pds.MACIndex = 0; % MAC index associated with data
pds.DataSource = {'PN9', 1}; % Input message: {'PNX', Seed} or numerical vector
pds.EnableCoding = 'On'; % Enable channel coding
fManualConfig.PacketDataSources = pds; % Add the data source specification to the waveform configuration

% Create a single packet:
fPacket.MACIndex = 0; % MAC index associated with this packet
fPacket.PacketSize = 5120; % Packet size options: 128,256,512,1024,2048,4096,5120 bits
fPacket.NumSlots = 2; % Number of slots options: 1,2,4,8,16
fPacket.PreambleLength = 64; % Preamble length options: 64,128,256,512,1024 chips

fManualConfig.PacketSequence = repmat(fPacket,1,numPackets);

% Generate waveform:
forwardManualWaveform = evdoForwardWaveformGenerator(fManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(forwardPresetConfig, fManualConfig))
 disp(['Configuration structures generated with and without the ' ...
 'evdoForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the evdoForwardReferenceChannels function are the same.

Generation of a Reverse 1xEV-DO Waveform Using Full Parameter List

% Create top-level waveform parameters:
rManualConfig.Release = 'Release0'; % 'Release0' or 'RevisionA'
rManualConfig.LongCodeMaskI = 0; % Initial long code mask for I channel
rManualConfig.LongCodeMaskQ = 0; % Initial long code mask for Q channel
rManualConfig.OversamplingRatio = 4; % Upsampling factor
rManualConfig.FilterType = 'cdma2000Long'; % Filter coefficients:'cdma2000Long','cdma2000Short','Custom','Off'
rManualConfig.InvertQ = 'Off'; % Negate the imaginary output
rManualConfig.EnableModulation = 'Off'; % Enable modulation
rManualConfig.ModulationFrequency = 0; % Modulation frequency (Hz)
rManualConfig.NumChips = 327680; % Number of chips in the waveform

% Create a single packet:
rPacket.Power = 0; % Relative channel power (dBW)
rPacket.DataSource = {'PN9',1}; % Input message: {'PNX', Seed} or numerical vector
rPacket.EnableCoding = 'On'; % Enable channel coding
rPacket.DataRate = 38400; % Data rate (bps)

rManualConfig.PacketSequence = repmat(rPacket,1,numPackets);

% Add a Pilot Channel:
pich.Enable = 'On'; % Enable the pilot channel
pich.Power = 0; % Relative channel power (dBW)
pich.DataSource = {'PN9',1}; % Input message: {'PNX', Seed} or numerical vector
pich.EnableCoding = 'On'; % Enable channel coding
rManualConfig.PilotChannel = pich; % Add the channel to the waveform configuration

 1xEV-DO Waveform Generation

1-339

% Add an ACK Channel, but do not enable it:
ach.Enable = 'Off'; % Do not enable the ack channel
ach.Power = 0; % Relative channel power (dBW)
ach.DataSource = {'PN9',1}; % Input message: {'PNX', Seed} or numerical vector
rManualConfig.ACKChannel = ach; % Add the disabled channel specification to the waveform configuration

% Generate waveform:
reverseManualWaveform = evdoReverseWaveformGenerator(rManualConfig);

% Demonstrate that the above two parameterization approaches are equivalent:
if(isequal(reversePresetConfig,rManualConfig))
 disp(['Configuration structures generated with and without the ' ...
 'evdoForwardReferenceChannels function are the same.']);
end

Configuration structures generated with and without the evdoForwardReferenceChannels function are the same.

Waveform Comparison

Compare the waveforms generated using both approaches described above and see that the
generated waveforms are identical.

if(isequal(forwardPresetWaveform,forwardManualWaveform))
 disp(['Forward waveforms generated with and without the ' ...
 'evdoForwardReferenceChannels function are the same.']);
end

Forward waveforms generated with and without the evdoForwardReferenceChannels function are the same.

if(isequal(reversePresetWaveform,reverseManualWaveform))
 disp(['Reverse waveforms generated with and without the ' ...
 'evdoReverseReferenceChannels function are the same.']);
end

Reverse waveforms generated with and without the evdoReverseReferenceChannels function are the same.

Customizing Configurations

The configuration structures can be customized in order to create a waveform that better suits your
objective. For example:

rManualConfig2 = rManualConfig;
rPacket.Power = -10; % Relative channel power (dBW)
rPacket.DataSource = {'PN23',1}; % Input message: {'PNX',Seed} or numerical vector
rPacket.EnableCoding = 'Off'; % Enable channel coding
rPacket.DataRate = 38400; % Data rate (bps)

rManualConfig2.PacketSequence = repmat(rPacket,1,numPackets);

% Regenerate the waveform accounting for the customizations:
reverseManualWaveform2 = evdoReverseWaveformGenerator(rManualConfig2);

Plot Spectrum of Generated 1xEV-DO Waveforms

chiprate = 1.2288e6; % Chip rate of the baseband waveform (SR1)
spectrumPlot = spectrumAnalyzer(...
 SampleRate=chiprate*fManualConfig.OversamplingRatio, ...

1 Communications Toolbox Featured Examples

1-340

 Title='Spectrum of Forward 1xEV-DO Waveform', ...
 YLimits=[-180,40]);
spectrumPlot(forwardManualWaveform);

spectrumPlot2 = spectrumAnalyzer(...
 SampleRate=chiprate*rManualConfig.OversamplingRatio, ...
 Title='Spectrum of Reverse 1xEV-DO Waveform', ...
 YLimits = [-180,40]);
spectrumPlot2(reverseManualWaveform2);

 1xEV-DO Waveform Generation

1-341

Selected Bibliography

1 C.S0024-A v3.0: cdma2000 High Rate Packet Data Air Interface Specification.

1 Communications Toolbox Featured Examples

1-342

cdma2000 Physical Layer in Simulink

This example demonstrates how the Communications Toolbox™ can be used for: (i) working with
standard-compliant cdma2000® waveforms in Simulink® and (ii) building standard-compliant
decoder subsystems. Specifically, the model mainly covers the Forward Fundamental Channel (F-
FCH) of the downlink channel between a base station and a mobile station for radio configuration 3
and spreading rate 1.

Introduction

cdma2000 is a terrestrial radio interface for the third generation of wireless communications
developed within the framework of the International Mobile Telecommunications (IMT)-2000
standard, as defined by the International Telecommunication Union (ITU). The specifications of the
cdma2000 system are being developed by the Third Generation Partnership Project 2 (3GPP2).

The cdma2000 air interface is a direct spread technology. This means that it spreads encoded user
data at a relatively low rate over a much wider bandwidth (1.23 MHz for the 1x case), using a
sequence of pseudo-random units called chips at a much higher rate (1.2288 Mcps). By assigning a
unique code to each user, the receiver, which has knowledge of the code of the intended user, can
successfully separate the desired signal from the received waveform.

Structure of the Example

The key components of the forward cdma2000 physical layer are the transmitting base station, the
channel, and the mobile station (receiver).

• The base station is represented by a standard-compliant forward waveform, which is generated
with the cdma2000ForwardWaveformGenerator function and is imported from the MATLAB®
Workspace.

• The channel can function as a SISO Fading Channel, an AWGN Channel, or as an empty
subsystem.

• The mobile receiver includes the decoder and receiver subsystem, which perform all operations
needed for decoding the standard-compliant waveform.

 cdma2000 Physical Layer in Simulink

1-343

Parameters in the Model

A configuration block labeled "Model Parameters" enables you to configure the generated waveform,
as well as the channel model.

Base Station

For waveform generation, you can customize the data rate, the oversampling ratio, the QOF index
and the Walsh code. Every customization regenerates a standard-compliant waveform in the MATLAB
Workspace. The waveform generation performs the following steps:

• Generating a PN9 bit sequence
• Inserting frame quality indicator bits (CRC)
• Appending tail bits before coding
• Convolutional encoding
• Repetition
• Puncturing
• Block interleaving
• Mapping and scaling
• Spreading by a Walsh code
• Spreading by a QOF (quasi-orthogonal function) mask

1 Communications Toolbox Featured Examples

1-344

• Walsh code rotation
• Quadrature scrambling by a PN (pseudonoise) sequence
• Transmit filtering by an oversampled square root raised cosine filter

Channel

The default channel model includes the effects of both multipath Rayleigh fading and additive white
Gaussian noise. Alternatively, you can use the channel as a source of Gaussian noise only, or as an
empty subsystem. You can configure the channel characteristics using the Model Parameters block in
the top left corner of the model.

Receiver

The most important parts of the receiver subsystem are the Rake receiver and the channel estimator.

Besides these two components,the other receiver operations are straightforward inverses of some
waveform-generation operations.

Decoder

The decoder subsystem conducts the inverse operations of the remaining waveform-generation
operations.

Results and Displays

The BER Calculation component compares the decoded signal with the signal of the data source. BER
equals zero under all possible configurations for waveform generation, assuming no changes have
been made to the model. Notice that signal delay is properly handled and frames are aligned.

To view data graphically, open the scopes by double-clicking the Open Scopes icon. The scopes show
the following information:

• The 'Tx Waveform: Spectrum' scope shows the power spectrum of the generated waveform.

• The 'Tx Waveform: Constellation' scope shows the generated waveform in the I-Q plane. The
transmitted signal seems scattered, as a result of spreading.

 cdma2000 Physical Layer in Simulink

1-345

• The 'From Channel' spectrum scope noticeably illustrates the effects of the channel on the
received signal.

• The 'From Channel' constellation scope shows the I-Q output of the channel. The signal is still
spread.

1 Communications Toolbox Featured Examples

1-346

• The 'After Derotation' constellation scope shows the data after the receiver subsystem has
despread the signal and compensated for the phase rotation caused by the channel. The signal
still suffers from some effects of the multipath fading channel.

• The 'After Rake' constellation scope shows the output of the rake receiver after the rake receiver
has compensated for the attenuation caused by the channel. Even though some bit errors may
exist at this stage, these are later on corrected by a powerful decoding operation.

 cdma2000 Physical Layer in Simulink

1-347

Simulink Techniques Illustrated in the Example

In addition to illustrating a cdma2000 application, this example also illustrates several techniques for
modeling in Simulink. In particular, this example shows how you can:

1. Use the Communications Toolbox extensively to implement wireless systems.

2. Represent the architecture of the design using subsystems.

3. Import signals from the MATLAB Workspace.

4. Reuse and share custom-built blocks using a library. To view the library for this example, double-
click the cdma2000 Library icon in the top right corner of model.

5. Control the parameters of the simulation using a configuration dialog box.

6. Handle end-to-end delays and perform frame alignment.

Selected Bibliography

[1] C.S0002-F v2.0: Physical Layer Standard for cdma2000 Spread Spectrum Systems.

[2] E.G. Tiedemann, "cdma2000 1X: New Capabilities for CDMA Networks," IEEE Vehicular
Technology Society News, vol. 48, no. 4, pp. 4-12, Nov. 2001.

[3] TIA/EIA/IS-2000.2-A, Physical Layer Standard for cdma2000 Spread Spectrum Systems,
Telecommunications Industry Association, Arlington, VA, March 2000.

1 Communications Toolbox Featured Examples

1-348

Near Field Communication (NFC)

This example shows you how to model communication between two Near Field Communication (NFC)
devices.

Introduction

Near Field Communication (NFC) is a standards-based short-range wireless connectivity technology,
designed for intuitive and simple communication between two electronic devices. NFC operates at
13.56 MHz center frequency (Fc), at rates ranging from 106 kbps to 424 kbps, and its typical
operating range is 10 cm or less. NFC always involves an Initiator and a Target - the Initiator actively
generates an electromagnetic field that can power a passive Target.

ISO®/IEC 18092 (Telecommunications and Information Exchange Between Systems - Near Field
Communication - Interface and Protocol), also referred to as NFCIP-1 (Near Field Communication -
Interface and Protocol Specification), is the governing international Standard for NFC. It is based on
ISO/IEC 14443. ISO/IEC 18092 includes two communication modes:

• Passive: The Initiator device generates a carrier field and the Target device answers by
modulating the existing field. In this mode, the Target device draws its operating power from the
Initiator-provided electromagnetic field.

• Active: Both Initiator and Target device communicate by alternately generating their own fields. A
device deactivates its RF field while it is waiting for data. In this mode, both devices typically have
power supplies.

Within the two modes of communication there are three modes of operation defined in ISO/IEC
18092:

• Read/Write: In this mode, the NFC device can read data from or write data to any of the supported
NFC tags (contactless cards) in a standard NFC data format. The applications include reading
information stored in inexpensive NFC tags embedded in labels or smart posters.

• Card Emulation: The NFC device can also act as an NFC tag for other readers. This enables NFC-
enabled devices like smart phones to act like smart cards to perform transactions such as
payments or ticketing.

• Peer-to-Peer: Two NFC devices can exchange data. The applications include sharing a Wi-Fi® or
Bluetooth® link, or exchanging data in the form of virtual business cards and photos.

System Setup

This example illustrates the NFC protocol and commands required to transmit data from an Initiator
to a Target. The passive communication mode is used here whereby the Initiator provides the
electromagnetic field and the Target sends the information back by modulating this field. The Initiator
is operating as a writer and the Target as card emulator or tag. The Initiator and Target use the Type
A air interface defined in ISO/IEC 14443-2 (Identification cards - Contactless integrated circuit cards
- Proximity cards - Part 2: Radio frequency power and signal interface) and are operating at 106 kbps.
The Initiator uses Modified Miller coding with 100% ASK, as shown in the Time scope below. The
Target generates a subcarrier with frequency 847.5 kHz (Fs), via load modulation, using the
Initiator's field and then modulates the data onto the Initiator's carrier frequency using this
subcarrier. The Spectrum Analyzer illustrates the load modulation below. To highlight the subcarrier
at 847.5 kHz, select Tools->Measurements->Peak Finder in the spectrum analyzer window. The
Target uses Manchester coding with 10% ASK as shown in the Time scope below. Note that the time

 Near Field Communication (NFC)

1-349

domain signals shown in the two Time scopes are baseband signals i.e the 13.56 MHz carrier signal is
stripped out.

The nfcInitiator object represents the Initiator. The UserData property holds the data to be
transmitted to the Target. The nfcTarget object represents the Target and ReceivedUserData holds
the data received from the Initiator. Due to short range of NFC devices, the system SNR is very high.

initiator = nfcInitiator

initiator =
 Fc: 13560000
 SamplesPerSymbol: 64
 t1: 32
 AppLayer: []
 UserData: 'Hello, from MathWorks.'
 EnableVisualization: 1

target = nfcTarget

target =
 Fc: 13560000
 Fs: 847500
 SamplesPerSymbol: 64
 UID: '11aa22bb'
 AppLayer: []
 ReceivedUserData: ''
 EnableVisualization: 1

% Signal to noise ratio, in dB
snrdB = 50;
% Reset the RNG for reproducible results
s = rng(0);

Initialization and Anticollision

The Initiator and Target follow initialization and anticollision sequences to establish a communication
link. Figure 9 (Initialization and anticollision flowchart for PCD) and Figure 10 (Anticollision loop,
flowchart for PCD) in ISO/IEC 14443-3 (Identification cards - Contactless integrated circuit cards -
Proximity cards, Part 3: Initialization and anticollision) illustrate the corresponding flowcharts.
Section 6 (Type A - Initialization and anticollision) of ISO/IEC 14443-3 describes the commands and
protocol in detail. Functions nfcInitialization() and nfcAnticollisionLoop() implement the
corresponding sequence of commands and protocol. The example prints the status and actions of
Initiator and Target devices, along with important information that is exchanged, to indicate the flow
of commands.

Transport Protocol

As described in ISO/IEC 18092, Transport protocol has three parts -

• Activation of protocol: Various protocol parameters, like bit rates, are negotiated and selected
during this phase. Section 12.5 (Activation of the protocol) of ISO/IEC 18092 describes this phase
in details. The function nfcProtocolActivation() implements the sequence of commands required
during this phase.

• Data Exchange Protocol: The information is exchanged during this phase using a half-duplex
protocol that supports block oriented data transmission with error handling. See section 12.6

1 Communications Toolbox Featured Examples

1-350

(Data Exchange Protocol) of ISO/IEC 18092 for details. Function nfcDataExchangeProtocol()
shows how to implement the exchange of data as prescribed by the ISO/IEC 18092.

• Deactivation of Protocol: After completing data exchange, the Initiator deactivates the protocol
and connection with the Target. Function nfcProtocolDeactivation() implements the sequence
described in section 12.7 (Deactivation of the protocol) of ISO/IEC 18092.

nfcPrint.Message('The message to transmit from Initiator to Target:');

The message to transmit from Initiator to Target:

nfcPrint.Message(initiator.UserData);

Hello, from MathWorks.

nfcPrint.Start();

Start of NFC Communication between Initiator and Target

nfcInitialization(initiator, target, snrdB);

 Initiator transmitted REQA
 Target received REQA

 Near Field Communication (NFC)

1-351

 Target transmitted ATQA in response to REQA
 Initiator received ATQA
 Target supports bit frame anticollision
 Target's UID size: single

nfcAnticollisionLoop(initiator, target, snrdB);

 Start of Anticollision loop
 Cascade Level-1
 Initiator transmitted ANTICOLLISION command
 Target received Cascade Level-1 SEL code

1 Communications Toolbox Featured Examples

1-352

 Target transmitted full UID
 Initiator received CL1 UID without collision
 Complete UID received: 0x11aa22bb
 Initiator transmitted SELECT command
 Target received Cascade Level-1 SEL code
 Target selection confirmed
 Target transmitted SAK with UID complete flag
 Initiator received SAK
 UID complete. Exit Anticollision loop.
 End of Anticollision loop

 Target compliant with NFCIP-1. Continue with Transport Protocol Activation

nfcProtocolActivation(initiator, target, snrdB);

 Start of Transport Protocol Activation
 Initiator transmitted ATR_REQ
 Target received ATR_REQ
 Target transmitted ATR_RES in response to ATR_REQ
 Initiator received ATR_RES
 Initiator transmitted PSL_REQ in response to ATR_REQ
 Selected send rate: 106 Kbps
 Selected receive rate: 106 Kbps
 Target received PSL_REQ
 Target transmitted PSL_RES in response to PSL_REQ
 Initiator received PSL_RES
 PSL_RES validated. All selected rates confirmed
 End of Transport Protocol Activation

nfcDataExchangeProtocol(initiator, target, snrdB);

 Start of Data Exchange Protocol (DEP)
 Initiator transmitted an Information PDU in DEP_REQ
 Initiator PNI: 0
 Target received an Information PDU in DEP_REQ
 MI chaining not activated in received information PDU
 Received Initiator PNI: 0
 Target PNI: 0
 Target transmitted an Information PDU in DEP_RES in response to DEP_REQ
 Initiator received an Information PDU in DEP_RES
 Received Target PNI: 0
 All data transmitted from Initiator to Target. Exit DEP.
 End of Data Exchange Protocol (DEP)

nfcProtocolDeactivation(initiator, target, snrdB)

 Start of Transport Protocol Deactivation
 Initiator transmitted RLS_REQ
 Target received RLS_REQ
 Target transmitted RLS_RES in response to RLS_REQ
 Initiator received RLS_RES
 Target released
 End of Transport Protocol Deactivation

nfcPrint.End();

 Near Field Communication (NFC)

1-353

End of NFC Communication between Initiator and Target

nfcPrint.Message('The message received by Target from Initiator:');

The message received by Target from Initiator:

nfcPrint.Message(target.ReceivedUserData);

Hello, from MathWorks.

nfcPrint.NewLine;

% Restore RNG state
rng(s);

function nfcInitialization(initiator, target, snrdB)
 % Initialization and anticollision
 % Reference: ISO/IEC 14443-3, section 6

 txREQA = transmitREQA(initiator);
 rxREQA = awgn(txREQA, snrdB, 'measured');

 txATQA = receiveREQA(target, rxREQA);
 rxATQA = awgn(txATQA, snrdB, 'measured');

 [isATQAValid, isCollisionDetected, isTargetCompliant] = ...
 receiveATQA(initiator, rxATQA);

 coder.internal.errorIf(~isATQAValid, 'comm:NFC:InvalidATQA');
 coder.internal.errorIf(isCollisionDetected, 'comm:NFC:CollisionATQA');
 coder.internal.errorIf(~isTargetCompliant, 'comm:NFC:TargetNotCompliant');
end

function nfcAnticollisionLoop(initiator, target, snrdB)
 % Anticollision Loop
 % Reference: ISO/IEC 14443-3, section 6

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Anticollision loop');

 % Start anticollision loop
 cascadeLevel = 1;
 targetRxAC = [];
 nfcPrint.CascadeLevel(cascadeLevel);
 [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
 antiCollisionLoop(initiator, targetRxAC, cascadeLevel);

 while (newCascadeLevel <= 3) && ~uidComplete

 nfcPrint.CascadeLevel(newCascadeLevel, cascadeLevel);
 cascadeLevel = newCascadeLevel;

 targetRxAC = awgn(initiatorTxAC, snrdB, 'measured');
 % Target's anticollision loop
 targetTxAC = antiCollisionLoop(target, targetRxAC);
 initiatorRxAC = awgn(targetTxAC, snrdB, 'measured');
 % Initiator's anticollision loop
 [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...

1 Communications Toolbox Featured Examples

1-354

 antiCollisionLoop(initiator, initiatorRxAC, cascadeLevel);
 end

 coder.internal.errorIf(~uidComplete, 'comm:NFC:IncompleteUID');
 coder.internal.errorIf(~isoCompliantTarget, ...
 'comm:NFC:TargetNotCompliantWithNFCIP1');

 nfcPrint.Heading1('End of Anticollision loop');
 nfcPrint.NewLine;
 nfcPrint.Heading1(['Target compliant with NFCIP-1. '...
 'Continue with Transport Protocol Activation']);
end

function nfcProtocolActivation(initiator, target, snrdB)
 % NFCIP-1 Transport Protocol Activation
 % Reference: ISO/IEC 18092, section 12.5

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Transport Protocol Activation');

 txATR_REQ = transmitATR_REQ(initiator);
 rxATR_REQ = awgn(txATR_REQ, snrdB, 'measured');

 txATR_RES = receiveATR_REQ(target, rxATR_REQ);
 rxATR_RES = awgn(txATR_RES, snrdB, 'measured');

 txPSL_REQ = receiveATR_RES(initiator, rxATR_RES);
 rxPSL_REQ = awgn(txPSL_REQ, snrdB, 'measured');
 txPSL_RES = receivePSL_REQ(target, rxPSL_REQ);

 status = receivePSL_RES(initiator, txPSL_RES);
 coder.internal.errorIf(~status, 'comm:NFC:TPActivationFailed');

 nfcPrint.Heading1('End of Transport Protocol Activation');
end

function nfcDataExchangeProtocol(initiator, target, snrdB)
 % Data Exchange Protocol
 % Reference: ISO/IEC 18092, section 12.6

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Data Exchange Protocol (DEP)');

 status = nfcDEP(initiator, target, snrdB);
 coder.internal.errorIf(~status, 'nfc:NFC:DEPFailed');

 nfcPrint.Heading1('End of Data Exchange Protocol (DEP)');
 nfcPrint.NewLine;
end

function nfcProtocolDeactivation(initiator, target, snrdB)
 % Transport Protocol Deactivation
 % Reference: ISO/IEC 18092, section 12.7

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Transport Protocol Deactivation');

 txRLS_REQ = transmitRLS_REQ(initiator);

 Near Field Communication (NFC)

1-355

 rxRLS_REQ = awgn(txRLS_REQ, snrdB, 'measured');

 txRLS_RES = receiveRLS_REQ(target, rxRLS_REQ);
 rxRLS_RES = awgn(txRLS_RES, snrdB, 'measured');

 status = receiveRLS_RES(initiator, rxRLS_RES);
 coder.internal.errorIf(~status, 'comm:NFC:TPDeactivationFailed');

 nfcPrint.Heading1('End of Transport Protocol Deactivation');
end

Exploration

Explore various methods of nfcInitiator and nfcTarget objects to understand various commands and
protocols described by NFC standards. Experiment with various system parameters like SNR, UID
type (Single or Double), UID value, SamplesPerSymbol to see how they impact the system.

References

1 https://nfc-forum.org/
2 ISO/IEC 14443-2 Identification cards - Contactless integrated circuit cards - Proximity cards -

Part 2: Radio frequency power and signal interface
3 ISO/IEC 14443-3 Identification cards - Contactless integrated circuit cards - Proximity cards -

Part 3: Initialization and anticollision
4 ISO/IEC 18092 Information technology - Telecommunications and information exchange between

systems - Near Field Communication - Interface and Protocol (NFCIP-1)

1 Communications Toolbox Featured Examples

1-356

https://nfc-forum.org/

NFC Application Layer

This example demonstrates exchange of data between application layers of two Near Field
Communication (NFC) devices.

Introduction

The example demonstrates a Near Field Communication (NFC) smart poster, which is an NFC feature
used by retailers, advertising agencies, transportation authorities, health care providers, and various
industries who want to interact with consumers. Since NFC requires the user to take action, the opt-
in nature of the technology creates an engaged user leading to a much more meaningful interaction
with a brand.

An NFC smart poster is a magazine advertisement, flier, billboard, or other physical medium that
includes embedded or affixed NFC tags. When an NFC device is placed within a few centimeters of
the NFC tag, information is transferred to the device or a task is launched on the device.

Depending on the smart poster and environment, the consumer can receive targeted information
about their current location. Examples of NFC smart poster use include:

• A poster that contains an NFC tag that instructs the receiving NFC device to launch a map
application with directions to help a lost tourist find a nearby landmark.

• In a retail setting, a poster that offers coupons, information about a product, or loyalty points. The
consumer's phone acts as the loyalty card and stores the information, thus eliminating the need to
keep track of multiple cards.

The data to transfer is encoded in the NFC Tag in the NDEF (NFC Data Exchange Format) format and
is stored into the Tag data structure. The NDEF is a data format for NFC Devices and Tags to
construct a valid NDEF message. The NDEF file consists of NDEF Messages, which consist of NDEF
Records. The NDEF format is used to store and exchange information like URI (Uniform Resource
Identifier), plain text, encrypted data, image data like GIF and JPEG files, etc.

System Setup

The application layer of the NFC Tag stores the data in the NDEF file. This example illustrates the
NFC protocols and commands required to transfer data between the application layers of an NFC
Device and an NFC Tag for an application like an NFC smart poster.

NDEF is a lightweight, binary message format that can be used to encapsulate one or more
application-defined payloads of arbitrary type and size into a single message construct. Each payload
is described by a type, a length, and an optional identifier. Type identifiers may be URIs, MIME media
types, or NFC-specific types. NDEF payloads may include nested NDEF messages or chains of linked
data chunks of length unknown at the time the data is generated [5 on page 1-363].

txURL = 'mathworks.com';
targetRecord = ndefRecord('Type', 'U', 'URIID', '01', ...
 'ActualText', txURL)

targetRecord =
 ndefRecord with properties:

 TypeNameFormat: 'NFC Forum well-known type'
 IsIDLengthPresent: '0'
 IsShortRecord: '1'

 NFC Application Layer

1-357

 IsChunk: '0'
 IsMessageBegin: '1'
 IsMessageEnd: '1'
 TypeLength: ''
 PayloadLength: ''
 IDLength: '00'
 Type: 'U'
 ID: ''
 Payload: ''
 StatusBytes: '02'
 LanguageCode: 'en'
 URIID: '01'
 ActualText: 'mathworks.com'

The NFC Tag containing the URI in the NDEF file is a Type 4 Tag in this example, as specified in the
Type 4 Tag Operation Specification [6 on page 1-363]. An nfcTarget object models this tag. It
contains an nfcApp object that models the application layer and contains the data to be exchanged.

targetAppLayer = nfcApp();
targetAppLayer.AppData = create(targetRecord)

targetAppLayer =
 nfcApp with properties:

 AppName: 'D2760000850101'
 CCFileID: 'E103'
 NDEFFileID: 'E104'
 CLA: '00'
 INS: 'A4'
 P1: '04'
 P2: '00'
 Lc: ''
 Le: ''
 SW1: '90'
 SW2: '00'
 AppData: 'D1010E55016D617468776F726B732E636F6D'

target = nfcTarget('AppLayer', targetAppLayer, 'EnableVisualization', false)

target =
 Fc: 13560000
 Fs: 847500
 SamplesPerSymbol: 64
 UID: '11aa22bb'
 AppLayer: [1x1 nfcApp]
 ReceivedUserData: ''
 EnableVisualization: 0

The consumer device is modeled by an nfcInitiator object, which also contains an nfcApp object to
model its application layer.

initiator = nfcInitiator('AppLayer', nfcApp(), 'UserData', '', ...
 'EnableVisualization', false)

initiator =
 Fc: 13560000

1 Communications Toolbox Featured Examples

1-358

 SamplesPerSymbol: 64
 t1: 32
 AppLayer: [1x1 nfcApp]
 UserData: ''
 EnableVisualization: 0

% Signal to noise ratio, in dB
snrdB = 50;
% Reset the RNG for reproducible results
s = rng(0);

The Initialization and Anticollision sequences are as described in “Near Field Communication (NFC)”
on page 1-349 example. The application data is exchanged using half-duplex block transmission
protocol, as described in ISO®/IEC 14443-4 [4 on page 1-363]. The example prints the status and
actions of Initiator and Target devices, along with important information that is exchanged, to
indicate the flow of commands.

nfcPrint.Message('URL to transmit:');

URL to transmit:

nfcPrint.Message(sprintf('%s%s', 'http://www.', txURL));

http://www.mathworks.com

nfcPrint.Start();

Start of NFC Communication between Initiator and Target

nfcInitialization(initiator, target, snrdB);

 Initiator transmitted REQA
 Target received REQA
 Target transmitted ATQA in response to REQA
 Initiator received ATQA
 Target supports bit frame anticollision
 Target's UID size: single

nfcAnticollisionLoop(initiator, target, snrdB);

 Start of Anticollision loop
 Cascade Level-1
 Initiator transmitted ANTICOLLISION command
 Target received Cascade Level-1 SEL code
 Target transmitted full UID
 Initiator received CL1 UID without collision
 Complete UID received: 0x11aa22bb
 Initiator transmitted SELECT command
 Target received Cascade Level-1 SEL code
 Target selection confirmed
 Target transmitted SAK with UID complete flag
 Initiator received SAK
 UID complete. Exit Anticollision loop.
 End of Anticollision loop

 NFC Application Layer

1-359

 Target compliant with NFCIP-1. Continue with Transport Protocol Activation

nfcProtocolActivation(initiator, target, snrdB);

 Start of Protocol Activation
 Initiator transmitted RATS
 Target received RATS
 Target transmitted ATS in response to RATS
 Initiator received ATS
 End of Protocol Activation

nfcBlockTransmissionProtocol(initiator, target, snrdB);

 Start of Half-Duplex Block Transmission Protocol
 Initiator transmitted SELECT command for APP NAME
 Target received SELECT command for APP NAME
 Target transmitted STATUS Bytes for APP NAME
 Initiator received valid STATUS Bytes for APP NAME
 Initiator transmitted SELECT command for CC File
 Target received SELECT command for CC File
 Target transmitted STATUS Bytes for CC File
 Initiator received valid STATUS Bytes for CC File
 Initiator transmitted READ command for CC File
 Target received READ command for CC File
 Target transmitted CCFILE CONTENT and STATUS Bytes for CC File
 Initiator received valid CCFILE CONTENT and STATUS Bytes for CC File
 Initiator transmitted SELECT command for NDEF File
 Target received SELECT command for NDEF File
 Target transmitted STATUS Bytes for NDEF File
 Initiator received valid STATUS Bytes for NDEF File
 Initiator transmitted READ command for NDEF NLEN
 Target received READ command for NDEF NLEN
 Target transmitted NLEN and STATUS Bytes for NDEF
 Initiator received NLEN and valid STATUS Bytes
 Initiator transmitted READ command for NDEF File
 Target received READ command for NDEF File
 Target transmitted NDEF CONTENT and STATUS Bytes for NDEF File
 Initiator received NDEF File content and valid STATUS Bytes
 End of Half-Duplex Block Transmission Protocol

nfcProtocolDeactivation(initiator, target, snrdB)

 Start of Protocol Deactivation
 Initiator transmitted DESELECT
 Target received DESELECT
 Target transmitted DESELECT response
 Initiator received DESELECT response
 Target released
 End of Protocol Deactivation

nfcPrint.End();

End of NFC Communication between Initiator and Target

recDataType = getReceivedNDEFType(initiator.AppLayer);

1 Communications Toolbox Featured Examples

1-360

recData = getReceivedNDEFData(initiator.AppLayer);
if strcmpi(recDataType, 'U')
 nfcPrint.Message('Received URL:');
else
 nfcPrint.Message('Received telephone number:');
end

Received URL:

nfcPrint.Message(recData);

http://www.mathworks.com

nfcPrint.NewLine;

% Restore RNG state
rng(s);

function nfcInitialization(initiator, target, snrdB)
 % Initialization and anticollision
 % Reference: ISO/IEC 14443-3, section 6

 txREQA = transmitREQA(initiator);
 rxREQA = awgn(txREQA, snrdB, 'measured');

 txATQA = receiveREQA(target, rxREQA);
 rxATQA = awgn(txATQA, snrdB, 'measured');

 [isATQAValid, isCollisionDetected, isTargetCompliant] = ...
 receiveATQA(initiator, rxATQA);

 coder.internal.errorIf(~isATQAValid, 'comm:NFC:InvalidATQA');
 coder.internal.errorIf(isCollisionDetected, 'comm:NFC:CollisionATQA');
 coder.internal.errorIf(~isTargetCompliant, 'comm:NFC:TargetNotCompliant');
end

function nfcAnticollisionLoop(initiator, target, snrdB)
 % Anticollision Loop
 % Reference: ISO/IEC 14443-3, section 6

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Anticollision loop');

 % Start anticollision loop
 cascadeLevel = 1;
 targetRxAC = [];
 nfcPrint.CascadeLevel(cascadeLevel);
 [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
 antiCollisionLoop(initiator, targetRxAC, cascadeLevel);

 while (newCascadeLevel <= 3) && ~uidComplete

 nfcPrint.CascadeLevel(newCascadeLevel, cascadeLevel);
 cascadeLevel = newCascadeLevel;

 targetRxAC = awgn(initiatorTxAC, snrdB, 'measured');
 % Target's anticollision loop
 targetTxAC = antiCollisionLoop(target, targetRxAC);
 initiatorRxAC = awgn(targetTxAC, snrdB, 'measured');

 NFC Application Layer

1-361

 % Initiator's anticollision loop
 [initiatorTxAC, newCascadeLevel, uidComplete, isoCompliantTarget] = ...
 antiCollisionLoop(initiator, initiatorRxAC, cascadeLevel);
 end

 coder.internal.errorIf(~uidComplete, 'comm:NFC:IncompleteUID');
 coder.internal.errorIf(~isoCompliantTarget, ...
 'comm:NFC:TargetNotCompliantWithNFCIP1');

 nfcPrint.Heading1('End of Anticollision loop');
 nfcPrint.NewLine;
 nfcPrint.Heading1(['Target compliant with NFCIP-1. '...
 'Continue with Transport Protocol Activation']);
end

function nfcProtocolActivation(initiator, target, snrdB)
 % ISO/IEC 14443-4 Protocol Activation
 % Reference: ISO/IEC 14443-4, section 5

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Protocol Activation');

 txRATS = transmitRATS(initiator);
 rxRATS = awgn(txRATS, snrdB, 'measured');

 txATS = receiveRATS(target, rxRATS);
 rxATS = awgn(txATS, snrdB, 'measured');

 status = receiveATS(initiator, rxATS);
 coder.internal.errorIf(~status, 'comm:NFC:ProtocolActivationFailed');

 nfcPrint.Heading1('End of Protocol Activation');
end

function nfcBlockTransmissionProtocol(initiator, target, snrdB)
 % Half-duplex Block Transmission Protocol
 % Reference: ISO/IEC 14443-4, section 7

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Half-Duplex Block Transmission Protocol');

 nfcTransmissionProtocol(initiator, target, snrdB);

 nfcPrint.Heading1('End of Half-Duplex Block Transmission Protocol');
 nfcPrint.NewLine;
end

function nfcProtocolDeactivation(initiator, target, snrdB)
 % Protocol Deactivation
 % Reference: ISO/IEC 14443-4, section 8

 nfcPrint.NewLine;
 nfcPrint.Heading1('Start of Protocol Deactivation');

 txDESLECT = transmitDESELECT(initiator);
 rxDESELECT = awgn(txDESLECT, snrdB, 'measured');

 txDESELECT_RES = receiveDESELECT(target, rxDESELECT);

1 Communications Toolbox Featured Examples

1-362

 rxDESELECT_RES = awgn(txDESELECT_RES, snrdB, 'measured');

 status = receiveDESELECT_RES(initiator, rxDESELECT_RES);
 coder.internal.errorIf(~status, 'comm:NFC:ProtocolDeactivationFailed');

 nfcPrint.Heading1('End of Protocol Deactivation');
end

Exploration

Explore various methods of nfcInitiator, nfcTarget, nfcApp, and ndefRecord objects, and various
functions used in this example to understand various commands and protocols described by NFC
standards. Experiment with various system parameters like SNR, NDEF messages to see how they
impact the system.

References

1. https://nfc-forum.org/

2. ISO/IEC 14443-2 Identification cards - Contactless integrated circuit cards - Proximity cards - Part
2: Radio frequency power and signal interface

3. ISO/IEC 14443-3 Identification cards - Contactless integrated circuit cards - Proximity cards - Part
3: Initialization and anticollision

4. ISO/IEC 14443-4 Identification cards - Contactless integrated circuit cards - Proximity cards - Part
4: Transmission protocol

5. NFC Data Exchange Format (NDEF) Technical Specification 1.0

6. Type 4 Tag Operation Specification Technical Specification 2.0

 NFC Application Layer

1-363

https://nfc-forum.org/

DOCSIS Upstream TDMA Link Simulation

This example shows how to implement the physical layer (PHY) of Data Over Cable Service Interface
Specification (DOCSIS®) in the upstream TDMA operating mode [1] on page 1-375[2] on page 1-375.

Introduction

DOCSIS defines the international standards for high-speed data-over-cable systems and specifies a
variety of operating modes. This example focuses on the upstream Time Division Multiple Access
(TDMA) mode, where Single Carrier Quadrature Amplitude Modulation (SC-QAM) is used. This
access mode is compatible with all versions of DOCSIS, including 4.0. The example implements a
flexible PHY signal processing chain by incorporating a configuration object that specifies numerous
configurable parameters. It also includes the medium access control layer (MAC) header format and
simulates data packets compliant with the MAC configuration parameters.

Using features available with Communications Toolbox™ and Signal Processing Toolbox™, the
example:

• Models the baseband PHY of a DOCSIS communications system
• Includes helper functions to configure objects and uses these objects to specify, validate, and

organize configuration parameters
• Generates statistics to compare the error rate performance of the model to theoretical results.

System Model

The high level simulation flow is shown in this image. The individual blocks will be explained in more
detail in the following paragraphs.

MAC Frame Structure

The MAC header format shown in this image complies with DOCSIS [2] on page 1-375. The Extended
Header and Packet Protocol Data Unit (Packet PDU) fields of the frame structure use random bits.

If the Extended Header On field is 1, then MAC Parameter specifies the length of Extended Header in
bytes. Otherwise MAC Parameter can be reserved for other usage.

Transmitter Signal Processing

This image shows the transmitter signal processing chain. The input data bits undergo Reed-Solomon
encoding, interleaving, scrambling, preamble prepending, SC-QAM, pre-equalization (see Effect of
Transmit Pre-Equalizer on page 1-367 section), and transmit filtering.

1 Communications Toolbox Featured Examples

1-364

Channel Model

The helper function helperDocsisChannel models a multipath channel with a static channel
response and stochastic additive white Gaussian noise (AWGN) to reproduce the practical cable
channel shown in Figures 40-42 of [3] on page 1-375. This code filters a unit impulse through the
modeled channel and plots the channel taps and frequency response. The magnitude response
matches the one shown in Figure 40.

% Probe channel with a unit impulse. Pad zeros at the beginning and end to
% account for channel delay.
probeSignal = [zeros(1,12),1,zeros(1,12)];
sampsPerSymbol = 1;
chanTaps = helperDocsisChannel(probeSignal,sampsPerSymbol);
% Remove zero values
chanTaps = nonzeros(chanTaps);
% Time domain tap values
figure
subplot(2,1,1)
stem(abs(chanTaps))
title('Channel Taps')
xlabel('Taps')
ylabel('Amplitude')
legend('Magnitude')
subplot(2,1,2)
stem(real(chanTaps))
hold on
stem(imag(chanTaps))
legend('Real','Imag')
xlabel('Taps')
ylabel('Amplitude')
hold off

 DOCSIS Upstream TDMA Link Simulation

1-365

% Frequency domain response
freqz(chanTaps,1,-pi:pi/1024:pi)

1 Communications Toolbox Featured Examples

1-366

Receiver Signal Processing

This image shows an ideal receiver signal processing chain which assumes perfect synchronization.
The input received baseband symbols undergo processing that reverses the transmitter operations to
recover the transmitted data bits and compute the bit error rate (BER).

Effect of Transmit Pre-Equalizer

The DOCSIS standard specifies pre-equalization of the transmitter symbols to counter the
intersymbol interference (ISI) introduced by the multipath channel. Since a static channel frequency
response is used, the pre-equalizer taps at the transmitter are fixed for the duration of the simulation.

This code shows the transmission of a QPSK modulated signal with and without pre-equalization.
Both signals are filtered through using the helperDocsisChannel function with no AWGN added.
The constellation diagram of symbols without pre-equalization applied shows ISI distortion after the
channel filtering. The constellation diagram of symbols with pre-equalization applied shows no
distortion after the channel filtering.

In fact, since there is no noise in the channel, the equalized symbols align with the reference
constellation so well that they can be difficult to see. Toggle the visibility of the two sets of symbols
on the constellation diagram by clicking their respective labels in the legend for a better view.

 DOCSIS Upstream TDMA Link Simulation

1-367

% Create a DOCSIS configuration object with the specified parameters. Do
% not use Reed-Solomon encoding or append any preamble bits. 500 bytes of
% data are transmitted in total.
docsisCfg = docsisConfig(...
 'NumBytes',500, ...
 'RSEnabled',false, ...
 'PreambleLength',0, ...
 'SamplesPerSymbol',1);
% Validate configuration parameters after they're all set
validateConfig(docsisCfg);

% Generate random data bits manually
srcData = randi([0 1],docsisCfg.NumBytes*8,1);

% Get the output from the modulator and pre-equalizer
[~,~,modOut,eqOut] = helperDocsisTx(srcData,[],docsisCfg);

% Pass both signals through the example channel
uneqChanOut = helperDocsisChannel(modOut,docsisCfg.SamplesPerSymbol);
eqChanOut = helperDocsisChannel(eqOut,docsisCfg.SamplesPerSymbol);

% Show received symbols in constellation diagram
constDiagram0 = comm.ConstellationDiagram(...
 'NumInputPorts',2, ...
 'Title','Zero-noise Channel Output', ...
 'ChannelNames',{'Unequalized','Equalized'}, ...
 'ShowLegend',true, ...
 'XLimits',[-18 18], ...
 'YLimits',[-18 18], ...
 'ShowReferenceConstellation',false);
constDiagram0(uneqChanOut,eqChanOut)

1 Communications Toolbox Featured Examples

1-368

End-to-end Link Simulation

The simulated end-to-end communications link complies with transmissions specified by DOCSIS.
These helper functions and objects are used:

• docsisConfig: configuration object that captures all the parameters affecting waveform
generation

• docsisMACFrameConfig: configuration object that is a sub-component of docsisConfig and
specifies the MAC frame structure

• helperDocsisConstellation: returns the modulation order (total number of constellation
points) and symbol mapping given the modulation name

• helperDocsisGenerateSourceData: generates a random burst of data bits, including MAC
frame configuration, according to the parameters specified by the configuration object

 DOCSIS Upstream TDMA Link Simulation

1-369

• helperDocsisTx: implements the transmitter signal processing chain; accepts burst data and
preamble bits as input, and returns both the baseband transmitter samples and other intermediate
block outputs (refer to transmitter block diagram)

• helperDocsisChannel: applies the example cable channel with static tap values defined earlier
• helperDocsisRx: implements the receiver signal processing chain; takes channel output as

input, and returns the decoded data bits as well as other intermediate block outputs (refer to
receiver block diagram)

Run the link simulation with a range of Eb/No values. For each Eb/No, generate random source data,
pass it through the transmitter and channel, and retrieve the bits at the receiver. These bits are then
compared with the source data to check for bit errors. Move on to the next Eb/No value when the bit
errors collected or the total bits sent exceeds a specified threshold.

Create configuration object and list all the parameters:

docsisCfg = docsisConfig(...

 'PayloadModulation', , ...
 'RSMessageLength',251, ...
 'RSCodewordLength',255)

docsisCfg =
 docsisConfig with properties:

 MACFrame: [1x1 docsisMACFrameConfig]
 NumBytes: 2000
 ModulationRate: 1280000
 RSEnabled: 1
 RSMessageLength: 251
 RSCodewordLength: 255
 InterleaverNumRows: 4
 ScramblerSeed: [1 1 0 1 1 1 1 1 0 0 1 1 0 0 1]
 PreambleLength: 1536
 PreambleModulation: 'QPSK0'
 PayloadModulation: '16-QAM'
 PreEqualizerTaps: [24x1 double]
 RaisedCosineSpan: 10
 SamplesPerSymbol: 2
 SampleRate: 2560000

 Read-only properties:
 PreEqualizerDelay: 7
 PreambleModulationOrder: 4
 PreambleModulationBitsPerSymbol: 2
 PreambleModulationSymbolMap: [-8.0000 - 8.0000i -8.0000 + 8.0000i 8.0000 - 8.0000i 8.0000 + 8.0000i]
 PayloadModulationOrder: 16
 PayloadModulationBitsPerSymbol: 4
 PayloadModulationSymbolMap: [-4.0000 - 4.0000i -4.0000 -12.0000i -12.0000 - 4.0000i -12.0000 -12.0000i -4.0000 + 4.0000i -4.0000 +12.0000i -12.0000 + 4.0000i -12.0000 +12.0000i 4.0000 - 4.0000i 4.0000 -12.0000i 12.0000 - 4.0000i ...]
 SignalPowerPerSample: 80

% Validate configuration parameters after they're all set
validateConfig(docsisCfg);

The example preamble sequence reproduces the sequence specified in Appendix I of [4] on page 1-
376.

1 Communications Toolbox Featured Examples

1-370

load('docsisExamplePreamble.mat')
prmbBits = examplePreamble(end-docsisCfg.PreambleLength+1:end);

Initialize other relevant variables and visualization scopes:

% Max number of bit errors to collect and max number of bits to send
maxErr = 1e3;
maxBits = 1e6;
% Use an Eb/No range that results in meaningful BERs
EbNoRange = helperDocsisEbNoRange(docsisCfg.PayloadModulationOrder);
ber = zeros(size(EbNoRange));
berUncoded = zeros(size(EbNoRange));
% Initialize spectrum analyzer scope and constellation diagram scope
[specAnalyzer,constDiagram] = helperInitializeScopes(docsisCfg);
% Initialize AWGN channel
awgnChan = comm.AWGNChannel(...
 'BitsPerSymbol',docsisCfg.PayloadModulationBitsPerSymbol, ...
 'SignalPower',docsisCfg.SignalPowerPerSample, ...
 'SamplesPerSymbol',docsisCfg.SamplesPerSymbol);

Run the main loop:

for i = 1:length(EbNoRange)
 awgnChan.EbNo = EbNoRange(i);
 totalErr = 0; totalBits = 0;
 totalErrUncoded = 0; totalBitsUncoded = 0;
 while totalErr < maxErr && totalBits < maxBits
 % Generate source data bits
 srcData = helperDocsisGenerateSourceData(docsisCfg);
 % Transmitter signal processing
 [txrcOut,modIndexOut] = helperDocsisTx(srcData,prmbBits,docsisCfg);
 % Apply example cable channel and add Gaussian noise
 chanOut = helperDocsisChannel(txrcOut,docsisCfg.SamplesPerSymbol);
 awgnOut = awgnChan(chanOut);
 % Receiver signal processing
 [decoderOut,rxrcOut,demodOut] = helperDocsisRx(awgnOut,docsisCfg);

 % Helper function to show visualization on the scopes
 helperShowScopes(specAnalyzer,constDiagram,txrcOut,rxrcOut,awgnOut, ...
 EbNoRange(i),docsisCfg)

 % Tally bit errors and total bits sent
 [nErr,nBits,nErrUncoded,nBitsUncoded] = helperBitErrors(...
 srcData,decoderOut,modIndexOut,demodOut,docsisCfg);
 totalErr = totalErr + nErr;
 totalBits = totalBits + nBits;
 totalErrUncoded = totalErrUncoded + nErrUncoded;
 totalBitsUncoded = totalBitsUncoded + nBitsUncoded;
 end
 % Compute BER
 ber(i) = totalErr / totalBits;
 berUncoded(i) = totalErrUncoded / totalBitsUncoded;
end

 DOCSIS Upstream TDMA Link Simulation

1-371

1 Communications Toolbox Featured Examples

1-372

The spectrum analyzer shows the power spectral density of the signals at the transmit filter output
and at the cable channel output. The transmit filter output signal has been pre-equalized and thus its
spectrum has the reciprocal shape of the channel response (see Channel Model on page 1-365) in the
main lobe. The side lobes and notches are due to raised cosine filtering. After channel filtering, the
channel output signal has a flat spectrum in its bandwidth, and the out of band signal power is
increased due to AWGN.

The constellation diagram shows three sets of symbols: channel output, receive filter output preamble
symbols, and receive filter output payload symbols. The channel output symbols do not align with the
reference constellations; after receiver raised cosine filtering, they separate into clusters centered at
the reference constellation points. The preamble symbols are always modulated with QPSK, and they
may be different from the modulation of the payload symbols. Note that the example preamble bits
from DOCSIS are not independently and uniformly distributed -- they result in fewer constellation

 DOCSIS Upstream TDMA Link Simulation

1-373

symbols in the upper left cluster than the other three clusters. The payload bits, however, are mostly
randomly generated, so they result in evenly distributed clusters of points.

Plot BER against Eb/No

Plot the empirically found BER against the Eb/No values, and compare them with theoretical results.
The figure omits the theoretical curves for modulation orders of odd powers of 2 because the DOCSIS
standard uses different symbol constellations than the ones assumed in the bercoding and berawgn
functions. For even powers of 2, the functions assume the same constellations as the simulations, and
thus the simulation is comparable with theory.

The BER curves show that both the coded and uncoded error rates match the theory reasonably well.
For some combinations of (n,k) in Reed-Solomon codes, the coding gain may only appear in the higher
Eb/No range, and sometimes the coded BER may even be higher than the uncoded BER at low Eb/No.
This is expected behavior of R-S codes.

To get a more accurate simulated BER at higher Eb/No where the errors are very rare, increase the
values of maxErr and maxBits in the previous section, and rerun the simulation. This allows the
system to collect more bit errors for each Eb/No. If no errors occur at an Eb/No value, the BER curve
will omit that data point.

% Find theoretical uncoded and coded BER
berUncodedTheoretical = berawgn(EbNoRange, ...
 'qam',docsisCfg.PayloadModulationOrder);
% Theoretical BER with R-S coding is only available when the codeword
% length is of the form 2^m-1.
if mod(log2(docsisCfg.RSCodewordLength+1),1) == 0
 berTheoretical = bercoding(EbNoRange,'RS','hard', ...
 docsisCfg.RSCodewordLength,docsisCfg.RSMessageLength, ...
 'qam',docsisCfg.PayloadModulationOrder);
else
 berTheoretical = [];
end

% Plot the curves
figure
semilogy(EbNoRange,berUncoded,'*-')
hold on
semilogy(EbNoRange,ber,'o-')
legendText = {'Uncoded simulation','Coded simulation'};
if mod(docsisCfg.PayloadModulationBitsPerSymbol,2) == 0
 semilogy(EbNoRange,berUncodedTheoretical,'--')
 legendText{end+1} = 'Uncoded theoretical';
 if ~isempty(berTheoretical)
 semilogy(EbNoRange,berTheoretical,'--')
 legendText{end+1} = 'Coded theoretical';
 end
end
grid on

if docsisCfg.RSEnabled
 title(sprintf('DOCSIS BER - Upstream TDMA, %s, R-S (%d,%d)', ...
 docsisCfg.PayloadModulation, ...
 docsisCfg.RSCodewordLength,docsisCfg.RSMessageLength))
else
 title(sprintf('DOCSIS BER - Upstream TDMA, %s, uncoded', ...
 docsisCfg.PayloadModulation))

1 Communications Toolbox Featured Examples

1-374

end
xlabel('Eb/No (dB)')
ylabel('BER')
legend(legendText,'Location','southwest')

Further Exploration

Alter the parameters of docsisCfg to see how they affect the output. For instance, alter the
modulation and coding rate and rerun the simulations to see what effect they have on the system BER
performance. Alter the raised cosine filter span, samples per symbol, and sample rate to see how they
affect the visualization.

References

[1] CM-SP-PHYv4.0-I02-200429: Data-Over-Cable Service Interface Specifications DOCSIS® 4.0;
Physical Layer Specification. Cable Television Laboratories, Inc., 2019-2020.

[2] CM-SP-MULPIv4.0-I02-200429: Data-Over-Cable Service Interface Specifications DOCSIS® 4.0;
MAC and Upper Layer Protocols Interface Specification. Cable Television Laboratories, Inc.,
2019-2020.

[3] CM-GL-PNMP-V03-160725: DOCSIS® Best Practices and Guidelines; PNM Best Practices: HFC
Networks (DOCSIS 3.0). Cable Television Laboratories, Inc., 2010-2016.

 DOCSIS Upstream TDMA Link Simulation

1-375

[4] CM-SP-PHYv3.0-C01-171207: Data-Over-Cable Service Interface Specifications DOCSIS® 3.0;
Physical Layer Specification. Cable Television Laboratories, Inc., 2006-2017.

1 Communications Toolbox Featured Examples

1-376

ATSC Digital Television

This model shows the vestigial sideband modulation with 8 discrete amplitude levels (8-VSB)
transmission subsystem of the Advanced Television Systems Committee (ATSC) digital television
standard [1]. The standard describes the characteristics of the U.S. advanced television system that
is designed to transmit high-quality video, audio, and ancillary data within a single 6 MHz terrestrial
television broadcast channel.

The purpose of this example is to:

• Model the primary portions of a Main Service 8-VSB transmitter with MPEG-2 Transport Packet
data as inputs

• Model the primary portions of a possible Main Service 8-VSB receiver design
• Generate error statistics including number of corrected bytes, number of defective packets and

byte error rate

Structure of the Example

The model consists of MPEG-2 Transport Packet generation, transmitter baseband processing, AWGN
Channel, receiver baseband processing, and error rate calculation. The following sections describe
each subcomponent in detail.

 ATSC Digital Television

1-377

1 Communications Toolbox Featured Examples

1-378

MATLAB Workspace Variable Definitions

When the model is first loaded, it creates a MATLAB® workspace variable prmATSC. This structure
variable contains fields that specify the block parameters in the model. This variable is cleared when
the model is closed.

prmATSC =

 struct with fields:

 MPEG2PacketLen: 188
 RSCodewordLen: 207
 BitsPerByte: 8
 BitsPerNibble: 2
 NibblesPerByte: 4
 NibblesPerGroup: 48
 NibblesPerSegment: 828
 SegmentsPerField: 313
 RSPrimitivePoly: [1 0 0 0 1 1 1 0 1]
 RSGeneratorPoly: [1 152 185 240 5 111 99 6 220 112 150 69 36 ...]
 IntlvrNumShiftRegs: 52
 IntlvrShiftRegStep: 4
 DeintlvrAlignDelay: 156
 DeintlvrPktDelay: 52
 NumTrellisCoders: 12
 TraceBackDepth: 8
 TrellisDecAlignDelay: 159
 TrellisDecPktDelay: 2
 SymbolRate: 1.0762e+07
 MPEG2BPS: 1.9393e+07
 MPEG2PktRate: 1.2894e+04
 ChannelSampleTime: 9.3666e-08

 ATSC Digital Television

1-379

 PAMSigPower: 4.5826
 EsNo: 10

MPEG-2 Data Source

The MPEG-2 Transport Packet is a randomly generated 188-byte vector with the first byte replaced
by the sync byte 0x47 (Hexadecimal).

Transmitter Baseband Processing

• Randomizer

This subsystem corresponds to Section 6.4.1.1 in [1]. The MPEG-2 sync byte should not be
randomized and encoded, and hence is thrown away before the XOR operation. The pseudo random
byte sequence that scrambles input data bytes is re-initialized at the beginning of each Data Field. In
this model, each Data Field consists of 312 Data Segments because the Data Field Sync segment is
not modeled.

• Reed-Solomon Encoder

This subsystem corresponds to Section 6.4.1.2 in [1]. The (207, 187) Integer-Input RS Encoder block
adds 20 parity bytes to the input packet and produces an output of 207 bytes per frame. This allows
up to 10 erroneous bytes per transport packet to be corrected by the corresponding Integer-Output
RS Decoder block at the receiver.

1 Communications Toolbox Featured Examples

1-380

• Convolutional Interleaver

This subsystem corresponds to Section 6.4.1.3 in [1]. The Convolutional Interleaver block
interleaves the bytes from 52 Data Segments (intersegment), which is one-sixth (1/6) of a Data Field.
The transmitter synchronizes the interleaver to the first data byte of each Data Field.

• Trellis Interleaver

This subsystem, together with the subsequent M-PAM Modulator Baseband block, corresponds to
Section 6.4.1.4 in [1]. It creates serial 3-bit outputs from parallel bytes by feeding every two bits of
each data byte through one of 12 two-thirds (2/3) rate Convolutional Encoder blocks. Each byte
produces four 3-bit outputs and the implementation processes every 12 bytes as a group. A block
controls which Convolutional Encoder processes which two bits in a group. A complete conversion of
parallel bytes to serial bits needs four Data Segments, i.e., 828 data bytes, to produce 3312 3-bit
outputs from the 12 encoders, and each encoder processes 69 data bytes. Each Data Field needs
312/4 = 78 conversion operations.

• 8-PAM Constellation Mapping

The M-PAM Modulator Baseband block corresponds to the symbol mapper portion of the Figure 6.8 in
[1]. It maps 3-bit integer inputs to symbols on an 8-level one-dimensional real constellation with
values [-7 -5 -3 -1 1 3 5 7].

AWGN Channel

The AWGN Channel block uses the Signal to noise ratio (Es/No) mode. Signal power and
symbol period have been calculated and stored in the workspace variable prmATSC. The Es/No value
is set to 10 dB, which produces a byte error rate of approximately 0.0039.

 ATSC Digital Television

1-381

Receiver Baseband Processing

• 8-PAM Demodulator

The M-PAM Demodulator Baseband block converts the received baseband 8-PAM constellation
symbols to 3-bit integer outputs. The block has the same constellation settings as the upstream M-
PAM Modulator Baseband block.

• Trellis Deinterleaver

This subsystem converts serial 3-bit inputs to parallel bytes by feeding each input through one of 12
two-thirds (2/3) rate Viterbi Decoder blocks. Then, the subsystem concatenates the decoded bits into
bytes. The deinterleaver processes every 48 inputs corresponding to 12 bytes as a group, and
introduces one group (48 inputs) of delay before performing Viterbi decoding. The same control block
as in the Trellis Interleaver subsystem is used to select which Viterbi Decoder block processes
which input in a group. Note that the Trellis Interleaver and Trellis Deinterleaver
subsystems together introduce 207 + 48 = 255 bytes of delay into the system (from Buffer blocks).
So, the Trellis Deinterleaver subsystem output is delayed by 159 bytes for frame alignment,
and the first two frames received by the downstream subsystem should be ignored. To notify the
subsequent subsystem of this frame delay, the Trellis Deinterleaver subsystem creates a frame
valid flag and passes it downstream.

• Convolutional Deinterleaver

The Convolutional Deinterleaver block corresponds to the Convolutional Interleaver block at the
transmitter and both blocks have the same configuration. Note that the Convolutional Interleaver and
Convolutional Deinterleaver blocks together introduce 10608 bytes of delay into the system. As a
result, the subsystem delays Convolutional Deinterleaver block output by 156 bytes for packet
alignment, and the first 52 packets received by the downstream subsystem should be ignored. To
notify the subsequent subsystem of this packet delay, the Convolutional Deinterleaver
subsystem creates a packet valid flag and passes it downstream.

1 Communications Toolbox Featured Examples

1-382

• Reed-Solomon Decoder

The Integer-Output RS Decoder block corresponds to the Integer-Input RS Encoder block at the
transmitter and both blocks have the same configuration. The block has a second output port to
indicate the number of bytes that have been corrected for the processed packet.

• Derandomizer

This subsystem corresponds to the Randomizer subsystem at the transmitter. The block that
generates the pseudo random byte sequence is the same as the block in the Randomizer subsystem.
The MPEG-2 sync byte is inserted into each packet after the derandomization to form an MPEG-2
Transport Packet.

Results and Displays

The Error Rate Calculation block measures the system byte error rate by comparing the transmitted
and decoded MPEG-2 Transport Packet data. Note that the system has 54 packets, i.e., 10152 bytes,
of delay in total, which specifies the Receive delay parameter of the block.

 ATSC Digital Television

1-383

To examine the performance of the system, use the included visualization blocks, as listed below:

• MPEG-2 Bit Rate (Mbit/s) display
• Receiver 8-PAM Constellation Diagram scope
• Receiver Spectrum scope
• Number of Corrected Bytes display
• Number of Defective Packets display
• System Byte Error Rate display

Run the model. Scopes show the ATSC received constellation and the spectrum.

1 Communications Toolbox Featured Examples

1-384

Further Exploration

Upon loading the model, you can set a different signal to noise ratio (SNR) by changing the EsNo field
value of the prmATSC workspace variable and observe the system performance. The following
components are not modeled in the system, but you can try to include them:

• Data Segment and Data Field synchronization
• Channel impairments such as multipath fading channels and frequency offsets
• Receiver carrier recovery and equalization

Selected Bibliography

1 Advanced Television Systems Committee, ATSC Digital Television Standard A/53, Part 2 - RF/
Transmission System Characteristics, Washington, D.C., Jan. 3, 2007.

 ATSC Digital Television

1-385

DVB-S.2 Link, Including LDPC Coding

This example shows the application of low density parity check (LDPC) codes in the second
generation Digital Video Broadcasting standard (DVB-S.2), which is deployed by DIRECTV in the
United States. The example uses communications System objects to simulate a transmitter-receiver
chain that includes LDPC encoding and decoding.

Introduction

The ETSI (European Telecommunications Standards Institute) EN 302 307 standard for Broadcasting,
Interactive Services, News Gathering and other broadband satellite applications (DVB-S.2) [1] uses
a state-of-the-art coding scheme to increase the channel capacity. The concatenation of LDPC (Low-
Density Parity-Check) and BCH codes is the basis of this coding scheme. LDPC codes, invented by
Gallager in his seminal doctoral thesis in 1960, can achieve extremely low error rates near channel
capacity by using a low-complexity iterative decoding algorithm [2]. The outer BCH codes are used
to correct sporadic errors made by the LDPC decoder.

The channel codes for DVB-S.2 provide a significant capacity gain over DVB-S under the same
transmission conditions. Depending on the transmission mode, DVB-S.2 provides Quasi-Error-Free
operation (packet error rate below 10^ -7) at about 0.7 dB to 1 dB from the Shannon limit.

This example simulates the BCH encoder, LDPC encoder, interleaver, modulator, as well as their
counterparts in the receiver, according to the DVB-S.2 standard. The example collects the error rate
at the demodulator, LDPC decoder, and BCH decoder outputs, determines the distribution of the
number of iterations performed by the LDPC decoder, and shows the received symbol constellation.
For more information regarding system structure, simplifications, and assumptions used for this
example, see the “DVB-S.2 Link, Including LDPC Coding in Simulink” on page 1-393 example.

See the “End-to-End DVB-S2 Simulation with RF Impairments and Corrections” (Satellite
Communications Toolbox) example that uses constant coding and modulation for a single stream
DVB-S2 link.

Initialization

The configureDVBS2Demo.m script initializes some simulation parameters and generates a structure,
dvb. The fields of this structure are the parameters of the DVB-S.2 system at hand. It also creates the
System objects making up the DVB-S.2 system.

subsystemType = '16APSK 2/3'; % Constellation and LDPC code rate
EsNodB = 9; % Energy per symbol to noise PSD ratio in dB
numFrames = 20; % Number of frames to simulate

% Initialize
configureDVBS2Demo

% Display system parameters
dvb

dvb =

 struct with fields:

 CodeRate: '2/3'

1 Communications Toolbox Featured Examples

1-386

 EsNodB: 9
 ModulationType: '16APSK'
 NumBytesPerPacket: 188
 NumBitsPerPacket: 1504
 BCHCodewordLength: 43200
 BCHMessageLength: 43040
 BCHGeneratorPoly: [1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 ...]
 BCHPrimitivePoly: [1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1]
 NumPacketsPerBBFrame: 28
 NumInfoBitsPerCodeword: 42112
 BitPeriod: 2.3746e-05
 LDPCCodewordLength: 64800
 LDPCParityCheckMatrix: [21600x64800 logical]
 LDPCNumIterations: 50
 InterleaveOrder: [64800x1 double]
 Constellation: [16x1 double]
 SymbolMapping: [12 14 15 13 4 0 8 10 2 6 7 3 11 9 1 5]
 PhaseOffset: [0.7854 0.2618]
 BitsPerSymbol: 4
 ModulationOrder: 16
 SequenceIndex: 2
 NumSymsPerCodeword: 16200
 NoiseVar: 0.1259
 NoiseVarEst: 0.3227
 RecDelayPreBCH: 43040

The example uses these System objects and functions.

Simulation objects:

enc - BCH encoder
dec - BCH decoder
intrlvr - Block interleaver
deintrlvr - Block deinterleaver
pskModulator - PSK modulator
pskDemodulator - PSK demodulator
chan - AWGN channel

Performance measurement objects:

PER - Packet error rate calculator
BERLDPC - LDPC decoder output error rate calculator
BERMod - Demodulator output error rate calculator
constDiag - Scatter plot of channel output
meanCalc - Average of the noise variance

Simulation functions:

dvbsapskmod - DVBSAPSK modulator
dvbsapskdemod - DVBSAPSK demodulator
ldpcEncode - LDPC encoder
ldpcDecode - LDPC decoder

LDPC Encoder and Decoder Configuration Objects

Create LDPC encoder and decoder configuration objects based on the parity check matrix according
to Section 5.3.1 of the DVB-S.2 standard [1].

 DVB-S.2 Link, Including LDPC Coding

1-387

encldpcCfg = ldpcEncoderConfig(dvb.LDPCParityCheckMatrix);
decldpcCfg = ldpcDecoderConfig(dvb.LDPCParityCheckMatrix);

Stream Processing Loop

This section of the code calls the processing loop for a DVB-S.2 system. The main loop processes the
data frame-by-frame, where the system parameter dvb.NumPacketsPerBBFrame determines the
number of data packets per BB frame. The first part of the for-loop simulates the system. The
simulator encodes each frame using BCH and LDPC encoders as inner and outer codes, respectively.
The encoded bits pass through an interleaver. The modulator maps the interleaved bits to symbols
from the predefined constellation. The modulated symbols pass through an AWGN channel. The
demodulator employs an approximate log-likelihood algorithm to obtain soft bit estimates. The LDPC
decoder decodes the deinterleaved soft bit values and generates hard decisions. The BCH decoder
works on these hard decisions to create the final estimate of the received frame.

The second part of the for-loop collects performance measurements such as the bit error rate and a
scatter plot. It also estimates the received SNR value.

bbFrameTx = false(encbch.MessageLength,1);
numIterVec = zeros(numFrames,1);
falseVec = false(dvb.NumPacketsPerBBFrame,1);

for frameCnt=1:numFrames

 % Transmitter, channel, and receiver
 bbFrameTx(1:dvb.NumInfoBitsPerCodeword) = ...
 logical(randi([0 1],dvb.NumInfoBitsPerCodeword,1));

 bchEncOut = encbch(bbFrameTx);
 ldpcEncOut = ldpcEncode(bchEncOut,encldpcCfg);
 intrlvrOut = intrlv(ldpcEncOut,dvb.InterleaveOrder);

 if dvb.ModulationOrder == 4 || dvb.ModulationOrder == 8
 modOut = pskModulator(intrlvrOut);
 else
 modOut = dvbsapskmod(intrlvrOut,dvb.ModulationOrder,'s2', ...
 dvb.CodeRate,'InputType','bit','UnitAveragePower',true);
 end

 chanOut = chan(modOut);

 if dvb.ModulationOrder == 4 || dvb.ModulationOrder == 8
 demodOut = pskDemodulator(chanOut);
 else
 demodOut = dvbsapskdemod(chanOut,dvb.ModulationOrder,'s2', ...
 dvb.CodeRate,'OutputType','approxllr','NoiseVar', ...
 dvb.NoiseVar,'UnitAveragePower',true);
 end

 deintrlvrOut = deintrlv(demodOut,dvb.InterleaveOrder);
 % By default, ldpcDecode stops iterating when all parity checks are
 % satisfied, which reduces decoding time
 [ldpcDecOut, numIter] = ldpcDecode(deintrlvrOut,decldpcCfg,dvb.LDPCNumIterations);
 bchDecOut = decbch(ldpcDecOut);
 bbFrameRx = bchDecOut(1:dvb.NumInfoBitsPerCodeword,1);

 % Error statistics

1 Communications Toolbox Featured Examples

1-388

 comparedBits = xor(bbFrameRx,bbFrameTx(1:dvb.NumInfoBitsPerCodeword));
 packetErr = any(reshape(comparedBits,dvb.NumBitsPerPacket, ...
 dvb.NumPacketsPerBBFrame));
 per = PER(falseVec,packetErr');
 berMod = BERMod(demodOut<0,intrlvrOut);
 berLDPC = BERLDPC(logical(ldpcDecOut),bchEncOut);

 % LDPC decoder iterations
 numIterVec(frameCnt) = numIter;

 % Noise variance estimate
 noiseVar = meanCalc(var(chanOut - modOut));

 % Scatter plot
 constDiag(chanOut);
end

Executing the error rate measurement objects (hPER, hBERMod, and hBERLDPC), outputs a 3-by-1
vector containing updates of the measured error rate value, the number of errors, and the total
number of transmissions (packets or bits). Display the BER at the demodulator output, the BER at the
LDPC decoder output, and the packet error rate of the end-to-end system together with the measured
SNR at the receiver input. While the demodulator output presents an error rate of more than 10%,
the LDPC decoder is able to correct all of the errors and provide error free packets.

fprintf('Measured SNR : %1.2f dB\n',10*log10(1/noiseVar))
fprintf('Modulator BER: %1.2e\n',berMod(1))

 DVB-S.2 Link, Including LDPC Coding

1-389

fprintf('LDPC BER : %1.2e\n',berLDPC(1))
fprintf('PER : %1.2e\n',per(1))

Measured SNR : 8.98 dB
Modulator BER: 8.25e-02
LDPC BER : 0.00e+00
PER : 0.00e+00

The figure shows the distribution of the number of iterations performed by the LDPC decoder. The
decoder was able to decode all the frames without an error before reaching the maximum iteration
count of 50.

distFig = figure;
histogram(numIterVec,1:dvb.LDPCNumIterations-1);
xlabel('Number of iterations'); ylabel('# occurrences'); grid on;
title('Distribution of number of LDPC decoder iterations')

We ran the stream processing loop for 32.4e6 bits for several SNR values. Since this simulation takes
a long time, in this example we only provide the result of the simulation stored in a MAT-file.

load berResultsDVBS2Demo.mat cBER_16APSK snrdB_16APSK
berFig = figure;
semilogy(snrdB_16APSK,cBER_16APSK(1,:)); xlim([8 8.9]);
xlabel('SNR (dB)'); ylabel('BER'); grid on

1 Communications Toolbox Featured Examples

1-390

Summary

This example utilized several System objects to simulate part of the DVB-S.2 communication system
over an AWGN channel. It showed how to model several parts of the DVB-S.2 system such as the
LDPC coding. System performance was measured using the PER and BER values obtained with error
rate measurement System objects.

Further Exploration

You can modify parts of this example to experiment with different subsystem types using various
values for Es/No and maximum number of LDPC decoder iterations. This example supports the
following subsystem types:

 'QPSK 1/4', 'QPSK 1/3', 'QPSK 2/5', 'QPSK 1/2', 'QPSK 3/5', 'QPSK
 2/3', 'QPSK 3/4', 'QPSK 4/5', 'QPSK 5/6', 'QPSK 8/9', 'QPSK 9/10'

 '8PSK 3/5', '8PSK 4/5', '8PSK 2/3', '8PSK 3/4', '8PSK 5/6', '8PSK
 8/9', '8PSK 9/10'

 '16APSK 2/3', '16APSK 3/4', '16APSK 4/5', '16APSK 5/6', '16APSK
 8/9', '16APSK 9/10'

 '32APSK 3/4', '32APSK 4/5', '32APSK 5/6', '32APSK 8/9', '32APSK
 9/10'

Appendix

This example uses the following scripts and helper function:

 DVB-S.2 Link, Including LDPC Coding

1-391

• configureDVBS2Demo.m

• getParamsDVBS2Demo.m

• createSimObjDVBS2Demo.m

Selected Bibliography

1 ETSI Standard EN 302 307 V1.1.1: Digital Video Broadcasting (DVB); Second generation framing
structure, channel coding and modulation systems for Broadcasting, Interactive Services, News
Gathering and other broadband satellite applications (DVB-S2), European Telecommunications
Standards Institute, Valbonne, France, 2005-03.

2 R. G. Gallager, Low-Density Parity-Check Codes, IEEE® Transactions on Information Theory, Vol.
8, No. 1, January 1962, pp. 21-28.

3 W. E. Ryan, An introduction to LDPC codes, in Coding and Signal Processing for Magnetic
Recording Systems (Bane Vasic, ed.), CRC Press, 2004.

1 Communications Toolbox Featured Examples

1-392

DVB-S.2 Link, Including LDPC Coding in Simulink

This model shows the state-of-the-art channel coding scheme used in the second generation Digital
Video Broadcasting standard (DVB-S.2), which is deployed by DIRECTV in the United States. The
coding scheme is based on concatenation of LDPC (Low-Density Parity-Check) and BCH codes. LDPC
codes, invented by Gallager in his seminal doctoral thesis in 1960, can achieve extremely low error
rates near channel capacity by using a low-complexity iterative decoding algorithm. The outer BCH
codes are used to correct sporadic errors made by the LDPC decoder.

The channel codes for DVB-S.2 provide a significant capacity gain over DVB-S under the same
transmission conditions and allow Quasi-Error-Free operation (packet error rate below 10^ -7) at
about 0.7 dB to 1 dB from the Shannon limit, depending on the transmission mode.

This example models the BCH encoder, LDPC encoder, interleaver, modulator, as well as their
counterparts in the receiver, according to the DVB-S.2 standard.

Structure of the Example

The communication system in this example performs these tasks:

• Generation of BBFRAME by a random source
• BCH encoding, for all coding parameters and normal FECFRAME
• LDPC encoding, for all coding parameters and normal FECFRAME
• Interleaving
• Modulation (QPSK, 8PSK, 16APSK, or 32APSK)
• AWGN channel modeling
• Soft-decision demodulation
• Deinterleaving
• LDPC decoding, by means of the message passing algorithm
• BCH decoding
• BBFRAME unbuffering

modelname = 'commdvbs2' ;
open_system(modelname);
RX = [modelname '/RX Constellation']; % Define Simulink object as a variable
set_param(RX,'openScopeAtSimStart','off'); % Set Simulink scope visibility parameter
T = evalc('sim(modelname)');

 DVB-S.2 Link, Including LDPC Coding in Simulink

1-393

1 Communications Toolbox Featured Examples

1-394

Furthermore, this model has blocks for measuring and displaying the packet error rate, LDPC bit
error rate, and estimated Es/No. There is also a scatter plot scope displaying the received signal,
which helps users visualize the channel distortions of the signal.

Simplifications and Assumptions

For simplicity, this example

• Assumes perfect synchronization between the transmitter and the receiver
• Uses a complex baseband model of an AWGN channel, rather than a full satellite channel
• Models BBHEADER and DATA FIELD in a BBFRAME using a Bernoulli binary random source, and

does not perform baseband scrambling
• Supports only normal FECFRAME (i.e., the block length of LDPC codes is 64800)
• Processes one LDPC codeword in one unit of time in Simulink®
• Approximates the log-likelihood ratio of the channel output for LDPC decoding by considering only

two points in the constellation nearest to the received signal during soft-decision demodulation
• Uses Es/No provided by the user for LDPC decoding, instead of estimating the Es/No from the

received signal

Also, the example does not model these aspects of the DVB-S.2 standard:

• Short FECFRAME
• Physical Layer (PL) Framing
• PL Signalling and Pilot insertion
• PL Scrambler
• Baseband (BB) Filter and Quadrature Modulation

Parameters of the Model

Double-clicking the Model Parameters block allows users to set the following parameters for the
model:

Results and Displays

When the model starts, a window automatically comes up to display the scatter plot of the received
signal. The LDPC bit error rate, packet error rate, and estimated Es/No from the received signal will
be continuously updated.

 DVB-S.2 Link, Including LDPC Coding in Simulink

1-395

% Set scope visibility for next display and run simulation
set_param(RX,'openScopeAtSimStart','on');
sim(modelname);

The power of LDPC codes can be readily observed using the default settings: QPSK, rate 1/2, Es/No =
1 dB, and 50 iterations in decoding. Even with such a low Es/No, the LDPC decoder will seldom make
an error. The scatter plot vividly illustrates how noisy the channel is.

If Es/No is slightly decreased, for example, to 0.5 dB, the LDPC bit error rate will be much greater.
This is consistent with typical steep performance curves of LDPC codes.

% Cleanup
%
% To clear the variables set above and close without saving the changes to
% the model, type the following commands into the MATLAB(R) command prompt.
%

close_system(modelname,0);

Selected Bibliography

[1] DVB-S.2 Standard Specification, ETSI EN 302 307 V1.1.1 (2005-03).

[2] R. G. Gallager, Low-Density Parity-Check Codes, IRE Transactions on Information Theory, Vol. 8,
No. 1, January 1962, pp. 21-28.

1 Communications Toolbox Featured Examples

1-396

[3] W. E. Ryan, An introduction to LDPC codes, in Coding and Signal Processing for Magnetic
Recoding Systems (Bane Vasic, ed.), CRC Press, 2004.

 DVB-S.2 Link, Including LDPC Coding in Simulink

1-397

5G LDPC Block Error Rate Simulation Using the Cloud or a
Cluster

This example shows how to use the cloud or a cluster for block error rate (BLER) simulation of low-
density parity-check (LDPC) coding for the 5G NR downlink shared transport channel (DL-SCH).

For ultra-reliable low-latency communication in 5G systems, some use cases require a BLER as low as
1e-6 [1]. In this low BLER region, obtaining accurate results requires simulating many millions of
blocks. On a single desktop computer, this simulation can take days. You can use the cloud or a
cluster to reduce simulation time. For example, a 256-worker cluster on AWS is about 42 times as fast
as a 6-core desktop in one test scenario. For more details, see Sample Results.

In this example, you first calculate one point on a BLER curve by using a single desktop computer.
You then use MATLAB Parallel Server in the cloud or on a cluster on your local network to calculate
the BLER curve across a range of signal-to-noise ratios.

DL-SCH with LDPC Coding

First, simulate one transport block for the 5G NR DL-SCH with LDPC coding. This code is the basis of
the helperLDPCBLERSim function which uses parfor to simulate many transport blocks in parallel.

% Set up DL-SCH coding parameters
TBS = 3816; % Transport block size, a positive integer
codeRate = 308/1024; % Target code rate, a real number between 0 and 1
rv = 0; % Redundancy version, 0-3
modulation = 'QPSK'; % Modulation scheme, QPSK, 16QAM, 64QAM, 256QAM
nlayers = 1; % Number of layers, 1-4 for a transport block
cbsInfo = nrDLSCHInfo(TBS,codeRate);
disp('DL-SCH coding parameters')
disp(cbsInfo)

switch modulation
 case 'QPSK'
 bitsPerSymbol = 2;
 case '16QAM'
 bitsPerSymbol = 4;
 case '64QAM'
 bitsPerSymbol = 6;
 case '256QAM'
 bitsPerSymbol = 8;
end

% Set up AWGN channel
EbNo = 1.25; % in dB
outlen = ceil(TBS/codeRate);
snrdB = convertSNR(EbNo,"ebno",...
 BitsPerSymbol=bitsPerSymbol,CodingRate=TBS/outlen);

% Random transport block data generation
in = randi([0 1],TBS,1,'int8');
% Transport block CRC attachment
tbIn = nrCRCEncode(in,cbsInfo.CRC);
% Code block segmentation and CRC attachment
cbsIn = nrCodeBlockSegmentLDPC(tbIn,cbsInfo.BGN);
% LDPC encoding

1 Communications Toolbox Featured Examples

1-398

enc = nrLDPCEncode(cbsIn,cbsInfo.BGN);
% Rate matching and code block concatenation
chIn = nrRateMatchLDPC(enc,outlen,rv,modulation,nlayers);
% Symbol mapping
symOut = nrSymbolModulate(chIn,modulation);
% AWGN channel
[rxSig, noiseVar] = awgn(symOut,snrdB);
% Symbol demapping
rxllr = nrSymbolDemodulate(rxSig,modulation,noiseVar);
% Rate recovery
raterec = nrRateRecoverLDPC(rxllr,TBS,codeRate,rv,modulation,nlayers);
% LDPC decoding, with early termination and at most 12 iterations
decBits = nrLDPCDecode(raterec,cbsInfo.BGN,12);
% Code block desegmentation and CRC decoding
[blk,~] = nrCodeBlockDesegmentLDPC(decBits,cbsInfo.BGN,TBS+cbsInfo.L);
% Transport block CRC decoding
[out,~] = nrCRCDecode(blk,cbsInfo.CRC);
% Compare
blockError = any(out~=in)

DL-SCH coding parameters
 CRC: '16'
 L: 16
 BGN: 2
 C: 1
 Lcb: 0
 F: 8
 Zc: 384
 K: 3840
 N: 19200

blockError =

 logical

 0

Parallelization Strategy

The helperLDPCBLERSim function uses the current parallel pool to calculate the LDPC BLER in
parallel. For each EbNo value, the function simulates blocks by successive parfor calls until a target
number of block errors is achieved or each worker on a cluster has simulated a specified maximum
number of blocks. In each parfor call, all workers on the cluster work in parallel for the same EbNo
value and simulate the same number of blocks, so all workers are expected to finish their
computation at roughly the same time.

Preventing some workers from finishing earlier than other workers is crucial to the efficient use of a
cluster, and minimizing overall execution time.

Use Desktop Computer to Get One Point on BLER Curve
delete(gcp('nocreate')); % If a parpool exists, shut it down first
pool = parpool('local'); % Create a local parpool for helperLDPCBLERSim
targetNumBlockErrors = 100;
numBlocksInsideParfor = 1000; % Number of blocks to simulate per worker in one parfor loop
maxNumBlocksPerWorker = 1e9;

 5G LDPC Block Error Rate Simulation Using the Cloud or a Cluster

1-399

[BLER, snrdB, finalNumBlockErrors, finalNumBlocks, executionTime] = ...
 helperLDPCBLERSim(TBS, codeRate, EbNo, targetNumBlockErrors, ...
 maxNumBlocksPerWorker, numBlocksInsideParfor)
delete(pool);

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.
Begin simulation for EbNo = 1.25 using 20 workers
EbNo = 1.25 Elapsed time = 00:01:42 Number of blocks simulated = 20000 Number of block errors found = 681

BLER =

 0.0340

snrdB =

 -0.9572

finalNumBlockErrors =

 681

finalNumBlocks =

 20000

executionTime =

 102.6536

Parallel pool using the 'Processes' profile is shutting down.

Set up Your Cluster

Before you can run the next sections, you must get access to a cluster. On the MATLAB Home tab, go
to Parallel > Discover Clusters to find out if you already have access to a cluster with MATLAB
Parallel Server™. For more information, see “Discover Clusters” (Parallel Computing Toolbox).

Use Cluster on Your Local Network to Generate One BLER Curve

Check whether this MATLAB session has access to a MATLAB Parallel Server cluster on your local
network. If so, create a parpool to use all workers on the cluster and then generate a BLER curve.

[pool, cluster] = helperCreateParpool("Cluster");
EbNo = -0.5:0.25:2.25;
if ~isempty(cluster)
 disp('Found MATLAB Parallel Server cluster on your local network')
 [BLER, snrdB, finalNumBlockErrors, finalNumBlocks, executionTime] = ...
 helperLDPCBLERSim(TBS, codeRate, EbNo, targetNumBlockErrors*ones(size(EbNo)), ...
 maxNumBlocksPerWorker*ones(size(EbNo)), numBlocksInsideParfor*ones(size(EbNo)));
 figure
 semilogy(snrdB,BLER,'x-')
 xlabel('SNR (dB)');
 ylabel('BLER')

1 Communications Toolbox Featured Examples

1-400

 grid on
 delete(pool);
end

Use the Cloud to Generate One BLER Curve

Check whether this MATLAB session has access to a MATLAB Parallel Server cluster running in AWS
managed by MathWorks Cloud Center. If so, create a parpool to use all workers on the cluster and
then generate a BLER curve.

To learn how to start and test your first cluster on the cloud, see “Start and Test MATLAB Parallel
Server Cluster in Cloud Center”.

[pool, cluster] = helperCreateParpool("Cloud");
if ~isempty(cluster)
 disp('Found MATLAB Parallel Server cluster on the cloud')
 if strcmpi(cluster.State,'online')
 [BLER, snrdB, finalNumBlockErrors, finalNumBlocks, executionTime] = ...
 helperLDPCBLERSim(TBS, codeRate, EbNo, targetNumBlockErrors*ones(size(EbNo)), ...
 maxNumBlocksPerWorker*ones(size(EbNo)), numBlocksInsideParfor*ones(size(EbNo)));
 figure
 semilogy(snrdB,BLER,'x-')
 xlabel('SNR (dB)');
 ylabel('BLER')
 grid on
 delete(pool);
 disp("If you do not need to use the cluster, go to https://cloudcenter.mathworks.com and shut it down.")
 else
 disp("The cluster " + cluster.Name + " is not online. Go to https://cloudcenter.mathworks.com, start it, and then run this example again.")
 end
end

Sample Results

This example compares running on a 6-core desktop, a 128-worker cluster on a local network, and a
256-worker cluster on AWS Cloud to generate three BLER curves. The desktop has a 6-core Intel
Xeon W-2133 processor. The 128-worker cluster has eight 16-core Intel Xeon E5-2683 v4 processors.
The 256-worker cluster has sixteen m5.8xlarge AWS EC2 machines (16 cores per machine). In 16
hours and 20 minutes, the 256-worker cluster completed 12 points, down to BLER = 2.80823e-7. In
the same period of time, the 128-worker cluster completed 11 points (down to BLER = 2.69305e-6)
and the 6-core desktop completed 10 points (down to BLER = 3.27497e-5).

blerFig = openfig('LDPCBLERcurves.fig');

 5G LDPC Block Error Rate Simulation Using the Cloud or a Cluster

1-401

To compare the relative speeds of the three platforms, the execution times for simulating 768,000
blocks at two SNR values were logged.

 SNR | 6-core desktop | 128-worker cluster | 256-worker cluster

 -0.457 dB | 5455 seconds | 407 seconds | 129 seconds

 -0.207 dB | 5006 seconds | 381 seconds | 120 seconds

At SNR = -0.457 dB, the 256-worker cluster is about 5455/129 = 42.287 times as fast as the 6-core
desktop, and about 407/129 = 3.155 times as fast as the 128-worker cluster.

1 Communications Toolbox Featured Examples

1-402

At SNR = -0.207 dB, the 256-worker cluster is about 5006/120 = 41.717 times as fast as the 6-core
desktop, and about 381/120 = 3.175 times as fast as the 128-worker cluster.

Hence, the 256-worker cluster is generally about 42 times as fast as the 6-core desktop and about
3.16 times as fast as the 128-worker cluster.

Further Exploration

You can use the framework of this example to generate BLER curves for other transport block sizes
and code rates. The speedup achievable by a sufficiently large cluster makes it practical to find LDPC
error floors (probably below BLER = 1e-7) at high SNR values.

You can also explore the helper functions for creating a parallel pool and running an LDPC BLER
simulation:

• helperCreateParpool.m
• helperLDPCBLERSim.m

References

1 Sybis, Michal, Krzysztof Wesolowski, Keeth Jayasinghe, Venkatkumar Venkatasubramanian, and
Vladimir Vukadinovic. "Channel Coding for Ultra-Reliable Low-Latency Communication in 5G
Systems." In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 1-5. Montreal, QC,
Canada: IEEE, 2016. https://doi.org/10.1109/VTCFall.2016.7880930.

See Also
Functions
nrLDPCDecode | ldpcDecode | parfor | parpool

Related Examples
• “Start and Test MATLAB Parallel Server Cluster in Cloud Center”
• “Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
• “MathWorks Cloud Center”

 5G LDPC Block Error Rate Simulation Using the Cloud or a Cluster

1-403

https://doi.org/10.1109/VTCFall.2016.7880930

Digital Video Broadcasting - Cable (DVB-C)

This example shows part of the ETSI (European Telecommunications Standards Institute) EN 300 429
standard for cable system transmission of digital television signals [1]. The example uses
communications System objects to simulate the Digital Video Broadcasting - Cable (DVB-C)
transmitter-receiver chain.

Introduction

The DVB-C standard describes transmission of digital television signals over cable lines using the
MPEG-2 or MPEG-4 family of digital audio and video streams. In this example, we model a portion of
that standard. The stream of data is transmitted using Reed-Solomon codes and single carrier QAM
modulation. The standard prescribes the transmitter design and sets minimum performance
requirements for the receiver.

The purpose of this example is to:

• Model the main portions of a possible transmit/receive design (operating in 64-QAM mode with
MPEG-2 Transport Packet data)

• Illustrate the use of key Communications Toolbox™ System objects for DVB-C (or similar) system
design

• Illustrate creation of higher level System objects that contain other System objects in order to
model large components of the system under test

• Generate error statistics that will help to determine whether the model satisfies system
performance requirements

• Illustrate creation of test harness that can support variable numbers of test runs. In this case, we
use that support to support one mode where only a single EbNo is specified, and we observe
spectra and scatterplots. We also support a mode where multiple EbNo are specified, in order to
generate a BER curve.

Initialization

The commdvbc_init.m script initializes simulation parameters and generates a structure, prmDVBC.
The fields of this structure are the parameters of the DVB-C system at hand.

commdvbc_init
% The fields of this structure are the parameters of the DVB-C system at
% hand.
prmDVBC

prmDVBC =

 struct with fields:

 bitsPerByte: 8
 bitsPerMTpl: 6
 MPEG2DatRateBitPerS: 9600000
 rawMPEG2DataPcktLen: 184
 MPEG2TrnsprtPcktLen: 188
 MPEG2TrnsprtFramePer: 1.5667e-04
 MPEG2PcktsPerSprFrm: 8
 MPEG2TrnsSuperFrame: 1504

1 Communications Toolbox Featured Examples

1-404

 PRBSSeqPeriodBytes: 1503
 PRBSSeqPeriodBits: 12024
 RSCodewordLength: 204
 CableChanFrameLen: 272
 CableChanFrmPeriod: 1.5667e-04
 RCosineSampsPerSym: 8
 CableSymbolPeriod: 7.1998e-08
 RCosineFilterSpan: 16
 TxRxSymbolSampDelay: 288
 DeintrlvrAlignDelay: 192
 QAMSymbolMapping: [44 45 41 40 52 54 62 60 46 47 43 42 53 55 63 ...]
 ConvIntlNumBranches: 12
 ConvIntlCellDepth: 17

Run System under Test

The main loop in the system under test processes the data packet-by-packet, where eight packets
form a superframe. Set useCodegen=true in order to use the generated code instead of the
MATLAB® code. Set the MATLAB variable compileIt to true in order to create the generated code.

Code Architecture for the System under Test

This example models the link from the cable operator to a customer's set top box. The model for that
link is contained in a function named runDVBCSystemUnderTest. The data processing loop is divided
into five main parts. A System object™ was used to model each of those five components in that link.
Those objects are:

1) DVBCSource: generates the bitstream
2) DVBCTransmitter: contains the transmitter (encoding, modulation, filtering, etc.)
3) DVBCReceiver: contains the receiver
4) DVBCBER: calculates error rates
5) DVBCScopes: optional object that provides visualization

The inner loop of runDVBCSystemUnderTest makes use of these objects:

You can use a for-loop around the system under test to process a fixed number of super frames.
Alternatively, you can use a while-loop to control the simulation length based on the number of
simulated errors and transmitted bits. We have done the latter, targeting the number of errors to 100,
and maximum number of transmissions to 1e6.

while (berEnd2End(2) < totalErrors) && (berEnd2End(3) < totalBits)
 txBytes = dvbcSource(); % Source
 [txPckt, modTxPckt] = dvbcTX(txBytes); % Transmitter
 chPckt = awgn(txPckt,SNR(n),sigPower); % Channel
 [rxBytes, modRxPckt, rxPcakt] = dvbcRX(chPckt); % Receiver
 [berEnd2End, berDemod] = ...
 dvbBER(txBytes,rxBytes,modTxPckt,modRxPckt); % BER
 if useScopes
 runDVBCScopes(dvbcScope,txPckt,chPckt,rxPckt);
 end
end

Descriptions of the Individual Components

MPEG-2 Baseband Physical Interface - Data source

 Digital Video Broadcasting - Cable (DVB-C)

1-405

This section generates random data and header bits and appends a header synchronization byte. The
first packet of each superframe uses the bit-complement of the header synchronization byte. The code
for this component is contained in DVBCSource.m.

Transmitter Baseband Processing

This section randomizes the data using a pseudo-noise sequence. The transmitter applies RS
encoding and convolutional interleaving. The function convertBytesToMTuplesDVBCDemo.m converts
8-bit bytes into 6-bit chunks for the 64-QAM modulator. It applies a square root raised cosine filter
with 8x oversampling to the data stream after modulation. The code for this component is contained
in DVBCTransmitter.m.

Channel

The signal is transmitted through an AWGN channel by using the awgn function.

Receiver Baseband Processing

This section demodulates received symbols and converts 6-bit chunks into bytes using the
convertMTuplesToBytesDVBCDemo.m function. Since the filtering operation introduces a delay, the
example synchronizes the received bytes to the packet edge using the delay System object,
hPacketSync. Note that, the interleaver delay is a multiple of the packet size, so synchronizing to the
packet edge is enough. The receiver deinterleaves the packet-synchronized bytes and decodes using
the RS decoder System object. Because the example uses a single PN sequence generator, it
synchronizes the decoded data to the superframe edge before derandomization. The example shows
the transmitted and received channel signal spectrum. Finally, it compares transmitted bits and
received bits as well as the modulator input and the demodulator output to obtain bit error rates. The
code for this component is contained in DVBCReceiver.m.

BER Computations

This component compares the received, decoded bits and compares those to the transmitted bits in
order to compute a bit error rate. The code for this component is contained in DVBCBER.m.

Visualization

Optional instrumentation provides visualization. The code for this component is contained in
DVBCScopes.m.

Running the System under Test

We first run the system under test with a single EbNo and visualization turned on in order to verify
that it is working properly.

totalErrors = 100;
totalBits = 1e6;
EbNo = 16.5;
useScopes = true;
useCodegen = false;
compileIt = false;
if compileIt
 % Make EbNo input var-size row vector (max length = 100)
 codegen runDVBCSystemUnderTest -report -args {coder.Constant(useScopes),coder.Constant(prmDVBC), coder.Constant(num), 1, coder.typeof(EbNo,[1 100],[false true]), 1, 1}
end
if useCodegen
 % Constant inputs do not appear in call to generated code version

1 Communications Toolbox Featured Examples

1-406

 [berEnd2End, berDemod] = runDVBCSystemUnderTest_mex(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits);
else
 [berEnd2End, berDemod] = runDVBCSystemUnderTest(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits);
end

 Digital Video Broadcasting - Cable (DVB-C)

1-407

BER Curves

Next, we rerun the system under test with a vector of EbNo's and visualization turned off to generate
a BER curve.

Calling the error rate measurement objects, berEnd2End and berDemod, output a 3-by-1 vector
containing updates of the measured BER value, the number of errors, and the total number of bit
transmissions. Display the BER at the output of the demodulator together with the end-to-end BER.

EbNo = 11.5:0.5:14.5;
useScopes = false;
useCodegen = false;
compileIt = false;
if compileIt
 % Make EbNo input var-size row vector (max length = 100)
 codegen runDVBCSystemUnderTest -report -args {coder.Constant(useScopes),coder.Constant(prmDVBC), coder.Constant(num), 1, coder.typeof(EbNo,[1 100],[false true]), 1, 1}
end
if useCodegen
 % Constant inputs do not appear in call to generated code version
 [berEnd2End, berDemod] = runDVBCSystemUnderTest_mex(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits)
else
 [berEnd2End, berDemod] = runDVBCSystemUnderTest(useScopes, prmDVBC, num, sigPower, EbNo, totalErrors, totalBits)
end
%
plotDVBCResults(EbNo, berEnd2End, berDemod);

berEnd2End =

1 Communications Toolbox Featured Examples

1-408

 0.0193
 0.0139
 0.0075
 0.0038
 0.0006
 0.0001
 0.0000

berDemod =

 0.0174
 0.0133
 0.0083
 0.0066
 0.0041
 0.0028
 0.0018

Summary

This example utilized several System objects to simulate part of the DVB-C communication system
over an AWGN channel. It showed how to model several parts of the DVB-C system such as the
randomization, coding, and interleaving. The example also used the delay System objects to

 Digital Video Broadcasting - Cable (DVB-C)

1-409

synchronize the transmitter and the receiver. System performance was measured using the BER
curves obtained with error rate measurement System objects.

Appendix

This example uses the following scripts and helper functions:

• runDVBCSystemUnderTest.m
• DVBCSource.m
• DVBCTransmitter.m
• DVBCReceiver.m
• DVBCBER.m
• DVBCScopes.m
• convertBytesToMTuplesDVBCDemo.m
• convertMTuplesToBytesDVBCDemo.m
• createDVBCScopes.m
• runDVBCScopes.m
• plotDVBCResults.m

Selected Bibliography

1 ETSI Standard EN 300 429 V1.2.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for cable systems, European Telecommunications Standards Institute,
Valbonne, France, 1998.

1 Communications Toolbox Featured Examples

1-410

Digital Video Broadcasting - Cable (DVB-C) in Simulink

This model shows part of the ETSI (European Telecommunications Standards Institute) EN 300 429
standard for cable system transmission of digital television signals [1]. The standard prescribes the
transmitter design and sets minimum performance requirements for the receiver.

The purpose of this example is to:

• Model the main portions of a possible transmitter design (operating in 64-QAM mode with
MPEG-2 Transport Packet data)

• Model the main portions of a possible receiver design (operating in 64-QAM mode with MPEG-2
Transport Packet data)

• Generate error statistics that will help determine whether the model satisfies the system
performance requirements

• Illustrate the use of key Communications Toolbox™ library blocks for DVB-C (or similar) system
design

Available Example Versions

There are two different versions of this example.

Floating-point version: commdvbc.slx

Fixed-point version: commdvbc_fixpt.slx

 Digital Video Broadcasting - Cable (DVB-C) in Simulink

1-411

Structure of the Example

MATLAB® Workspace Variable Parameter Definitions

When the example model is first loaded, it creates the MATLAB workspace variable prmDVBC, which
is a structure with members that are used as parameters in the blocks in the model file. Note also
that this workspace variable is cleared when the model is closed.

prmDVBC =

 struct with fields:

 bitsPerByte: 8
 bitsPerMTpl: 6
 MPEG2DatRateBitPerS: 9600000
 rawMPEG2DataPcktLen: 184
 MPEG2TrnsprtPcktLen: 188
 MPEG2TrnsprtFramePer: 1.5667e-04
 MPEG2PcktsPerSprFrm: 8
 MPEG2TrnsSuperFrame: 1504
 PRBSSeqPeriodBytes: 1503
 PRBSSeqPeriodBits: 12024
 RSCodewordLength: 204
 CableChanFrameLen: 272
 CableChanFrmPeriod: 1.5667e-04
 RCosineSampsPerSym: 8

1 Communications Toolbox Featured Examples

1-412

 CableSymbolPeriod: 7.1998e-08
 RCosineFilterSpan: 16
 TxRxSymbolSampDelay: 288
 DeintrlvrAlignDelay: 192
 QAMSymbolMapping: [44 45 41 40 52 54 62 60 46 47 43 42 53 55 63 61 …]
 ConvIntlNumBranches: 12
 ConvIntlCellDepth: 17

Baseband Physical Interface (Simulated MPEG-2 Data Source)

This portion of the model corresponds to sections 4.1, 5, and 6 in [1]. The MPEG-2 Transport Packet
is defined in ISO®/IEC 13818-1 [2], and is comprised of 188-byte packets.

Communications Toolbox, DSP System Toolbox™, and Simulink® library blocks are used to simulate a
MPEG-2 Transport Packet data stream for system simulation and BER performance measurement
purposes.

Transmitter Baseband Processing

• Sync1 Inversion and Randomization

This subsystem corresponds to sections 4.2 and 7.1 in [1]. The MPEG-2 Sync1 byte is inverted, and
the data stream (other than the Sync bytes) is randomized for spectrum shaping purposes. A
resettable PN Sequence Generator library block is used as part of the scrambler for this data
randomization process.

• Shortened (204,188) Reed-Solomon Encoder

This library block corresponds to sections 4.3 and 7.2 in [1]. As described in the standard, this
process adds 16 parity bytes to the MPEG-2 Transport Packet to give a (204,188) codeword. This
allows up to eight (8) erroneous bytes per transport packet to be corrected by the corresponding
receiver Reed-Solomon Decoder block.

• Convolutional Interleaver

This library block corresponds to sections 4.4 and 7.3 in [1]. The interleaving process is based on
the Forney approach [3] and is compatible with the Ramsey type III approach [4], with I = 12.

• Byte (8-bit) to M-Tuple (6-bit) Conversion

A MATLAB® Function block is used to perform this processing. 8-bit data bytes are converted into
64-ary (6-bit) values. This block corresponds to sections 4.5 and 8 in [1].

• Differential Encoding

An example implementation of the Differential Encoding unit as described in sections 4.6 and 8 in
[1] is shown using a MATLAB Function block. For the purposes of this example model, the
Differential Encoding unit output is connected to a terminator (i.e., the unit is bypassed).

• 64-QAM Constellation Mapping

The Rectangular QAM Modulator Baseband library block maps the baseband 64-ary (M-tuple)
values to complex (I and Q) 64-QAM constellation symbol values for transmission, as described in
sections 4.7 and 9 in [1].

 Digital Video Broadcasting - Cable (DVB-C) in Simulink

1-413

Square Root Raised Cosine Interpolation Filter

This library block performs the baseband shaping of the complex (I and Q) constellation symbol
values for transmission, as described in sections 4.7, 9, and Annex A in [1].

AWGN Channel

The System FEC as specified by the standard is designed to improve the Bit Error Rate (BER) from
10^-4 to the range, 10^-10 to 10^-11 ("Quasi Error Free" operation). The AWGN Channel library
block Signal to Noise Ratio (Eb/No) is set to 16.5 dB corresponding to an operating BER of
approximately 10^-4.

Square Root Raised Cosine Rx Decimation Filter

This library block performs the matched decimation filtering of the received complex (I and Q)
constellation symbol values, as described in sections 4.7, 9, and Annex A in [1].

Receiver Baseband Processing

• 64-QAM Constellation Demapping

The Rectangular QAM Demodulator Baseband library block demaps the received baseband
complex (I and Q) 64-QAM constellation symbol values to 64-ary M-tuples, as described in sections
4.7 and 9 in [1].

• Differential Decoding

For the purposes of this example model, the Differential Decoding portion is omitted. Additionally, a
more realistic receiver system implementation will likely have equalization and synchronization
processing prior to this portion of the receiver model.

• M-Tuple (6-bit) to Byte (8-bit) Conversion

A MATLAB Function block is used to perform this processing, which is the inverse of the Byte to M-
Tuple processing used in the transmitter. 64-ary (6-bit) M-tuple values are repacked into 8-bit data
bytes.

• Convolutional Deinterleaver

The Convolutional Deinterleaver library block corresponds to the Convolutional
Interleaver library block appearing in the transmitter subsystem implementation. The
deinterleaving process is based on the Forney approach [3] and is compatible with the Ramsey type
III approach [4], with I = 12.

For the sake of example model simplicity, a simple extra delay is used to synchronize the first sync
byte into the "0" branch of the Convolutional Deinterleaver. A more realistic receiver system
implementation will likely have additional upstream synchronization processing prior to this portion
of the model.

• Shortened (204,188) Reed-Solomon Decoder

This library block performs the R-S decoding corresponding to the encoded data packets.

• Sync1 Inversion and Energy Dispersal Removal

This subsystem performs data descrambling to obtain the received MPEG-2 Transport Packet data
bytes.

1 Communications Toolbox Featured Examples

1-414

Results and Displays

To examine the performance of the example, use the included visualization blocks, as listed below.

Overall System Results and Displays:

• Bit rate (Mbit/s) display
• Cable symbol rate (MBaud) display
• 64-QAM bit error rate (BER) display
• System bit error rate (BER) display
• Various internal bit error rate (BER) displays (under the Internal Tx and Rx BER subsystem)

Transmitter/Receiver Results and Displays:

• Rx 64-QAM Constellation scatter plot
• Tx/Rx Spectrum (2MHz BW) scope
• Total Number of Errors Corrected display

 Digital Video Broadcasting - Cable (DVB-C) in Simulink

1-415

Differences Between the Fixed-Point and Floating-Point Example Versions

There are two different versions of this example -- a floating-point version and a fixed-point version.
The examples are similar. In particular, most of the Transmitter Baseband Processing and
Receiver Baseband Processing subsystems are identical, and mainly use unsigned integer data
types in their signal paths.

The differences between the two versions are in how the signals are processed by the Byte to M-
tuple Conversion, 64-QAM Constellation Mapping, Square Root Raised Cosine Tx
Interpolation Filter, Square Root Raised Cosine Rx Decimation Filter, 64-QAM
Constellation Demapping, and M-Tuple to Byte Conversion blocks. These blocks use
floating-point (and built-in integer) arithmetic when their input and/or output signals are floating-
point (i.e., data type double or single) or purely built-in integer (e.g., uint8), as is the case in the
floating-point version (commdvbc.slx).

In the fixed-point version (commdvbc_fixpt.slx) however, these blocks use fixed-point arithmetic
because their input and/or output signals are fixed-point data types (i.e., sfix or ufix in Simulink).
Also note that a Fixed-Point Designer™ license is required to run the fixed-point version of the
example.

The following simulation results show matching BER performance for the chosen settings when
comparing the floating-point version with the fixed-point version.

1 Communications Toolbox Featured Examples

1-416

Selected Bibliography

1 ETSI Standard EN 300 429 V1.2.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for cable systems, European Telecommunications Standards Institute,
Valbonne, France, 1998.

2 ISO/IEC 13818-1, "Coding of moving pictures and associated audio."
3 Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE Transactions on

Communications, vol. COM-19, October 1971, pp. 772-781.
4 Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on Information Theory,

IT-16 (3), May 1970, pp. 338-345.

 Digital Video Broadcasting - Cable (DVB-C) in Simulink

1-417

Digital Video Broadcasting - Terrestrial

This example shows part of the European Telecommunications Standards Institute (ETSI) EN 300 744
standard for terrestrial transmission of digital television signals. The standard prescribes the
transmitter design and sets minimum performance requirements for the receiver.

Example Structure

The example:

• Presents a model, commdvbt, of the DVBT transmitter in its 2k mode, as prescribed in the
standard, and a possible receiver design

• Generates error statistics that will help determine whether the receiver model satisfies the
performance requirements

• Presents an alternative model, commdvbt_alt, with the DVB-T 64-QAM Demapper subsystem
modified to compute exact bitwise log-likelihood ratios (LLRs) by using a Rectangular QAM
Demodulator block

Using a list and a schematic, the standard shows the major processes that the data undergoes. The
top row of blocks in the commdvbt model mimics the structure of the transmitter schematic.
Subsystems in the commdvbt model perform major processes.

This table lists subsystems and corresponding processes from the schematic.

1 Communications Toolbox Featured Examples

1-418

The bottom row of icons in the model represents subsystems that make up the receiver. The model
also includes a source of random data, a channel model, error statistic calculators, and several sinks.

Variables in the Model

The model uses variables as listed in this table.

The commdvbt_tablegen helper file computes the values of these variables.

Design of the Receiver

The standard does not specify how to implement the receiver, although some inverse operations, such
as deinterleaving, are clearly defined. This example illustrates a possible receiver design by using
these features:

• A 64-QAM demapper that makes soft decisions, producing a set of six real numbers for each
complex number in its input. These six numbers represent soft decisions on the real and imaginary
components' first bit, second bit, and third bit. The Viterbi Decoder subsystem interprets the soft-
decision numbers and uses them to decode the punctured convolutional code properly. To examine
the exact mapping more closely, see the DVB-T 64-QAM Demapper subsystem, as well as the
dvbt_qam variable.

• A traceback depth of 136 in the Viterbi Decoder block. This block appears within the top-level
Viterbi Decoder subsystem.

Receive delay calculation

 Digital Video Broadcasting - Terrestrial

1-419

The DVB-T inner interleaver and deinterleaver contains the following frame size rebuffering and the
corresponding delays:

• 2176 to 756 resulting in 756 sample delay
• 756 to 9072 resulting in 9072 sample delay
• 9072 to 756 resulting in 0 sample delay
• 756 to 2176 resulting in 2176 sample delay

This results in a delay of 12004 samples. Since 2176 is the input frame size to the Viterbi decoder
mod(12004,2176) results in a delay of 1124 which corresponds to 1124*3/4 = 843 samples due to
rate 3/4 coding. With a traceback depth of 136, the Viterbi decoder also adds a further delay of 136,
bringing the total delay to 843+136 = 979. In order to align the actual codewords before feeding into
the convolutional deinterleaver an extra delay of 1632-979 = 653 samples is added. Rate 3/4 coding
also causes the 12004 delay to manifest as 12004*3/4 = 9003. Thus the total delay for the model
excluding convolutional interleaving/deinterleaving is 9003+136+653 = 9792 which is equal to 6
frames as the frame size at the 'inner' Error rate calculation block is 1632.

Convolutional interleaving/deinterleaving with 12 rows of shift registers adds a delay of 11 frames.
Due to this the receive delay for the 'outer' error rate calculation block is a total of 6 + 11 = 17
frames.

Results and Displays

To examine the performance of the example, use the sink blocks that are included in it, listed in this
table.

1 Communications Toolbox Featured Examples

1-420

Set the simulation parameters for the next display:

 Digital Video Broadcasting - Terrestrial

1-421

Digital Video Broadcasting-Terrestrial, Alternate Form

The commdvbt_alt model illustrates an alternative way to model the 64-QAM Demapper in the
receiver.

1 Communications Toolbox Featured Examples

1-422

To see how the alternative version implements the 64-QAM Demapper, compare the alternative DVB-T
64-QAM Demapper subsystem in the commdvbt_alt model with the original DVB-T 64-QAM
Demapper subsystem in the commdvbt model.

commdvbt — In the original model, soft decisions are computed using a subsystem-based
implementation. In-phase and quadrature phase signal components are extracted after appropriately
scaling the received signal, and then they are shifted to obtain soft decisions for various bits.

commdvbt_alt — In the alternative model, a Rectangular QAM Demodulator block is configured to
compute exact bitwise LLRs. Noise variance needs to be provided and it is computed using the
received signal and the signal generated by the DVB-T 64-QAM mapper. This approach makes
derivation of soft decisions easy for any signal constellation through the use of the built-in block.

Supporting Files

The example uses this helper file and models

• commdvbt_tablegen.m — Helper file to compute variables used by models in the example
• commdvbt.slx — Model of a DVBT transmitter configured for 2k mode and a possible receiver

design
• commdvbt_alt.slx — Alternative model with the modified DVB-T 64-QAM Demapper subsystem

to compute exact bitwise log-likelihood ratios (LLRs) by using a Rectangular QAM Demodulator
block

Selected Bibliography

ETSI Standard EN 300 744: Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television, European Telecommunications Standards Institute,
Valbonne, France, 1997.

 Digital Video Broadcasting - Terrestrial

1-423

Defense Communications: US MIL-STD-188-110B Baseband
End-to-End Link

This model shows an end-to-end baseband communications system compliant with the U. S. MIL-
STD-188-110B military standard. In particular, the model implements the data phase transmission,
using a fixed-frequency serial (single-tone) waveform. This model supports these data rates: 150 bps,
300 bps, 600 bps, and 1200 bps. It also implements interleaver lengths of 0.6 s and 4.8 s.

The system described in this standard is intended for long-haul and tactical communications over HF
(high frequency) channels. The system is compatible with the NATO standard STANAG 4539.

Structure of the Example

The communication system in this example performs these tasks:

• Generation of random binary data.
• Coding that depends on the data rate that you select in the Model Parameters block's dialog box.

The Encoder block at the top level of the block diagram is a subsystem whose contents depend on
the selected data rate. In all cases, this subsystem contains a convolutional encoder that uses a
rate 1/2 code with constraint length 7. However, the subsystem can achieve rate 1/4 or 1/8 by
following the encoder with a repetition operation.

1 Communications Toolbox Featured Examples

1-424

• Interleaving using a matrix specified by the standard.
• Binary-to-Gray mapping.
• Appending the training sequence, also referred to as the known data or the channel probe

symbols. By contrast the unknown symbols are the data that the user wants to transmit.
• Data scrambling, by adding the data to a randomizing sequence modulo 8.
• 8-PSK modulation.
• Watterson channel model, implemented using the SISO Fading Channel library block. Specifically,

the block implements the moderate channel model described in [2], using a Gaussian Doppler
spectrum.

• Receiver equalization using an RLS equalizer. Internally, the equalizer subsystem scrambles the
training sequence so as to compare corresponding data sets, introduces delays to align frame
boundaries, and descrambles the equalized signal.

• Channel symbol demapping.
• Deinterleaving.
• Viterbi decoding. The decoder is a subsystem that mirrors the encoder subsystem. The decoder

includes a reset port, because it is necessary to reset the Viterbi decoder after an initial delay
period elapses.

Other Features of the Example:

• Inside the encoder subsystem is an icon labeled "Compare FEC Encoder." You can double-click it
to open another Simulink model that compares the block diagram appearing in the standard with
the single Convolutional Encoder block in the Communications Toolbox™. The model illustrates
that the two ways of modeling the convolutional code yield the same results.

• Inside the Interleave Matrix subsystem is an icon labeled "Interleave Mapping." You can double-
click it to open a plot that shows the mapping, which depends on your choices in the Model
Parameters dialog box.

Results and Displays

When you run the simulation, it displays these numerical or graphical results:

• The bit error rate of the entire system.
• The data rate at several points during the simulation. The source data rate is the one that you

specify in the Model Parameters dialog box, while the last displayed data rate (before the
Scrambler) is always 2400 bps. The other displayed data rates depend on your choices in the
Model Parameters dialog box.

• The Watterson channel impulse response.

 Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link

1-425

• Constellation diagram of the signal before equalization.

• Constellation diagram of the signal after equalization.

1 Communications Toolbox Featured Examples

1-426

Simulink® Techniques Illustrated in the Example

The coding behavior in the standard depends on the data rate. This model varies the behavior of the
coding and decoding subsystems depending on the Information Rate parameter that you select in
the Model Parameters dialog box. Double-clicking the encoder or decoder icon enables you to see the
contents of the subsystem based on the current value of the Information Rate parameter. When you
change the Information Rate parameter, an initialization function associated with the Model
Parameters block sets certain model parameters and also chooses the contents of the encoder and
decoder subsystems.

Selected Bibliography

[1] MIL-STD-188110B: Interoperability and Performance Standards for Data Modems, U. S.
Department of Defense, 2000.

[2] ITU-R Recommendation 520-2: Use of High Frequency Ionospheric Channel Simulators,
1978/1982/1992.

See Also

The Communications Toolbox example “Defense Communications: US MIL-STD-188-110A Receiver”
on page 1-320 shows a MIL-STD-188-110A receiver, with preamble detection, carrier synchronization,
and symbol timing synchronization. It runs at a fixed rate of 1200 bps.

 Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link

1-427

WCDMA End-to-End Physical Layer

This model shows part of the frequency division duplex (FDD) downlink physical layer of the third
generation wireless communication system known as wideband code division multiple access
(WCDMA).

WCDMA is one of five air interfaces for the third generation of wireless communications developed
within the framework of the International Mobile Telecommunications (IMT)-2000, as defined by the
International Telecommunication Union (ITU). The WCDMA technology is officially known as
IMT-2000 Direct Spread.

The specifications of the WCDMA system are developed by the Third Generation Partnership Project
(3GPP), Release 1999, which is a joint effort among standards bodies from Europe, Japan, Korea,
USA, and China.

The WCDMA air interface is a direct spread technology. This means that it spreads encoded user data
at a relatively low rate over a much wider bandwidth (5 MHz), using a sequence of pseudorandom
units called chips at a much higher rate (3.84 Mcps). By assigning a unique code to each user, the
receiver, which has knowledge of the code of the intended user, can successfully separate the desired
signal from the received waveform.

Structure of the Example

The physical layer is in charge of providing transport support to the data generated at higher layers.
This data is exchanged between the higher layers and the physical layer in the form of transport
channels. There can be up to eight transport channels processed simultaneously. Each transport
channel is associated with a different transport format that contains information on how the data
needs to be processed by the physical layer. The physical layer processes this data before sending it
to the channel.

1 Communications Toolbox Featured Examples

1-428

The model has seven main subsystems, whose functions are summarized in the following table.

WCDMA DL Tx Channel Coding Scheme. The WCDMA DL Tx Channel Coding Scheme subsystem
processes each transport channel independently according to the transport format parameters
associated with it. This subsystem implements the following functions:

• Cyclic redundancy code (CRC) attachment
• Transport block concatenation and segmentation

 WCDMA End-to-End Physical Layer

1-429

• Channel encoding
• Rate matching
• First interleaving
• Radio frame segmentation

The different transport channels are then combined to generate a coded combined transport channel
(CCTrCH). The CCTrCH is then sent to the WCDMA Tx Physical Mapping subsystem.

WCDMA Tx Physical Mapping. This subsystem implements the following functions:

• Physical channel segmentation
• Second interleaver
• Slot builder

The output of this subsystem constitutes a dedicated physical channel (DPCH), which is passed to the
WCDMA BS Tx Antenna Spreading and Modulation subsystem.

WCDMA BS Tx Antenna. The WCDMA BS Tx Antenna subsystem performs the following functions:

• Modulation
• Spreading by a real-valued orthogonal variable spreading factor (OVSF) code
• Scrambling by a complex-valued Gold code sequence
• Power weighting
• Pulse shaping

WCDMA Channel Model. The WCDMA Channel Model subsystem simulates a wireless link channel
containing additive white Gaussian noise (AWGN) and, if selected, a set of multipath propagation
conditions. You can modify the multipath profile with the Propagation conditions environment
parameter, as described under Exploring the Example.

WCDMA UE Rx Antenna. The received signal at the WCDMA UE Rx Antenna subsystem is the sum
of attenuated and delayed versions of the transmitted signals due to the so-called multipath
propagation introduced by the channel. At the receiver side, a Rake receiver is implemented to
resolve and compensate for such effect. A Rake receiver consists of several rake fingers, each
associated with a different received component. Each rake finger is made of chip correlators to
perform the despreading, channel estimation to gauge the channel, and a derotator that, using the
knowledge provided by the channel estimator, corrects the phase of the data symbol. The subsystem
coherently combines the output of the different rake fingers to recover the energy across the
different delays.

WCDMA Rx Physical Channel Demapping and Channel Decoding Scheme. The WCDMA Rx
Physical Channel Demapping and the WCDMA DL Rx Channel Decoding Scheme subsystem decode
the signal by performing the inverse of the functions of the WCDMA DL Tx Channel Coding Scheme
subsystem, described above.

Exploring the Example

You can view or change parameters in the model by double-clicking the block labeled Model
Parameters. This displays the Block Parameters dialog.

The Power for [DPCH, P-CPICH, PICH, PCCPCH, SCH] in dB parameter consists of a row vector
containing the powers in decibels corresponding to the different physical channels.

1 Communications Toolbox Featured Examples

1-430

The Show Transport Channel Settings check box enables you to specify the parameters
corresponding to the WCDMA Tx Channel Coding Scheme subsystem, the WCDMA Tx PhCh Mapping
subsystem, and its corresponding subsystems at the receiver side. When the box is selected, the
dialog displays the following parameters:

The Show Antenna Settings check box enables you to specify the parameters corresponding to the
WCDMA BS Tx Antenna and WCDMA UE Rx Antenna subsystems. When the box is selected, the
dialog displays the following parameters:

 WCDMA End-to-End Physical Layer

1-431

The Show Channel Model Settings check box enables you to specify the parameters corresponding
to the WCDMA Channel Model subsystem:

Results and Displays

The following blocks calculate various error rates in the example:

• BLER (Block Error Rate) Calculation shows the block error rate of the combined transport
channels.

• BER (Bit Error Rate) Calculation shows the results of the BER computation block associated with
each transport channel separately.

The following scopes display the signal in various ways. To view the scopes, double-click the icons
when the simulation is running.

• Time scopes show the bit stream before spreading, after spreading, and after combining the
different weighted physical channels. They show both the real and the imaginary part separately.
They also display both the real and the imaginary part of the output of the channel estimator for
the first rake finger.

• Power spectrum plots show the power spectrum of the signal before spreading, after spreading,
after pulse shaping, and at the input of the receiver antenna.

• Scatter plots show the signal constellation at the output of the data correlator, after phase
derotation, and after amplitude correction.

1 Communications Toolbox Featured Examples

1-432

Accompanying Models

The following two models offer standalone implementation of some of the subsystems included in this
example model:

commwcdmamuxandcoding.slx: shows the WCDMA DL Tx Channel Coding Scheme with Physical
Channel Mapping and WCDMA Physical Channel Demapping with the Rx Channel Decoding Scheme.

commwcdmaspreadandmod.slx : shows WCDMA BS Tx Antenna and WCDMA UE Rx Antenna.

Selected Bibliography

https://www.3gpp.org

 WCDMA End-to-End Physical Layer

1-433

https://www.3gpp.org

BER Simulations with Parallel Computing Toolbox

This example shows how to improve the execution speed of communication systems involving BER
simulations. To improve the performance of these systems, one of the available options is to
parallelize the simulations. This example introduces the usage of the Parallel Computing Toolbox™ in
BER simulations. It presents two possible ways of parallelizing BER simulations and recommends the
better method.

License Check and Opening a Parallel Pool

This section checks for the availability of Parallel Computing Toolbox. If available, it opens a parallel
pool of workers and assigns the maximum number of available workers in the pool to the variable
numWorkers. If not available it assigns numWorkers = 1, in which case the example runs on a single
core.

[licensePCT,~] = license('checkout','Distrib_Computing_Toolbox');
if (licensePCT && ~isempty(ver('parallel')))
 if isempty(gcp('nocreate'))
 parpool;
 end
 pool = gcp;
 numWorkers = pool.NumWorkers;
else
 numWorkers = 1;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Initialization

This example parallelizes the “Spatial Multiplexing” on page 1-240 example to demonstrate the usage
of Parallel Computing Toolbox. The following are the parameters needed to simulate this example.

EbNo = 1:2:11; % Eb/No in dB
N = 2; % Number of transmit antennas
M = 2; % Number of receive antennas
modOrd = 2; % constellation size = 2^modOrd
numBits = 1e6; % Number of bits
numErrs = 100; % Number of errors
lenEbNo = length(EbNo);
% Create a local random stream to be used for data generation for
% repeatability. Use the combined multiple recursive generator since it
% supports substreams.
hStr = RandStream('mrg32k3a'); % Setting the random stream
[berZF,berMMSE] = deal(zeros(lenEbNo,3));
[nerrsZF,nbitsZF,nerrsMMSE,nbitsMMSE] = deal(zeros(numWorkers,lenEbNo));

Parallelizing Across the Eb/No Range

The first method parallelizes across the Eb/No range, where one worker processes a single Eb/No
value. Here the performance is limited by the time required to process the highest Eb/No value.

simIndex = 1;
str = 'Across the Eb/No range';
disp('Performing BER simulations with one worker processing one Eb/No value ...');

1 Communications Toolbox Featured Examples

1-434

Performing BER simulations with one worker processing one Eb/No value ...

tic
parfor idx = 1:lenEbNo
 [BER_ZF,BER_MMSE] = simBERwithPCT(N,M,EbNo,modOrd, ...
 idx,hStr,numBits,numErrs);
 berZF(idx,:) = BER_ZF(idx,:);
 berMMSE(idx,:) = BER_MMSE(idx,:);
end
timeRange = toc;
clockBERwithPCT(simIndex,timeRange,timeRange,str);

Parallelizing Across the Number of Workers in the Parallel Pool

The second method parallelizes across the number of available workers, where each worker
processes the full Eb/No range. However, each worker counts (total errors/numWorkers) errors
before proceeding to the next Eb/No value. This method uses all available cores equally efficiently.

simIndex = simIndex + 1;
str = 'Across the number of available workers';
seed = 0:numWorkers-1;
disp('Performing BER simulations with each worker processing the entire range ...');

Performing BER simulations with each worker processing the entire range ...

tic
parfor n = 1:numWorkers
 hStr = RandStream('mrg32k3a','Seed',seed(n));
 for idx = 1:lenEbNo
 [BER_ZF,BER_MMSE] = simBERwithPCT(N,M,EbNo,modOrd, ...
 idx,hStr,numBits/numWorkers,numErrs/numWorkers);
 nerrsZF(n,idx) = BER_ZF(idx,2);
 nbitsZF(n,idx) = BER_ZF(idx,3);
 nerrsMMSE(n,idx) = BER_MMSE(idx,2);
 nbitsMMSE(n,idx) = BER_MMSE(idx,3);
 end
end
bZF = sum(nerrsZF,1)./sum(nbitsZF,1);
bMMSE = sum(nerrsMMSE,1)./sum(nbitsMMSE,1);
timeWorker = toc;

Below are the results obtained on a Windows® 7, 64-bit, Intel® Xeon® CPU W3550, ~3.1GHz,
12.288GB RAM machine using four cores. The table shows the performance comparison of the above
methods. We see that the second method performs better than the first. These are the results
obtained on a single run and may vary from run to run.

--
Type of Parallelization | Elapsed Time (sec)| Speedup Ratio
1. Across the Eb/No range | 89.7366 | 1.0000
2. Across the number of available workers | 28.4443 | 3.1548
--

The plot below shows the BER curves obtained for the zero forcing (ZF) and minimum mean squared
error (MMSE) receivers using the different parallelization methods.

plotBERwithPCT(EbNo,berZF(:,1),berMMSE(:,1),bZF,bMMSE);

 BER Simulations with Parallel Computing Toolbox

1-435

To generate a performance comparison table for your machine, uncomment the following line of code
and run this entire script.

% clockBERwithPCT(simIndex,timeRange,timeWorker,str);

Appendix

The following functions are used in this example:

• simBERwithPCT.m
• plotBERwithPCT.m
• clockBERwithPCT.m

1 Communications Toolbox Featured Examples

1-436

End to End System Simulation Acceleration Using GPUs

This example shows a comparison of four techniques which can be used to accelerate bit error rate
(BER) simulations using System objects in the MATLAB® Communications Toolbox™ software. A
small system, based on convolutional coding, illustrates the effect of code generation using the
MATLAB® Coder™ product, parallel loop execution using parfor in the Parallel Computing
Toolbox™ product, a combination of code generation and parfor, and GPU-based System objects.

The System objects this example features are accessible in the Communications Toolbox product. In
order to run this example you must have a MATLAB Coder license, a Parallel Computing Toolbox
license, and a sufficient GPU.

System Design and Simulation Parameters

This example uses a simple convolutional coding system to illustrate simulation acceleration
strategies. The system generates random message bits using randi. A transmitter encodes these bits
using a rate 1/2 convolutional encoder, applies a QPSK modulation scheme, and then transmits the
symbols. The symbols pass through an AWGN channel, where signal corruption occurs. QPSK
demodulation occurs at the receiver, and the corrupted bits are decoded using the Viterbi algorithm.
Finally, the bit error rate is computed. The System objects used in this system are :

• comm.ConvolutionalEncoder - convolutional encoding
• comm.PSKModulator - QPSK modulation
• comm.AWGNChannel - AWGN channel
• comm.PSKDemodulator - QPSK demodulation (approx LLR)
• comm.ViterbiDecoder - Viterbi decoding

The code for the transceivers can be found in:

• viterbiTransceiverCPU.m
• viterbiTransceiverGPU.m

Each point along the bit error rate curve represents the result of many iterations of the transceiver
code described above. To obtain accurate results in a reasonable amount of time, the simulation will
gather at least 200 bit errors per signal-to-noise ratio (SNR) value, and at most 5000 packets of data.
A packet represents 2000 message bits. The SNR ranges from 1 dB to 5 dB.

iterCntThreshold = 5000;
minErrThreshold = 200;
msgL = 2000;
snrdb = 1:5;

Initialization

Call the transceiver functions once to factor out setup time and object construction overhead. Objects
are stored in persistent variables in each function.

errs = zeros(length(snrdb),1);
iters = zeros(length(snrdb),1);

berplot = cell(1,5);
numframes = 500; %GPU version runs 500 frames in parallel.

 End to End System Simulation Acceleration Using GPUs

1-437

viterbiTransceiverCPU(-10,1,1);
viterbiTransceiverGPU(-10,1,1,numframes);

N=1; %N tracks which simulation variant is run

Workflow

The workflow for this example is:

1 Run a baseline simulation of System objects
2 Use MATLAB Coder to generate a MEX function for the simulation
3 Use parfor to run the bit error rate simulation in parallel
4 Combine the generated MEX function with parfor
5 Use the GPU-based System objects

fprintf(1,'Bit Error Rate Acceleration Analysis Example\n\n');

Bit Error Rate Acceleration Analysis Example

Baseline Simulation

To establish a reference point for various acceleration strategies, a bit error rate curve is generated
using System objects alone. The code for the transceiver is in viterbiTransceiverCPU.m.

fprintf(1,'***Baseline - Standard System object simulation***\n');

% create random stream for each snrdb simulation
s = RandStream.create('mrg32k3a','NumStreams',1,...
 'CellOutput',true,'NormalTransform', 'Inversion');
RandStream.setGlobalStream(s{1});

ts = tic;
for ii=1:numel(snrdb)
 fprintf(1,'Iteration number %d, SNR (dB) = %d\n',ii, snrdb(ii));
 [errs(ii),iters(ii)] =viterbiTransceiverCPU(snrdb(ii), minErrThreshold, iterCntThreshold);
end
ber = errs./ (msgL* iters);
baseTime=toc(ts);
berplot{N} = ber;
desc{N} = 'baseline';
reportResultsCommSysGPU(N, baseTime,baseTime, 'Baseline');

Baseline - Standard System object simulation
Iteration number 1, SNR (dB) = 1
Iteration number 2, SNR (dB) = 2
Iteration number 3, SNR (dB) = 3
Iteration number 4, SNR (dB) = 4
Iteration number 5, SNR (dB) = 5
--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 17.0205 | 1.0000
--

1 Communications Toolbox Featured Examples

1-438

Code Generation

Using MATLAB Coder, a MEX file can be generated with optimized C code that matches the
precompiled MATLAB code. Because the viterbiTransceiverCPU function conforms to the
MATLAB code generation subset, it can be compiled into a MEX function without modification.

You must have a MATLAB Coder license to run this portion of the example.

fprintf(1,'\n***Baseline + codegen***\n');
N=N+1; %Increase simulation counter

% Create the coder object and turn off checks which will cause low
% performance.
fprintf(1,'Generating Code ...');
config_obj = coder.config('MEX');
config_obj.EnableDebugging = false;
config_obj.IntegrityChecks = false;
config_obj.ResponsivenessChecks = false;
config_obj.EchoExpressions = false;

% Generate a MEX file
codegen('viterbiTransceiverCPU.m', '-config', 'config_obj', '-args', {snrdb(1), minErrThreshold, iterCntThreshold})
fprintf(1,' Done.\n');

%Run once to eliminate startup overhead.
viterbiTransceiverCPU_mex(-10,1,1);

s = RandStream.getGlobalStream;
reset(s);

% Use the generated MEX function viterbiTransceiverCPU_mex in the
% simulation loop.
ts = tic;
for ii=1:numel(snrdb)
 fprintf(1,'Iteration number %d, SNR (dB) = %d\n',ii, snrdb(ii));
 [errs(ii),iters(ii)] = viterbiTransceiverCPU_mex(snrdb(ii), minErrThreshold, iterCntThreshold);
end
ber = errs./ (msgL* iters);
trialtime=toc(ts);
berplot{N} = ber;
desc{N} = 'codegen';
reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + codegen');

Baseline + codegen
Generating Code ...Code generation successful.

 Done.
Iteration number 1, SNR (dB) = 1
Iteration number 2, SNR (dB) = 2
Iteration number 3, SNR (dB) = 3
Iteration number 4, SNR (dB) = 4
Iteration number 5, SNR (dB) = 5
--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 17.0205 | 1.0000
2. Baseline + codegen | 14.3820 | 1.1835
--

 End to End System Simulation Acceleration Using GPUs

1-439

Parfor - Parallel Loop Execution

Using parfor, MATLAB executes the transceiver code against all SNR values in parallel. This
requires opening the parallel pool and adding a parfor loop.

You must have a Parallel Computing Toolbox license to run this portion of the example.

fprintf(1,'\n***Baseline + parfor***\n');
fprintf(1,'Accessing multiple CPU cores ...\n');
if isempty(gcp('nocreate'))
 pool = parpool;
 poolWasOpen = false;
else
 pool = gcp;
 poolWasOpen = true;
end
nW=pool.NumWorkers;
N=N+1; %Increase simulation counter

snrN = numel(snrdb);

mT = minErrThreshold / nW;
iT = iterCntThreshold / nW;

errN = zeros(nW, snrN);
itrN = zeros(nW, snrN);

% replicate snrdb
snrdb_rep=repmat(snrdb,nW,1);

% create an independent stream for each worker
s = RandStream.create('mrg32k3a','NumStreams',nW,...
 'CellOutput',true,'NormalTransform', 'Inversion');

% pre-run
parfor jj=1:nW
 RandStream.setGlobalStream(s{jj});
 viterbiTransceiverCPU(-10, 1, 1);
end

fprintf(1,'Start parfor job ... ');
ts = tic;
parfor jj=1:nW
 for ii=1:snrN
 [err, itr] = viterbiTransceiverCPU(snrdb_rep(jj,ii), mT, iT);
 errN(jj,ii) = err;
 itrN(jj,ii) = itr;
 end
end
ber = sum(errN)./ (msgL*sum(itrN));
trialtime=toc(ts);
fprintf(1,'Done.\n');
berplot{N} = ber;
desc{N} = 'parfor';
reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + parfor');

Baseline + parfor

1 Communications Toolbox Featured Examples

1-440

Accessing multiple CPU cores ...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
Start parfor job ... Done.
--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 17.0205 | 1.0000
2. Baseline + codegen | 14.3820 | 1.1835
3. Baseline + parfor | 2.6984 | 6.3075
--

Parfor and Code Generation

You can combine the last two techniques for additional acceleration. The compiled MEX function can
be executed inside of a parfor loop.

You must have a MATLAB Coder license and a Parallel Computing Toolbox license to run
this portion of the example.
fprintf(1,'\n***Baseline + codegen + parfor***\n');
N=N+1; %Increase simulation counter

% pre-run
parfor jj=1:nW
 RandStream.setGlobalStream(s{jj});
 viterbiTransceiverCPU_mex(1, 1, 1); % use the same mex file
end

fprintf(1,'Start parfor job ... ');
ts = tic;
parfor jj=1:nW
 for ii=1:snrN
 [err, itr] = viterbiTransceiverCPU_mex(snrdb_rep(jj,ii), mT, iT);
 errN(jj,ii) = err;
 itrN(jj,ii) = itr;
 end
end
ber = sum(errN)./ (msgL*sum(itrN));
trialtime=toc(ts);
fprintf(1,'Done.\n');
berplot{N} = ber;
desc{N} = 'codegen + parfor';
reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + codegen + parfor');

Baseline + codegen + parfor
Start parfor job ... Done.
--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 17.0205 | 1.0000
2. Baseline + codegen | 14.3820 | 1.1835
3. Baseline + parfor | 2.6984 | 6.3075
4. Baseline + codegen + parfor | 2.7059 | 6.2902
--

GPU

The System objects that the viterbiTransceiverCPU function uses are available for execution on
the GPU. The GPU-based versions are:

 End to End System Simulation Acceleration Using GPUs

1-441

• comm.gpu.ConvolutionalEncoder - convolutional encoding
• comm.gpu.PSKModulator - QPSK modulation
• comm.gpu.AWGNChannel - AWGN channel
• comm.gpu.PSKDemodulator - QPSK demodulation (approx LLR)
• comm.gpu.ViterbiDecoder - Viterbi decoding

A GPU is most effective when processing large quantities of data at once. The GPU-based System
objects can processes multiple frames in a single call to the step method. The numframes variable
represents the number of frames processed per call. This is analogous to parfor except that the
parallelism is on a per object basis, rather than a per viterbiTransceiverCPU call basis.

You must have a Parallel Computing Toolbox license and a CUDA® 1.3 capable GPU to run
this portion of the example.

fprintf(1,'\n***GPU***\n');
N=N+1; %Increase simulation counter

try
 dev = parallel.gpu.GPUDevice.current;
 fprintf(...
 'GPU detected (%s, %d multiprocessors, Compute Capability %s)\n',...
 dev.Name, dev.MultiprocessorCount, dev.ComputeCapability);

 sg = parallel.gpu.RandStream.create('mrg32k3a','NumStreams',1,'NormalTransform','Inversion');
 parallel.gpu.RandStream.setGlobalStream(sg);

 ts = tic;
 for ii=1:numel(snrdb)
 fprintf(1,'Iteration number %d, SNR (dB) = %d\n',ii, snrdb(ii));
 [errs(ii),iters(ii)] =viterbiTransceiverGPU(snrdb(ii), minErrThreshold, iterCntThreshold, numframes);
 end
 ber = errs./ (msgL* iters);
 trialtime=toc(ts);
 berplot{N} = ber;
 desc{N} = 'GPU';
 reportResultsCommSysGPU(N, trialtime,baseTime, 'Baseline + GPU');

 fprintf(1,' Done.\n');

catch %#ok<CTCH>

 % Report that the appropriate GPU was not found.
 fprintf(1, ['Could not find an appropriate GPU or could not ', ...
 'execute GPU code.\n']);

end

GPU
GPU detected (Tesla V100-PCIE-32GB, 80 multiprocessors, Compute Capability 7.0)
Iteration number 1, SNR (dB) = 1
Iteration number 2, SNR (dB) = 2
Iteration number 3, SNR (dB) = 3
Iteration number 4, SNR (dB) = 4
Iteration number 5, SNR (dB) = 5
--

1 Communications Toolbox Featured Examples

1-442

Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 17.0205 | 1.0000
2. Baseline + codegen | 14.3820 | 1.1835
3. Baseline + parfor | 2.6984 | 6.3075
4. Baseline + codegen + parfor | 2.7059 | 6.2902
5. Baseline + GPU | 0.1895 | 89.8137
--
 Done.

Analysis

Comparing the results of these trials, it is clear that the GPU is significantly faster than any other
simulation acceleration technique. This performance boost requires a very modest change to the
simulation code. However, there is no loss in bit error rate performance as the following plot
illustrates. The very slight differences in the curves are a result of different random number
generation algorithms and/or effects of averaging different quantities of data for the same point on
the curve.

lines = {'kx-.', 'ro-', 'cs--', 'm^:', 'g*-'};
for ii=1:numel(desc)
 semilogy(snrdb, berplot{ii}, lines{ii});
 hold on;
end
hold off;
title('Bit Error Rate for Various Acceleration Strategies');
xlabel('Signal to Noise Ratio (dB)');
ylabel('BER');
legend(desc{:});

 End to End System Simulation Acceleration Using GPUs

1-443

Cleanup

Leave the parallel pool in the original state.

if ~poolWasOpen
 delete(gcp);
end

Parallel pool using the 'local' profile is shutting down.

1 Communications Toolbox Featured Examples

1-444

Simulation Acceleration Using MATLAB Coder and Parallel
Computing Toolbox

This example shows two ways to accelerate the simulation of communications algorithms in
MATLAB®. It showcases the runtime performance effects of using MATLAB to C code generation and
parallel processing runs (using the MATLAB parfor (Parallel Computing Toolbox) function). For a
comprehensive look at all possible acceleration techniques, see Accelerating MATLAB Algorithms and
Applications article.

The combined effect of using these methods may speed up a typical simulation time by an order of
magnitude. The difference is tantamount to running the simulation overnight or within just a few
hours.

To run the MATLAB to C code generation section of this example, you must have MATLAB Coder™
product. To run the parallel processing section of this example, you must have Parallel Computing
Toolbox™ product.

Example Structure

This example examines various implementations of this transceiver system in MATLAB.

This system is composed of a transmitter, a channel model, and a receiver. The transmitter processes
the input bit stream with a convolutional encoder, an interleaver, a modulator, and a MIMO space-
time block encoder (see [1 on page 1-453], [2 on page 1-453]). The transmitted signal is then
processed by a 2x2 MIMO block fading channel and an additive white gaussian noise (AWGN)
channel. The receiver processes its input signal with a 2x2 MIMO space-time block decoder, a
demodulator, a deinterleaver, and a Viterbi decoder to recover the best estimate of the input bit
stream at the receiver.

The example follows this workflow:

 Simulation Acceleration Using MATLAB Coder and Parallel Computing Toolbox

1-445

https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html

1 Create a function that runs the simulation algorithms
2 Use the MATLAB Profiler GUI to identify speed bottlenecks
3 Accelerate the simulation with MATLAB to C code generation
4 Achieve even faster simulation using parallel processing runs

Create Function that Runs Simulation Algorithms

Start with a function that represents the first version or baseline implementation of this algorithm.
The inputs to the helperAccelBaseline function are the Eb/No value of the current frame (EbNo),
minimum number of errors (minNumErr) and the maximum number of bits processed (maxNumBits).
Eb/No is the ratio of energy per bit to noise power spectral density. The function output is the bit
error rate (BER) information for each Eb/No point.

type helperAccelBaseline

function ber = helperAccelBaseline(EbNo, minNumErr, maxNumBits)
%helperAccelBaseline Simulate a communications link
% BER = helperAccelBaseline(EBNO,MINERR,MAXBIT) returns the bit error
% rate (BER) of a communications link that includes convolutional coding,
% interleaving, QAM modulation, an Alamouti space-time block code, and a
% MIMO block fading channel with AWGN. EBNO is the energy per bit to
% noise power spectral density ratio (Eb/No) of the AWGN channel in dB,
% MINERR is the minimum number of errors to collect, and MAXBIT is the
% maximum number of simulated bits so that the simulations do not run
% indefinitely if the Eb/No value is too high.

% Copyright 2011-2021 The MathWorks, Inc.

M = 16; % Modulation Order
k = log2(M); % Bits per Symbol
codeRate = 1/2; % Coding Rate
adjSNR = convertSNR(EbNo,"ebno","BitsPerSymbol",k,"CodingRate",codeRate);
trellis = poly2trellis(7,[171 133]);
tblen = 32;
dataFrameLen = 1998;

% Add 6 zeros to terminate the convolutional code
chanFrameLen=(dataFrameLen+6)/codeRate;
permvec=[1:3:chanFrameLen 2:3:chanFrameLen 3:3:chanFrameLen]';

ostbcEnc = comm.OSTBCEncoder(NumTransmitAntennas=2);
ostbcComb = comm.OSTBCCombiner(NumTransmitAntennas=2,NumReceiveAntennas=2);
mimoChan = comm.MIMOChannel(MaximumDopplerShift=0,PathGainsOutputPort=true);
berCalc = comm.ErrorRate;

% Run Simulation
ber = zeros(3,1);
while (ber(3) <= maxNumBits) && (ber(2) < minNumErr)
 data = [randi([0 1],dataFrameLen,1);false(6,1)];
 encOut = convenc(data,trellis); % Convolutional Encoder
 intOut = intrlv(double(encOut),permvec'); % Interleaver
 modOut = qammod(intOut,M,...
 'InputType','bit'); % QAM Modulator
 stbcOut = ostbcEnc(modOut); % Alamouti Space-Time Block Encoder
 [chanOut, pathGains] = mimoChan(stbcOut); % 2x2 MIMO Channel
 chEst = squeeze(sum(pathGains,2));

1 Communications Toolbox Featured Examples

1-446

 rcvd = awgn(chanOut,adjSNR,'measured'); % AWGN channel
 stbcDec = ostbcComb(rcvd,chEst); % Alamouti Space-Time Block Decoder
 demodOut = qamdemod(stbcDec,M,...
 'OutputType','bit'); % QAM Demodulator
 deintOut = deintrlv(demodOut,permvec'); % Deinterleaver
 decOut = vitdec(deintOut(:),trellis, ... % Viterbi Decoder
 tblen,'term','hard');
 ber = berCalc(decOut(1:dataFrameLen),data(1:dataFrameLen));
end

As a starting point, measure the time it takes to run this baseline algorithm in MATLAB. Use the
MATLAB timing functions (tic and toc) to record the elapsed runtime to complete processing of a
for-loop that iterates over Eb/No values from 0 to 7 dB.

minEbNodB=0;
maxEbNodB=7;
EbNoVec = minEbNodB:maxEbNodB;
minNumErr=100;
maxNumBits=1e6;
N=1;
str='Baseline';
% Run the function once to load it into memory and remove overhead from
% runtime measurements
helperAccelBaseline(3,10,1e4);
berBaseline=zeros(size(minEbNodB:maxEbNodB));
disp('Processing the baseline algorithm.');

Processing the baseline algorithm.

tic;
for EbNoIdx=1:length(EbNoVec)
 EbNo = EbNoVec(EbNoIdx);
 y=helperAccelBaseline(EbNo,minNumErr,maxNumBits);
 berBaseline(EbNoIdx)=y(1);
end
rtBaseline=toc;

The result shows the simulation time (in seconds) of the baseline algorithm. Use this timing
measurement to compare with subsequent accelerated simulation runtimes.

helperAccelReportResults(N,rtBaseline,rtBaseline,str,str);

--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 6.6191 | 1.0000
--

Identify Speed Bottlenecks by Using MATLAB Profiler App

Identify the processing bottlenecks and problem areas of the baseline algorithm by using the
MATLAB Profiler. Obtain the profiler information by executing the following script:

profile on
y=helperAccelBaseline(6,100,1e6);
profile off
profile viewer

The Profiler report presents the execution time for each function call of the algorithm. You can sort
the functions according to their self-time in a descending order. The first few functions that the

 Simulation Acceleration Using MATLAB Coder and Parallel Computing Toolbox

1-447

Profiler window depicts represent the speed bottleneck of the algorithm. In this case, the vitdec
function is identified as the major speed bottleneck.

Accelerate Simulation with MATLAB to C Code Generation

MATLAB Coder generates portable and readable C code from algorithms that are part of the MATLAB
code generation subset. You can create a MATLAB executable (MEX) of the helperAccelBaseline,
function because it uses functions and System objects that support code generation. Use the
codegen (MATLAB Coder) function to compile the helperAccelBaseline function into a MEX
function. After successful code generation by codegen, you will see a MEX file in the workspace that
appends '_mex' to the function, helperAccelBaseline_mex.

codegen('helperAccelBaseline.m','-args',{EbNo,minNumErr,maxNumBits})

Code generation successful.

Measure the simulation time for the MEX version of the algorithm. Record the elapsed time for
running this function in the same for-loop as before.

N=N+1;
str='MATLAB to C code generation';
tag='Codegen';
helperAccelBaseline_mex(3,10,1e4);
berCodegen=zeros(size(berBaseline));
disp('Processing the MEX function of the algorithm.');

Processing the MEX function of the algorithm.

tic;
for EbNoIdx=1:length(EbNoVec)
 EbNo = EbNoVec(EbNoIdx);
 y=helperAccelBaseline_mex(EbNo,minNumErr,maxNumBits);
 berCodegen(EbNoIdx)=y(1);
end
rt=toc;

The results here show the MEX version of this algorithm runs faster than the baseline versions of the
algorithm. The amount of acceleration achieved depends on the nature of the algorithm. The best way
to determine the acceleration is to generate a MEX-function using MATLAB Coder and test the
speedup firsthand. If your algorithm contains single-precision data types, fixed-point data types, loops
with states, or code that cannot be vectorized, you are likely to see speedups. On the other hand, if
your algorithm contains MATLAB implicitly multithreaded computations such as fft and svd,
functions that call IPP or BLAS libraries, functions optimized for execution in MATLAB on a PC such
as FFTs, or algorithms where you can vectorize the code, speedups are less likely.

helperAccelReportResults(N,rtBaseline,rt,str,tag);

--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 6.6191 | 1.0000
2. MATLAB to C code generation | 1.4821 | 4.4661
--

Achieve Even Faster Simulation Using Parallel Processing Runs

Utilize multiple cores to increase simulation acceleration by running tasks in parallel. Use parallel
processing runs (parfor loops) in MATLAB to perform the work on the number of available workers.

1 Communications Toolbox Featured Examples

1-448

Parallel Computing Toolbox enables you to run different iterations of the simulation in parallel. Use
the gcp (Parallel Computing Toolbox) function to get the current parallel pool. If a pool is available,
the gcp opens the pool and reserves several MATLAB workers to execute iterations of a subsequent
parfor-loop. In this example, six workers run locally on a MATLAB client machine.

pool = gcp

pool =

 0×0 Pool array with no properties.

if isempty(pool)
 pool = parpool
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

pool =

 ProcessPool with properties:

 Connected: true
 NumWorkers: 6
 Busy: false
 Cluster: local
 AttachedFiles: {}
 AutoAddClientPath: true
 FileStore: [1x1 parallel.FileStore]
 ValueStore: [1x1 parallel.ValueStore]
 IdleTimeout: 30 minutes (30 minutes remaining)
 SpmdEnabled: true

Run Parallel Over Eb/No Values

Run Eb/No points in parallel using six workers using a parfor-loop rather than a for-loop as used in
the previous cases. Measure the simulation time.

N=N+1;
str='Parallel runs with parfor over Eb/No';
tag='Parfor Eb/No';
helperAccelBaseline_mex(3,10,1e4);
berParfor1=zeros(size(berBaseline));
disp('Processing the MEX function of the algorithm within a parfor-loop.');

Processing the MEX function of the algorithm within a parfor-loop.

tic;
parfor EbNoIdx=1:length(EbNoVec)
 EbNo = EbNoVec(EbNoIdx);
 y=helperAccelBaseline_mex(EbNo,minNumErr,maxNumBits);
 berParfor1(EbNoIdx)=y(1);
end
rt=toc;

The result adds the simulation time of the MEX version of the algorithm executing within a parfor-
loop to the previous results. Note that by running the algorithm within a parfor-loop, the elapsed
time to complete the simulation is shorter. The basic concept of a parfor-loop is the same as the

 Simulation Acceleration Using MATLAB Coder and Parallel Computing Toolbox

1-449

standard MATLAB for-loop. The difference is that parfor divides the loop iterations into groups so
that each worker executes some portion of the total number of iterations. Because several MATLAB
workers can be computing concurrently on the same loop, a parfor-loop provides significantly better
performance than a normal serial for-loop.

helperAccelReportResults(N,rtBaseline,rt,str,tag);

--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio
1. Baseline | 6.6191 | 1.0000
2. MATLAB to C code generation | 1.4821 | 4.4661
3. Parallel runs with parfor over Eb/No | 1.2459 | 5.3127
--

Run Parallel Over Number of Bits

In the previous section, the total simulation time is mainly determined by the highest Eb/No point.
You can further accelerate the simulations by dividing up the number of bits simulated for each Eb/No
point over the workers. Run each Eb/No point in parallel using six workers using a parfor-loop.
Measure the simulation time.

N=N+1;
str='Parallel runs with parfor over number of bits';
tag='Parfor # Bits';
helperAccelBaseline_mex(3,10,1e4);
berParfor2=zeros(size(berBaseline));
disp('Processing the MEX function of the second version of the algorithm within a parfor-loop.');

Processing the MEX function of the second version of the algorithm within a parfor-loop.

tic;
% Calculate number of bits to be simulated on each worker
minNumErrPerWorker = minNumErr / pool.NumWorkers;
maxNumBitsPerWorker = maxNumBits / pool.NumWorkers;
for EbNoIdx=1:length(EbNoVec)
 EbNo = EbNoVec(EbNoIdx);
 numErr = zeros(pool.NumWorkers,1);
 parfor w=1:pool.NumWorkers
 y=helperAccelBaseline_mex(EbNo,minNumErrPerWorker,maxNumBitsPerWorker);
 numErr(w)=y(2);
 numBits(w)=y(3);
 end
 berParfor2(EbNoIdx)=sum(numErr)/sum(numBits);
end
rt=toc;

The result adds the simulation time of the MEX version of the algorithm executing within a parfor-
loop where this time each worker simulates the same Eb/No point. Note that by running this version
within a parfor-loop we get the fastest simulation performance. The difference is that parfor
divides the number of bits that needs to be simulated over the workers. This approach reduces the
simulation time of even the highest Eb/No value by evenly distributing load (specifically, the number
of bits to simulate) over workers.

helperAccelReportResults(N,rtBaseline,rt,str,tag);

--
Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio

1 Communications Toolbox Featured Examples

1-450

1. Baseline | 6.6191 | 1.0000
2. MATLAB to C code generation | 1.4821 | 4.4661
3. Parallel runs with parfor over Eb/No | 1.2459 | 5.3127
4. Parallel runs with parfor over number of bits | 0.8802 | 7.5201
--

Summary

You can significantly speed up simulations of your communications algorithms with the combined
effects of MATLAB to C code generation and Parallel processing runs.

• MATLAB to C code generation accelerates the simulation by locking-down datatypes and sizes of
every variable and by reducing the overhead of the interpreted language that checks for the size
and datatype of variables in every line of the code.

• Parallel processing runs can substantially accelerate simulation by computing different iterations
of your algorithm concurrently across a number of MATLAB workers.

• Parallelizing each Eb/No point individually can accelerate further by speeding up even the longest
running Eb/No point.

The following shows the run time of all four approaches as a bar graph. The results may vary based
on the specific algorithm, available workers, and selection of minimum number of errors and
maximum number of bits.

results = helperAccelReportResults;

 Simulation Acceleration Using MATLAB Coder and Parallel Computing Toolbox

1-451

This plot shows the BER curves for the different simulation processing approaches match each other
closely. For each plotted Eb/N0 each of the four versions of the algorithm ran with the maximum
number of input bits set to ten million (maxNumBits=1e7) and the minimum number of bit errors set
to five thousand (minNumErr=5000).

1 Communications Toolbox Featured Examples

1-452

Further Exploration

This example uses the gcp function to reserve several MATLAB workers that run locally on your
MATLAB client machine. By modifying the parallel configurations, you can accelerate the simulation
even further by running the algorithm on a larger cluster of workers that are not on your MATLAB
client machine. For a description of how to manage and use parallel configurations, see the “Discover
Clusters and Use Cluster Profiles” (Parallel Computing Toolbox) topic.

The following functions are used in this example.

• helperAccelBaseline.m
• helperAccelReportResults.m

Selected References

1 S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE®
Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

2 V. Tarokh, H. Jafarkhami, and A. R. Calderbank, "Space-time block codes from orthogonal
designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.

 Simulation Acceleration Using MATLAB Coder and Parallel Computing Toolbox

1-453

Using GPUs to Accelerate Turbo Coding Bit Error Rate
Simulations

This example shows how you can use GPUs to dramatically accelerate bit error rate simulations.
Turbo codes form the backbone of many modern communication systems. Because of the intense
amount of computation involved in a Turbo decoder and the large number of trials required for a
valid bit error rate simulation, the Turbo decoder is an ideal candidate for GPU acceleration. See the
“Parallel Concatenated Convolutional Coding: Turbo Codes” on page 1-89 example, which explains
the data processing chain, for more information on Turbo codes.

You must have a Parallel Computing Toolbox™ license to run this example.

This example illustrates two approaches for GPU acceleration of the Turbo coding bit error rate
simulation. The baseline system consists of random message generation, a Turbo encoder
(comm.TurboEncoder), BPSK modulation using MATLAB® code, an AWGN channel
(comm.AWGNChannel), BPSK demodulation using MATLAB code, a Turbo decoder
(comm.TurboDecoder), and finally bit error rate computation (comm.ErrorRate).

Notice: Supply of this software does not convey a license nor imply any right to use any Turbo codes
patents owned by France Telecom, Telediffusion de France and/or Groupe des Ecoles des
Telecommunications except in connection with use of the software for the purposes of design,
simulation and analysis. Code generated from Turbo codes technology in this software is not intended
and/or suitable for implementation or incorporation in any commercial products.

Please contact France Telecom for information about Turbo Codes Licensing program at the following
address: France Telecom R&D - PIV/TurboCodes 38-40, rue du General Leclerc 92794 Issy-les-
Moulineaux Cedex 9, France.

Launch the TurboDecoderBERsim GUI

TurboDecoderBER_GPU

1 Communications Toolbox Featured Examples

1-454

 Using GPUs to Accelerate Turbo Coding Bit Error Rate Simulations

1-455

Overview of the Simulation

In the Simulation options button group select the CPU option for a CPU only simulation. The
Simple GPU option makes very modest changes to the CPU version by replacing the CPU-based
Turbo decoder (comm.TurboDecoder) with the GPU implementation (comm.gpu.TurboDecoder).

The Optimized GPU option uses the comm.gpu.TurboDecoder object, and runs the BPSK
modulation and demodulation code on the GPU, using gpuArray overloads. This option also uses the
GPU-accelerated AWGN channel. As a GPU computing best practice, multiple frames of data are
processed in each call to a System object™.

You should process multiple frames of data together (or in parallel) whenever possible on the GPU. In
general, the GPU has far more compute power than necessary to process one frame of data. Giving
the GPU multiple frames of data to process in one function call more efficiently utilizes the GPU's
processing power. To use multiframe processing, a random message is created that is an integer
multiple of the frame size in length. The Turbo Encoder encodes this long, multiframe vector one
frame at a time. (There is no real advantage to multiframe processing on the CPU, and the CPU Turbo
encoder does not have a multiframe mode.) Data is then sent to the GPU using the gpuArray function.

1 Communications Toolbox Featured Examples

1-456

The rest of the data processing chain is written as before because there is no notion of framing for
the channel, modulator, or demodulator. To have the Turbo Decoder run in multiframe mode, set the
NumFrames property equal to the number of frames in the multiframe data vector (the default is one).
The Turbo decoder decodes each frame independently and in parallel in a single call to the object (in
particular, it does not treat the data as one long frame).

Code Differences

To see the changes in the original CPU source code necessary for the two GPU implementations, click
on the appropriate GPU radio button (either Simple GPU or Optimized GPU) and then click the
Show Code Differences button. This launches the comparison tool to view the changes necessary
for GPU acceleration.

Error Rate Performance

You can plot the bit error rate curve for any of the three versions of the code. The number of errors
required to plot a single point can be changed in the Minimum Number of Errors field. Enter the
desired number of errors and click the Start Simulation button. Click the same button to stop the
simulation early.

The bit error rate curves for the CPU and Simple GPU version match exactly. This indicates that the
GPU version of the Turbo Decoder achieves exactly the same bit error rate as the CPU version at a
much higher speed. In some cases, the Optimized GPU version may have a slightly different bit error
rate because it runs multiple frames in parallel. Therefore, it may run a few frames more than
necessary to pass the Minimum Number of Errors.

Results

As the simulation runs it displays number of message bits processed through the main simulation
loop per second in the plot legend. This gives some measure of how quickly the simulation is running
for each version of the code. Long simulations have been completed on a computer using an Intel®
Xeon® X5650 processor and an NVIDIA® K20c GPU. Those simulations have shown that the Simple
GPU is more than 2 times faster than the CPU version and that the Optimized GPU version is 6 times
faster than the CPU version.

 Using GPUs to Accelerate Turbo Coding Bit Error Rate Simulations

1-457

DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder
System Object

This example shows how to use a GPU-based LDPC Decoder System object™ to increase the speed of
a communications system simulation. The performance improvement is illustrated by modeling part
of the ETSI (European Telecommunications Standards Institute) EN 302 307 standard for
Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-
S.2) [1 on page 1-463]. For further information on using System objects to simulate the DVB-S.2
system see “DVB-S.2 Link, Including LDPC Coding in Simulink” on page 1-393. You must have a
Parallel Computing Toolbox™ user license to use the GPU-based LDPC Decoder.

Introduction

The LDPC Decoding algorithm is computationally expensive and constitutes the vast majority of the
time spent in a DVB-S.2 simulation. Using the comm.gpu.LDPCDecoder System object to execute the
decoding algorithm on a GPU dramatically improves simulation run time. The example simulates the
DVB-S.2 system, obtaining a benchmark for speed (run time), once with a CPU-based LDPC decoder
function (ldpcDecode) and once with a GPU-based LDPC Decoder (comm.gpu.LDPCDecoder). The
example captures the bit error rate for both versions, to show there is no loss in decoding
performance using the GPU.

fprintf(...
 'DVB-S.2 Digital Video Broadcast Standard Bit Error Rate Simulation\n\n');

DVB-S.2 Digital Video Broadcast Standard Bit Error Rate Simulation

fprintf(...
 'Performance comparison of CPU- and GPU- accelerated decoders.\n');

Performance comparison of CPU- and GPU- accelerated decoders.

GPU Presence Detection

The example attempts to query the GPU to detect a Parallel Computing Toolbox user license and the
presence of a supported GPU. If the GPU or the Parallel Computing Toolbox is unavailable, a CPU-only
simulation can be performed.

try
 % Query the GPU
 dev = parallel.gpu.GPUDevice.current;

 % Print out information about the GPU that was found
 fprintf(...
 'GPU detected (%s, %d multiprocessors, Compute Capability %s)\n',...
 dev.Name,dev.MultiprocessorCount,dev.ComputeCapability);

 % Include a GPU-based simulation.
 doGPU = true;

catch % #ok<CTCH>

 % The GPU is not supported or not present, or the Parallel Computing
 %Toolbox was not present and licensed. Consider a CPU-only simulation.

1 Communications Toolbox Featured Examples

1-458

 inp = input(['***NOTE: GPU not detected. ', ...
 'Continue with CPU-only simulation? [Y]/N '],'s');
 if strcmpi(inp, 'y') || isempty(inp)
 doGPU = false;
 else
 return;
 end
end

GPU detected (Tesla V100-PCIE-32GB, 80 multiprocessors, Compute Capability 7.0)

Initialization

The getParamsDVBS2Demo.m function generates a structure, dvb, which holds the configuration
information for the DVB-S.2 system given the parameters below. Subsequently, the example includes
creating and configuring System objects, based on the dvb structure.

The createSimObjDVBS2Demo.m script constructs most of the System objects used in DVB-S.2 and
configures them based on the dvb structure.

Then an LDPC decoder configuration object and a GPU-based LDPC Decoder System object are
created. The LDPC decoder configuration object is passed to the CPU-based ldpcDecode function
which uses options equivalent to those used by the GPU-based LDPC Decoder System object.

% DVB-S.2 System Parameters
subsystemType = 'QPSK 1/2'; % Constellation and LDPC code rate
EsNodB = 0.75; % Energy per symbol to noise PSD ratio in dB
numFrames = 10; % Number of frames to simulate
maxNumLDPCIterations = 50; % LDPC Decoder iterations

dvb = getParamsDVBS2Demo(subsystemType,EsNodB,maxNumLDPCIterations);

% Create and configure the BCH Encoder and Decoder, Modulator, Demodulator,
% AWGN Channel.

createSimObjDVBS2Demo;

% Construct an LDPC Encoder configuration object
encoderCfg = ldpcEncoderConfig(dvb.LDPCParityCheckMatrix);

% LDPC Decoder Configuration
ldpcPropertyValuePairs = { ...
 'MaximumIterationCount',dvb.LDPCNumIterations, ...
 'ParityCheckMatrix',dvb.LDPCParityCheckMatrix, ...
 'DecisionMethod','Hard Decision', ...
 'IterationTerminationCondition','Maximum iteration count', ...
 'OutputValue','Information part'};

% Construct an LDPC Decoder configuration object
decoderCfg = ldpcDecoderConfig(dvb.LDPCParityCheckMatrix);
if doGPU
 % Construct a GPU-based LDPC Decoder System object
 gpuLDPCDecoder = comm.gpu.LDPCDecoder(ldpcPropertyValuePairs{:});
end

% Create an ErrorRate object to analyze the differences in bit error rate
% between the CPU and GPU.

 DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System Object

1-459

BER = comm.ErrorRate;

CPU and GPU Performance Comparison

This example simulates the DVB-S.2 system using the CPU-based LDPC Decoder function first, and
then the GPU-based LDPC Decoder System object. The example obtains system benchmarks for each
LDPC Decoder by passing several frames of data through the system and measuring the total system
simulation time. The first frame of data incurs a large simulation initialization time, and so, it is
excluded from the benchmark calculations. The per frame and average system simulation times are
printed to the Command Window. The bit error rate (BER) of the system is also printed to the
Command Window to illustrate that both CPU-based and GPU-based LDPC Decoders achieve the
same BER.

if doGPU
 architectures = 2;
else
 architectures = 1;
end

% Initialize run time results vectors
runtime = zeros(architectures,numFrames);
avgtime = zeros(1,architectures);

% Seed the random number generator used for the channel and message
% creation. This will allow a fair BER comparison between CPU and GPU.
% Cache the original random stream to restore later.

original_rs = RandStream.getGlobalStream;
rs = RandStream.create('mrg32k3a','seed',25);
RandStream.setGlobalStream(rs);

% Loop for each processing unit - CPU and GPU
for ii = 1:architectures

 % Do some initial setup for the execution loop
 if (ii == 1)
 arch = 'CPU'; % Use CPU LDPC Decoder
 else
 arch = 'GPU';
 decoder = gpuLDPCDecoder;% Use GPU LDPC Decoder
 end

 % Reset the Error Rate object
 reset(BER);

 % Reset the random stream
 reset(rs);

 % Notice to the user that DVB-S.2 simulation is beginning.
 fprintf(['\nUsing ' arch '-based LDPC Decoder:\n']);
 dels = repmat('\b',1,fprintf(' Initializing ...'));

 % Main simulation loop. Run numFrames+1 times and ignore the first
 % frame (which has initialization overhead) for the run time
 % calculation. Use the first run for the BER calculation.

1 Communications Toolbox Featured Examples

1-460

 for rr = 1:(numFrames+1)

 % Start timer
 ts = tic;

 % ***Create an input Message*** %
 msg = zeros(encbch.MessageLength, 1);
 msg(1:dvb.NumInfoBitsPerCodeword) = ...
 logical(randi([0 1],dvb.NumInfoBitsPerCodeword,1));

 % ***Transmit*** %
 bchencOut = encbch(msg);
 ldpcencOut = ldpcEncode(bchencOut,encoderCfg);
 xlvrOut = intrlv(ldpcencOut,dvb.InterleaveOrder);
 modOut = pskModulator(xlvrOut);

 % ***Corrupt with noise*** %
 chanOut = chan(modOut);

 % ***Receive*** %y
 demodOut = pskDemodulator(chanOut);
 dexlvrOut = deintrlv(demodOut,dvb.InterleaveOrder);

 % Use the appropriate LDPC Decoder.
 if strcmp(arch,'CPU')
 ldpcdecOut = logical(ldpcDecode(dexlvrOut,decoderCfg,dvb.LDPCNumIterations,'DecisionType','hard','Termination','max','OutputFormat','info'));
 else
 ldpcdecOut = decoder(dexlvrOut);
 end

 bchdecOut = decbch(ldpcdecOut);

 % ***Compute BER *** % Calculate BER at output of LDPC, not BCH.
 ber = BER(logical(bchencOut),ldpcdecOut);

 % Stop timer
 runtime(ii, rr) = toc(ts);

 % Don't report the first frame with the initialization overhead.
 if (rr > 1)
 fprintf(dels);
 newCharsToDelete = fprintf(' Frame %d decode : %.2f sec', ...
 rr-1, runtime(ii,rr));
 dels = repmat('\b',1,newCharsToDelete);
 end
 end % end of running a frame through the DVB-S.2 system.

 % Report the run time results to the Command Window.
 fprintf(dels); % Delete the last line printed out.

 % Calculate the average run time. Don't include frame 1 because it
 % includes some System object initialization time.
 avgtime(ii) = mean(runtime(ii,2:end));

 fprintf(' %d frames decoded, %.2f sec/frame\n',numFrames,avgtime(ii));
 fprintf(' Bit error rate: %g \n',ber(1));

 DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System Object

1-461

end % architecture loop

Using CPU-based LDPC Decoder:

 Initializing ...

 Frame 1 decode : 0.29 sec Frame 2 decode : 0.30 sec Frame 3 decode : 0.32 sec Frame 4 decode : 0.29 sec Frame 5 decode : 0.25 sec Frame 6 decode : 0.29 sec Frame 7 decode : 0.26 sec Frame 8 decode : 0.29 sec Frame 9 decode : 0.28 sec Frame 10 decode : 0.26 sec

 10 frames decoded, 0.28 sec/frame

 Bit error rate: 0.00785634

Using GPU-based LDPC Decoder:

 Initializing ...

 Frame 1 decode : 0.12 sec Frame 2 decode : 0.12 sec Frame 3 decode : 0.12 sec Frame 4 decode : 0.11 sec Frame 5 decode : 0.09 sec Frame 6 decode : 0.12 sec Frame 7 decode : 0.09 sec Frame 8 decode : 0.12 sec Frame 9 decode : 0.12 sec Frame 10 decode : 0.09 sec

 10 frames decoded, 0.11 sec/frame

 Bit error rate: 0.00785634

% Reset the random stream to the cached object
RandStream.setGlobalStream(original_rs);

Using code similar to what is shown above, a bit error rate measurement was made offline. The bit
error rate performance of the GPU- and CPU-based LDPC Decoders are identical as seen in this plot.

1 Communications Toolbox Featured Examples

1-462

Summary

If a GPU was used, show the speedup based on the average run time of a DVB-S.2 system using a
GPU LDPC Decoder vs a CPU LDPC Decoder.

if ~doGPU
 fprintf('\n*** GPU not present ***\n\n');
else
 %Calculate system-wide speedup
 fprintf(['\nFull system simulation runs %.2f times faster using ' ...
 'the GPU-based LDPC Decoder.\n\n'],avgtime(1) / avgtime(2));
end

Full system simulation runs 2.60 times faster using the GPU-based LDPC Decoder.

Appendix

This example uses the createSimObjDVBS2Demo.m script and getParamsDVBS2Demo.m helper
function.

Selected Bibliography

1 ETSI Standard EN 302 307 V1.1.1: Digital Video Broadcasting (DVB); Second generation framing
structure, channel coding and modulation systems for Broadcasting, Interactive Services, New
Gathering and other broadband satellite applications (DVB-S.2), European Telecommunications
Standards Institute, Valbonne, France, 2005-03.

 DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System Object

1-463

HDL Code Generation for Viterbi Decoder

This example shows HDL code generation support for the Viterbi Decoder block. It shows how to
check, generate, and verify the HDL code you generate from a fixed-point Viterbi Decoder model.
This example also discusses the settings you can use to alter the HDL code you generate.

Introduction

The model shows HDL code generation for a fixed-point Viterbi Decoder block used in soft decision
convolutional decoding. To learn more about HDL support for Viterbi Decoder, refer to the “HDL
Code Generation” section of the block page in documentation.

To open the model, run the following commands:

modelname = 'hdlcoder_commviterbi';
open_system(modelname);

In this model, the top-level subsystem Viterbi Decoder Subsystem contains the Viterbi Decoder block.
To open this subsystem, run the following commands:

systemname = [modelname '/Viterbi Decoder Subsystem'];
open_system(systemname);

1 Communications Toolbox Featured Examples

1-464

The Viterbi Decoding Algorithm

There are three main components to the Viterbi decoding algorithm. They are the branch metric
computation (BMC), add-compare-select (ACS), and traceback decoding. The following diagram
illustrates the three units in the Viterbi decoding algorithm:

The Renormalization Method

The Viterbi Decoder prevents the overflow of the state metrics in the ACS component by subtracting
the minimum value of the state metrics at each time step, as shown in the following figure:

Obtaining the minimum value of all the state metric elements in one clock cycle results in a poor
clock frequency for the circuit. The performance of the circuit may be improved by adding pipeline
registers. However, simply subtracting the minimum value delayed by pipeline registers from the
state metrics may still lead to overflow. The hardware architecture modifies the renormalization
method and avoids the state metric overflow in three steps. First, the architecture calculates values
for the threshold and step parameters, based on the trellis structure and the number of soft decision
bits. Second, the delayed minimum value is compared to the threshold. Last, if the minimum value is
greater than or equal to the threshold value, the implementation subtracts the step value from the
state metric; otherwise no adjustment is performed. The following figure illustrates the modified
renormalization method:

Optimal State Metric Word Length Calculation

The hardware implementation calculates the optimal word length of the state metric and compares it
with the value you specify for the block. The hardware architecture uses the optimal value if it is
smaller than the one you specify. A message is displayed to show the value during HDL code

 HDL Code Generation for Viterbi Decoder

1-465

generation. If the calculated value is larger than the value you specify, an error message is reported
and the optimal value is displayed.

Applying the calculated optimal state metric word length in the hardware implementation may
significantly reduce the hardware resource if the value you specify is too large. For example, if you
set 16 bits as the state metric word length but only 9 bits are required to achieve the same numerical
results, applying the calculated optimal state metric word length in the hardware architecture saves
approximately 40 percent of the register resources. The calculated optimal state metric word length
for some typical trellises is displayed in the following table:

Check and Generate Code for a Fixed-point Viterbi Model

This model decodes a DVB rate 1/2 , constraint length 7,(171,133) convolutional code with 3 bits soft
decision. The decoder runs at continuous mode with the traceback depth of 32. The state metric word
length is set to 16 bits. To validate the parameter settings of the Viterbi Decoder block, you can run
the following commands:

• workingdir = tempname;
• checkhdl(systemname,'TargetDirectory',workingdir);

Running checkhdl generates messages that report:

• the default value of TracebackStagesPerPipeline. More information on this parameter can be
found in the section Pipelining the register-based traceback unit,

• the state metric word length used in the HDL code compared with the one set on the block mask,
• the total delay introduced by the pipeline registers with respect to the original Viterbi block.

To generate HDL for the subsystem containing the Viterbi Decoder block, run the following
commands: workingdir = tempname; makehdl(systemname,'TargetDirectory',workingdir);

The top level VHDL file name matches the name of the block in the model. The Viterbi_Decoder
component generated in the Viterbi_Decoder.vhd contains three components: BranchMetric, ACS, and
Traceback. The ACS and Traceback components instantiate components ACSUnit and TracebackUnit
multiple times respectively. Data type definitions are included in the package file
Viterbi_Decoder_Subsystem_pkg.vhd.

To generate a testbench for the subsystem containing the Viterbi Decoder block, run the following
command: makehdltb(systemname,'TargetDirectory',workingdir);

Optimization of The Traceback Unit

They are two methods to optimize the traceback unit: pipelining the register-based traceback or
using the RAM-based traceback architecture.

1 Communications Toolbox Featured Examples

1-466

• Pipelining the register-based traceback unit

The Viterbi Decoder block decodes every bit by tracing back through a traceback depth you define for
the block. Because the block implements a complete traceback for each decision bit, registers are
used to store the minimum state index and branch decision in the Traceback Decoding unit. This unit
may be pipelined in order to improve the performance of the generated circuit. Pipeline registers can
be added to the traceback unit by specifying the number of traceback stages per pipeline register.
This can be done by setting the TracebackStagesPerPipeline implementation parameter for the
Viterbi Decoder in the HDL block properties dialog. Right click the Viterbi Decoder block to navigate
to the HDL Block Properties menu.

Setting the property value to 4 results in the insertion of a pipeline register for every four traceback
units in the model, as illustrated in the following figure:

The TracebackStagesPerPipeline implementation parameter provides you a way of balancing the
circuit performance based on system requirements. A smaller parameter value indicates the
requirement to add more registers to increase the speed of the traceback circuit. Increasing the
number results in a lower usage of registers along with a decrease in the circuit speed. In our
experiment with the rate 1/2 , constraint length 7,(171,133) convolutional code, adjusting the
TracebackStagesPerPipeline parameter from 4 to 8 reduces the pipeline register usage in half, with
the circuit speed changing from 173MHz to 94 MHz.

• RAM-based traceback

 HDL Code Generation for Viterbi Decoder

1-467

Instead of using registers, you can choose to use RAMs to save the survivor branch information. This
can be done by setting the HDL Architecture property of the Viterbi Decoder block to RAM-based
Traceback.

There are two major differences between the register-based and the RAM-based traceback
architectures.

Firstly, the register-based implementation combines the traceback and decode operations into one
step and uses the best state found from the minimum operation as the decoding initial state. The
RAM-based implementation traces back through one set of data to find the initial state to decode the
previous set of data.

Secondly, the register-based implementation decodes one bit after a complete trackback; while the
RAM-based implementation traces back through M samples, decodes the previous M bits in reverse
order, and releases one bit in order at each clock cycle.

Due to the differences in the two traceback algorithms, the RAM-based implementation produces
different numerical results than the register-based traceback. A longer traceback depth, for example,
10 times of constraint length, is recommended in the RAM-based traceback to achieve a similar bit
error rate (BER) as the register-based implementation.

The size of RAM required for the implementation depends on the trellis and the traceback depth. The
following table summarizes the RAM usage for some typical trellis structures.

1 Communications Toolbox Featured Examples

1-468

Our experiment with the rate 1/2, constraint length 7, (171, 133) convolutional code shows that the
RAM-based traceback unit uses 90% fewer registers than the register-based traceback unit (with
pipelining every 4 stages)) using similar clock constraints in synthesis. The two implementations
provide a register-RAM tradeoff that can be tailored to the individual design.

Selected References

1 Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications, New York,
Plenum Press, 1981.

2 G. Feygin and P. G. Gulak, "Architectural tradeoffs for survivor sequence memory management in
Viterbi decoders," IEEE Transactions on Communications, vol. 41, no. 3, pp. 425-429, March
1993.

 HDL Code Generation for Viterbi Decoder

1-469

Using HDL Optimized CRC Library Blocks

This example shows how to use the HDL Optimized CRC Generator and CRC Detector library blocks
and then configure these blocks to meet the IEEE® 802.11 standard [1].

Introduction

The model shows how to use HDL Optimized CRC Generator and Detector library blocks for
simulation and HDL Code generation. The 802.11 standard is used as the application. To learn more
about HDL support for HDL Optimized CRC blocks, refer to the General CRC Generator HDL
Optimized block. To learn more about the algorithm used in the blocks, refer to the paper in [2].

To open this example model, run the following commands:

modelname = 'commcrchdl';
open_system(modelname);

In this model, the top-level subsystem CRC Subsystem contains the HDL Optimized CRC Generator
and Detector blocks. This subsystem also has an AddNoise subsystem that you can choose to add
noise to the generated CRC checksum. To open this subsystem, run the following commands:

systemname = [modelname '/CRC Subsystem'];
open_system(systemname);

1 Communications Toolbox Featured Examples

1-470

Parameter Settings

• Polynomial

CRC-CCITT is used in the IEEE® 802.11 standard to protect the SIGNAL, SERVICE and LENGTH
fields. The row vector [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] represents the polynomial:

• Initial state

The HDL optimized CRC Generator block in the demo uses the Direct Method, that means, it feeds
the message into the most significant bit (MSB) of the checksum shift register and processes the
message without padding zeros. The diagram of the IEEE 802.11 CRC implementation is illustrated in
Figure 15-2 of the 802.11 standard. The Initial state is set as 1.

• Final XOR value

The Final XOR value is set as 0xFFFF to implement the one's complement of the CRC Checksum.

Input Signals

The test vector in this model uses the example DBPSK signal specified in the 802.11 standard. The
test data padded with crc_len zeros is processed at 16 bits/sample in streaming mode. Variable
dataIn_width, which is the port width of the CRC Generator input port dataIn, defines the data
processing speed. mlen defines the period in the controls signals startIn, endIn, and validIn. dlen
defines the pulse width of the validIn signal. The input signals are configured in the InitFcn callback
function in the Model Properties dialog box.

 %DBPSK data
 data = [0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0];
 crc_len = 16;
 % pad crc_len zero
 msg = [data zeros(1,crc_len)];
 dataIn_width = 16;

 Using HDL Optimized CRC Library Blocks

1-471

 mlen = length(msg)/dataIn_width;
 dlen = length(data)/dataIn_width;

To meet your design requirements, You can alter the dataIn_width to 8,4, 2, or 1 bit(s) in this
example. For example, if you are processing data with length 56, aside from padding 8 bit zeros and
using dataIn_width 16, you can choose dataIn_width to be 8 to ensure mlen and dlen are all
integer numbers.

Output Signals

Run the model using the following command:

sim(modelname);

Several of the key signals have been logged into the workspace. These signals can be viewed in a
Logic Analyzer window. The function commcrchdl_plot shows how to set the Logic Analyzer display.
For further information on the Logic Analyzer System object™, refer to the dsp.LogicAnalyzer.

h = commcrchdl_plot(dataIn,startIn,endIn,validIn,...
 dataOut_gen,startOut_gen,endOut_gen,validOut_gen,...
 dataIn_det,dataOut_det,startOut_det,endOut_det,validOut_det,err);

1 Communications Toolbox Featured Examples

1-472

dataIn, startIn, endIn, and validIn are input data and control signals to the HDL CRC generator.
dataOut_gen (output of CRC generator) displays the message with the checksum appended every
dataIn_width bits per sample. You can read the checksum when endOut_gen is high in the output
waveform. The value 0x5B57 matches the CRC-16 FCS specified in 802.11 standard Section 15.2.3.6.
dataIn_det shows the message with the corrupted checksum. dataOut_det displays the message
output of the CRC detector. Error is detected when the err signal is high. err is valid when the
endOut_det is active.

Initial delays are introduced at the output of the CRC generator and detector. You can calculate the
initial delays using the following command:

 initial_delay_gen = crc_len/dataIn_width + 2;
 initial_delay_det = 4*crc_len/dataIn_width + 4;

Check and Generate HDL Code

To check and generate HDL code of this example, you must have an HDL Coder™ license.

You can use the commands makehdl(subsystemname) and makehdltb(subsystemname) to
generate the HDL code and testbench for the subsystems.

Specify the subsystem name as 'commcrchdl/CRC Subsystem/HDL CRC in Transmitter' or
'commcrchdl/CRC Subsystem/HDL CRC in Receiver'.

Selected References

1 IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. (2007 revision). IEEE-SA. 12 June 2007.

2 Giuseppe Campobello, Giuseppe Patane, Marco Russo. "Parallel CRC Realization," IEEE
Transactions on Computers, vol. 52, no. 10, pp. 1312-1319, October, 2003.

 Using HDL Optimized CRC Library Blocks

1-473

Using HDL Optimized RS Encoder/Decoder Library Blocks

This example shows how to implement encoder and decoder for the IEEE® 802.16 standard [1]
using the HDL Optimized Reed-Solomon (RS) Encoder and Decoder library blocks.

Introduction

The RS code is a nonbinary block code. A RS code that maps information symbols into a codeword
of symbol length is denoted as RS(,) code. The symbols for the code are integers between
and , which represent elements of the finite field GF(). The IEEE 802.16 Broadband
Wireless Access standard [1] employs a “Shortening, Puncturing, and Erasures” on page 16-25 of
the RS(255,239) code generated on GF(256), i.e., , , and . RS encoder
introduces parity symbols, which are used by the RS decoder to detect and correct
symbol errors. The code can correct up to symbol errors in each
codeword.

This model shows how to use HDL Optimized RS Encoder and Decoder library blocks for simulation
and HDL Code generation. It implements the encoding and error correction for the IEEE 802.16
standard. For details about HDL support for HDL Optimized RS Encoder and Decoder blocks, refer to
Integer-Input RS Encoder HDL Optimized or Integer-Output RS Decoder HDL Optimized. To learn
more about the algorithm used in the blocks refer to [2].

To open this example model, run the following commands:

modelname = 'commrshdl';
open_system(modelname);

1 Communications Toolbox Featured Examples

1-474

Source

The Source subsystem generates the information symbols for the RS Encoder. To open the Source
subsystem, run the following commands:

systemname = [modelname '/Source'];
open_system(systemname);

 Using HDL Optimized RS Encoder/Decoder Library Blocks

1-475

One of the messages (information symbols) employed by the IEEE 802.16 standard contains the
following 36 bytes (Randomized data specified on page 827 of [1]).

 message = [D4 BA A1 12 F2 74 96 30 27 D4 88 9C 96 E3 A9 52 B3 15 AB FD
 92 53 07 32 C0 62 48 F0 19 22 E0 91 62 1A C1 00].

The Source repeatedly transmits the message followed by a guard interval. The model has
parameters messagelength, for the number of symbols in the message to encode; and period, which
includes the messagelength and the length of the guard interval. The guard interval between
messages accommodates the latency of the encoder adding parity check symbols to the message, and
the decoder performing a Chien search. In the initFcn callback of the model, the messagelength is
set to 36 and period is set to 236 (which suggest that the guard interval has a length of 200
symbols).

Note that the values of messagelength and period can be varied as desired.

The top-level RS Subsystem contains the HDL Optimized RS Encoder and Decoder blocks. To open
the RS subsystem, run the following commands:

systemname = [modelname '/RS Subsystem'];
open_system(systemname);

The values of and are set in the InitFcn callback of the model and are used to configure the HDL
Optimized RS Encoder and Decoder blocks. The values of and cannot be changed in this model.

1 Communications Toolbox Featured Examples

1-476

The RS encoder infers a shortened code if the message length is less than symbols. In this case, it
will pad the input message with zeros, encodes the padded message, and appends 16
parity check symbols. The block then removes the added zeros symbols, creating a
symbol output.

The field generator polynomial employed by IEEE 802.16 standard is .
Accordingly, for both RS encoder and decoder, the Source of primitive polynomial is set as
Property, the Primitive polynomial is set as [1 0 0 0 1 1 1 0 1], the Source of B which is the
starting power for roots of the primitive polynomial is set as Property, and the B value is set as
0. The code generator polynomial used by IEEE 802.16 standard is

, where .

Restrictions on and the codeword length are detailed on the Integer-Input RS Encoder block
reference page. The ErrorGen subsystem adds noise to the RS encoded message. To open the
ErrorGen subsystem, run the following commands:

systemname = [modelname '/RS Subsystem/ErrorGen'];
open_system(systemname);

The ErrorGen subsystem implements the logic to add noise to the codewords at locations specified in
the Noise Locations constant. The location can be changed as desired. In this example, the noise
will be added to the 5th, 23rd, 34th, and 12th codewords, corresponding to the symbols F2, 07, 1A,
and 9C. The MATLAB® function block outputs logical true only at these four time instances for each
packet, and activates a bitwise XOR operation between the original symbols and the noise.

Output Signals

Run the model using the following command:

sim(modelname);

Viewing the Signals

The Logic Analyzer can be used to view multiple signals in one window and viewing signals this way
makes it easier to observe transitions. Signals in this model at various stages, namely, before

 Using HDL Optimized RS Encoder/Decoder Library Blocks

1-477

encoding, after encoding, after adding noise, and after decoding are streamed. The blue icon in the
model indicates streamed signals. Launch the Logic Analyzer from the model's toolstrip.

Analysis of Results

In the Logic Analyzer output the inputdata signal represents the input of the RS encoder block and
this is the 36 byte message given in the IEEE 802.16 specification. The encoded data shows the
output of the RS encoder block. Note that the IEEE 802.16 specification performs puncturing of the
parity bytes and retains only the first four bytes of the 16 bytes. In this demo all 16 bytes of parity are
used and the first four bytes of parity are 49, 31, 40, and BF, matching the IEEE 802.16 specification.

The errdata signal represents the encoded data with noise added in the specified noise locations.
These noise locations are marked with 1s in the inserterr signal.

The decoded and corrected message out of the RS decoder block is shown by the outputdata signal.
Note that the RS decoder block introduces about 3 period lengths of latency. Observe outputdata to
see that the errors induced by noise are corrected.

Generate HDL Code and Test Bench

To check and generate HDL code for this example, you must have an HDL Coder™ license.

1 Communications Toolbox Featured Examples

1-478

Get a unique temporary directory name for the generated files,

 workingdir = tempname;

To check whether there are any issues with the model for HDL code generation, you can run the
following command:

 checkhdl('commrshdl/RS Subsystem','TargetDirectory',workingdir);

Enter the following command to generate HDL code:

 makehdl('commrshdl/RS Subsystem','TargetDirectory',workingdir);

Enter the following command to generate the test bench:

 makehdltb('commrshdl/RS Subsystem','TargetDirectory',workingdir);

ModelSim Output

The following figure shows the ModelSim® HDL simulator after running the generated .do file scripts
for the test bench. Compare the ModelSim result with the Simulink® result as plotted before.

Selected References

1. IEEE 802.16: IEEE Standard for Air Interface for Broadband Wireless Access Systems(Revision of
IEEE Std 802.16-2009). IEEE-SA. 8 June 2012.

2. George C. Clark Jr, J. Bibb Cain, Error-Correction Coding for Digital Communications, New York:
Springer, 1981.

 Using HDL Optimized RS Encoder/Decoder Library Blocks

1-479

Frequency Offset Calibration for Receivers

This example shows how to measure and calibrate for the frequency offset between a transmitter and
a receiver at the receiver using MATLAB® and Communications Toolbox™. You can either use
captured signals or receive signals in real time using the Communications Toolbox Support Package
for RTL-SDR Radio. The receiver monitors the received signal, calculates the frequency offset
between the transmitter and the receiver and displays it in the MATLAB® command window.

Required Hardware and Software

To run this example using captured signals, you need the Communications Toolbox™.

To receive signals in real time, you also need an RTL-SDR radio and the corresponding
Communications Toolbox Support Package for RTL-SDR Radio support package Add-On.

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

If you choose to receive signals in real time using a radio, you need to tune to a known broadcast
pilot tone or provide a signal source with a known center frequency to establish a baseline. If you do
not have a signal generator available, you can use a low-cost Family Radio Service walkie-talkie as a
source. Note that the signal source must be narrowband, with a sine wave being an ideal source.

Background

All radio receivers exhibit a frequency offset as compared to the transmitter. In some cases, the
frequency offset may be more than the receiver algorithm can handle. Therefore, you may need to
calibrate your receiver to minimize the frequency offset.

The example provides the following information about the communication link:

• The quantitative value of the frequency offset in Hz and PPM
• A graphical view of the qualitative SNR level of the received signal

If you have a transmitter, you can use it to generate a narrowband signal, such as a tone.

If you do not have a transmitter, you may be able to use a broadcast signal. For example, in USA, the
ATSC digital TV signals include a narrowband pilot tone on the RF carrier. The pilot tone is usually at
a nominal frequency of 309.440 kHz above the bottom edge of the channel. If such a signal is present
in your area, you can set the expected center frequency value to the frequency of the tone. This
example uses the pilot tone of channel 29, which is at approximately 560e6 + 309.440e3 Hz. For a list
of channel number and frequency values, see North American television frequencies.

If you are using an RTL-SDR radio as the receiver, specify the displayed PPM correction value as the
FrequencyCorrection property of the RTL-SDR Receiver System object™ to compensate for the
frequency offset. Be sure to use the sign of the offset in your specification. Once you've done that, the
spectrum displayed by the receiver's spectrum analyzer System object should have its maximum
amplitude at roughly 0 Hz.

Run the Example

Begin transmitting with your known signal source. If you are in the USA, you can set the expected
center frequency to the pilot tone of a near by digital TV transmitter.

1 Communications Toolbox Featured Examples

1-480

https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/discovery/sdr.html
https://en.wikipedia.org/wiki/North_American_television_frequencies#Broadcast_television

The FrequencyOffsetCalibrationForReceiversExample script displays the spectrum of the
received signal on a frequency range of -200 kHz to 200 kHz and prints the estimated frequency
offset in Hz and PPM in the command window. In the case shown below, the frequency of the
maximum received signal power is about -35 kHz.

Example Code

The receiver asks for user input and initializes variables. Then it calls the signal source, DC blocker,
coarse tone frequency offset estimator, and spectrum analyzer in a loop. The loop also keeps track of
the radio time using the frame duration.

% Request user input from command-line for application parameters
userInput = helperFrequencyCalibrationUserInput;

% Calculate system parameters based on the user input
[fcParam,sigSrc] = helperFrequencyCalibrationConfig(userInput);

% Create a DC blocker system object to remove the DC component of the
% received signal and increase accuracy of the frequency offset estimation.
dcBlocker = dsp.DCBlocker('Algorithm', 'Subtract mean');

% Create a coarse frequency offset estimation System Object to calculate
% the offset. The system object performs an FFT on its input signal and
% finds the frequency of maximum power. This quantity is the frequency
% offset.
CFO = comm.CoarseFrequencyCompensator(...
 'FrequencyResolution', 25, ...
 'SampleRate', fcParam.FrontEndSampleRate);

% Create a spectrum analyzer scope to visualize the signal spectrum
scope = spectrumAnalyzer(...
 'Name', 'Actual Frequency Offset',...
 'Title', 'Actual Frequency Offset', ...
 'SpectrumType', 'Power',...
 'FrequencySpan', 'Full', ...
 'SampleRate', fcParam.FrontEndSampleRate, ...
 'YLimits', [-40,10],...
 'SpectralAverages', 50, ...
 'FrequencySpan', 'Start and stop frequencies', ...
 'StartFrequency', -200e3, ...
 'StopFrequency', 200e3,...
 'Position', figposition([50 30 30 40]));

Stream Processing
msgLength = 0;
radioTime = 0;
secondCounter = 1;
while radioTime < userInput.Duration
 rxSig = sigSrc();
 rxSig = dcBlocker(rxSig);
 [~, offset] = CFO(rxSig);
 freqCorrection = (-offset / fcParam.ExpectedFrequency) * fcParam.FrontEndSampleRate;

 % Visualize spectrum and print results
 scope(rxSig);
 if radioTime > secondCounter
 fprintf(repmat('\b', 1, msgLength));

 Frequency Offset Calibration for Receivers

1-481

 msg = sprintf(['Frequency offset = %f Hz,\n' ...
 'Frequency correction value (Hz) = %f \n' ...
 'Frequency correction value (PPM) = %f \n'], ...
 offset, -offset, freqCorrection);
 fprintf(msg);
 msgLength = numel(msg);
 secondCounter = secondCounter + 1;
 end

 % Update radio time
 radioTime = radioTime + fcParam.FrameDuration;
end

% Release all System objects
release(sigSrc);
release(dcBlocker);
release(CFO);

Frequency offset = -35808.562500 Hz,
Frequency correction value (Hz) = 35808.562500
Frequency correction value (PPM) = 63.908546

1 Communications Toolbox Featured Examples

1-482

Conclusion

In this example, you used Communications Toolbox™ System objects to build a receiver that
calculates the relative frequency offset between a transmitter and a receiver.

 Frequency Offset Calibration for Receivers

1-483

Spectrum Analysis of Signals

This example shows downstream spectrum analysis of signals using MATLAB®, Communications
Toolbox™ and DSP System Toolbox™. You can either use captured signals, or receive signals in real
time using the RTL-SDR Radio, ADALM-PLUTO Radio or USRP™ Radio. You can change the radio's
center frequency to tune the radio to a band where a signal is present. You can then use the spectrum
analyzer to view and make measurements on the received spectrum.

For Simulink(R) implementation of this example, refer “Spectrum Analysis of Signals in Simulink” on
page 1-487.

Required Hardware and Software

To run this example using captured signals, you need the following software:

Communications Toolbox

DSP System Toolbox

To receive signals in real time, you also need one of the following hardware:

• RTL-SDR radio and the corresponding software Communications Toolbox Support Package for
RTL-SDR Radio

• ADALM-PLUTO radio and the corresponding software Communications Toolbox Support Package
for ADALM-PLUTO Radio

• USRP radio and the corresponding software Communications Toolbox Support Package for USRP
Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the "MATLAB and
Simulink Hardware Support for SDR" section of Software-Defined Radio (SDR).

Example Code

The receiver asks for user input and initializes variables. Then, it calls the signal source and FM
broadcast receiver in a loop. The loop also keeps track of the radio time using the frame duration and
lost samples reported by the signal source.

For the option to change default settings, set |cmdlineInput| to 1.

cmdlineInput = ;
if cmdlineInput
% Request user input from the command-line for application parameters
 userInput = helperSpectralAnalysisUserInput;
% Set initial parameters
 [SAParams, sigSrc] = helperSpectralAnalysisConfig(userInput);
else
% Set initial parameters
 load defaultInputSpecAnalysis.mat
 [SAParams, sigSrc] = helperSpectralAnalysisConfig;
end

Setup

Create spectrumAnalyzer object and configure based on user input

1 Communications Toolbox Featured Examples

1-484

https://www.mathworks.com/products/communications.html
https://in.mathworks.com/products/dsp-system.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://in.mathworks.com/hardware-support/usrp.html
https://in.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/discovery/sdr.html

hSpectrum = spectrumAnalyzer(...
 'Name', 'Passband Spectrum',...
 'Title', 'Passband Spectrum', ...
 'Method', 'Welch', ...
 'SpectrumType', 'Power density', ...
 'FrequencySpan', 'Full', ...
 'SampleRate', SAParams.FrontEndSampleRate, ...
 'SpectralAverages', 50, ...
 'FrequencyOffset', SAParams.CenterFrequency, ...
 'YLimits', [-120 10], ...
 'YLabel', 'Magnitude-squared, dB', ...
 'Position', figposition([50 30 30 40]));

Stream processing

View the spectrum. While the spectrum analyzer is running, you can measure peaks, occupied
bandwidth, and other properties of the signal.

% Initialize radio time
radioTime = 0;

% Main loop
while radioTime < userInput.Duration
 % Receive baseband samples (Signal Source)
 if SAParams.isSourceRadio
 if SAParams.isSourcePlutoSDR
 rcv = sigSrc();
 lost = 0;
 late = 1;
 elseif SAParams.isSourceUsrpRadio
 rcv= sigSrc();
 lost = 0;
 else
 [rcv,~,lost,late] = sigSrc();
 end
 else
 rcv = sigSrc();
 lost = 0;
 late = 1;
 end

 rcv = rcv - mean(rcv); % Remove DC component.
 step(hSpectrum, rcv);

 % Update radio time. If there were lost samples, add those too.
 radioTime = radioTime + SAParams.FrontEndFrameTime + ...
 double(lost)/SAParams.FrontEndSampleRate;
end

% Release all System objects
release(sigSrc);
release(hSpectrum);

 Spectrum Analysis of Signals

1-485

Conclusion

In this example, you used Communications Toolbox™ System objects to analyze the spectrum of a
received signal.

1 Communications Toolbox Featured Examples

1-486

Spectrum Analysis of Signals in Simulink

This example shows you how to use Simulink® and Communications Toolbox™ to perform spectrum
analysis of the downstream signals. You can tune the radio to a band where a signal is present by
changing the center frequency. You can then use the spectrum analyzer to view and make
measurements on the received spectrum. You can either use recorded data from a file, or receive
over-the-air signals in real time using an RTL-SDR radio, ADALM-PLUTO radio, or USRP™ radio.

The “Spectrum Analysis of Signals” on page 1-484 example provides a MATLAB® implementation of
this example.

Overview

The spectralAnalysis model performs an FFT-based spectrum analysis at complex baseband, and
provides:

• A view of the spur-free dynamic range of the receiver
• A view of the qualitative SNR level of the received signal

Structure of the Example

This figure shows the spectralAnalysis model:

Spectrum Analyzer

This figure shows the output of the Spectrum Analyzer for a data signal recorded in the
spectrum_capture.bb file. The spectrum shows data captured over the FM radio band, specifically
over the frequency range of -88 MHz to 108 MHz.

 Spectrum Analysis of Signals in Simulink

1-487

Running the Example

When you run the example, you can measure signal characteristics such as peaks, occupied
bandwidth, adjacent channel power ratio, harmonic and intermodulation levels, and spur-free
dynamic range.

1 Communications Toolbox Featured Examples

1-488

Airplane Tracking Using ADS-B Signals

This example shows how to track planes by processing automatic dependent surveillance-broadcast
(ADS-B) signals using MATLAB® and Communications Toolbox™. You can use captured signals or
receive signals in real time using an RTL-SDR radio, ADALM-PLUTO radio or Universal Software
Radio Peripheral (USRP™) radio. You can also visualize the tracked planes on a map using the
Mapping Toolbox™ software.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox™

To receive signals in real time, you need one of these SDR devices and the corresponding support
package Add-On:

• An RTL-SDR radio and the Communications Toolbox Support Package for RTL-SDR Radio software
Add-On

• An ADALM-PLUTO radio and the Communications Toolbox Support Package for Analog Devices®
ADALM-PLUTO Radio software Add-On

• A USRP radio and the Communications Toolbox Support Package for USRP Radio software Add-On

For a full list of Communications Toolbox supported SDR platforms, see the Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

ADS-B is a cooperative surveillance technology for tracking aircraft. This technology enables an
aircraft to periodically broadcast its position information such as altitude, GPS coordinates, and
heading, using the Mode-S signaling scheme.

Mode-S is a type of aviation transponder interrogation mode. When an aircraft receives an
interrogation request, it sends back the squawk code of the transponder. This is referred to as Mode
3A. Mode-S (Select) is another type of interrogation mode that is designed to help avoid interrogating
the transponder too often. More details about Mode-S can be found in [1]. This mode is widely
adopted in Europe and is being phased in for North America.

Mode-S signaling scheme uses squitter messages, which are defined as a non-solicited messages used
in aviation radio systems. Mode-S has these attributes:

• A transmit frequency of 1090 MHz
• Pulse Position Modulation (PPM)
• A data rate of 1 Mbit/s
• A short squitter length of 56 microseconds
• An extended squitter length of 112 microseconds

Short squitter messages contain these fields:

• Downlink Format (DF)

 Airplane Tracking Using ADS-B Signals

1-489

https://www.mathworks.com/discovery/sdr.html

• Capability (CA)
• Aircraft ID, which comprises of a unique 24-bit sequence
• CRC Checksum

Extended squitter (ADS-B) messages contain all the information in a short squitter and one of these
values:

• Altitude
• Position
• Heading
• Horizontal and Vertical Velocity

The signal format of Mode-S has a sync pulse that is 8 microseconds long followed by 56 or 112
microseconds of data, as this figure shows.

Receiver Structure

This block diagram summarizes the receiver code structure. The processing has four main parts:
signal source, physical layer, message parser, and data viewer.

Signal Source

You can specify one of these signal sources:

• ''Captured Signal'' - Over-the-air signals written to a file and sourced from a Baseband File
Reader object at 2.4 Msps

• ''RTL-SDR Radio'' - RTL-SDR radio at 2.4 Msps
• ''ADALM-PLUTO Radio'' - ADALM-PLUTO radio at 12 Msps
• ''USRP Radio'' - USRP radio at 20 Msps for all radios, except N310/N300 series that uses 2.4

Msps

1 Communications Toolbox Featured Examples

1-490

If you set ''RTL-SDR'' or ''ADALM-PLUTO'' or ''USRP Radio'' as the signal source, the
example searches your computer for the radio an RTL-SDR radio at radio address '0' or an ADALM-
PLUTO radio at radio address 'usb:0' and uses it as the signal source.

The extended squitter message is 120 micro seconds long, so the signal source is configured to
process enough samples to contain 180 extended squitter messages simultaneously, and set
SamplesPerFrame of the signal property accordingly. The rest of the algorithm searches for Mode-S
packets in this frame of data and returns all correctly identified packets. This type of processing is
reffered to as batch processing. An alternative approach is to process one extended squitter message
at a time. This single packet processing approach incurs 180 times more overhead than the batch
processing, while it has 180 times less delay. Since the ADS-B receiver is delay tolerant, you use
batch processing in this example.

Physical Layer

The physical layer (PHY) processes the baseband samples from the signal source to produce packets
that contain the PHY layer header information and raw message bits. This diagram shows the
physical layer structure.

The RTL-SDR radio can use a sampling rate in the range [200e3, 2.8e6] Hz. When the source is an
RTL-SDR radio, the example uses a sampling rate of 2.4 MHz and interpolates by a factor of 5 to a
practical sampling rate of 12 MHz.

The ADALM-PLUTO radio can use a sampling rate in the range [520e3, 61.44e6] Hz. When the source
is an ADALM-PLUTO, the example samples the input directly at 12 MHz.

The USRP radios are capable of using different sampling rates. When the USRP radio is the source,
the example samples the input directly at 20 MHz sample rate for most of the radios. For the N310/
N300 radio the data is received at 2.4 MHz sample rate and interpolates by a factor of 5 to a practical
sampling rate of 12e6.

For example, if the data rate is 1 Mbit/s and the effective sampling rate is 12 MHz, the signal contains
12 samples per symbol. The receive processing chain uses the magnitude of the complex symbols.

The packet synchronizer works on subframes of data equivalent to two extended squitter packets,
that is, 1440 samples at 12 MHz or 120 micro seconds. This subframe length ensures that the
subframe contains whole extended squitter. The packet synchronizer first correlates the received
signal with the 8 microsecond preamble and finds the peak value. The synchronizer then validates the
synchronization point by checking if it matches the preamble sequence, [1 0 0 0 0 0 1 0 1 0 0 0 0 0 0],
where a value of 1 represents a high value and a value of 0 represents a low value.

The Mode-S PPM scheme defines two symbols. Each symbol has two chips, where one has a high
value and the other has a low value. If the first chip is high and the subsequent chip is low, the symbol

 Airplane Tracking Using ADS-B Signals

1-491

is 1. Alternatively, if the first chip is low and the subsequent chip is high chip, then the symbol is 0.
The bit parser demodulates the received chips and creates a binary message. A CRC checker then
validates the binary message. The output of the bit parser is a vector of Mode-S physical layer header
packets that contain these fields:

• RawBits - Raw message bits
• CRCError - FALSE if CRC passes, TRUE if CRC fails
• Time - Time of reception in seconds, from the start of reception
• DF - Downlink format (packet type)
• CA - Capability

Message Parser

The message parser extracts data from the raw bits based on the packet type described in [2]. This
example can parse short squitter packets and extended squitter packets that contain airborne
velocity, identification, and airborne position data.

Data Viewer

The data viewer shows the received messages on a graphical user interface (GUI). For each packet
type, the data viewer shows the number of detected packets, the number of correctly decoded
packets, and the packet error rate (PER). As the radio captures data, the application lists information
decoded from these messages in a table.

Track Airplanes Using ADS-B Signals

The receiver prompts you for user input and initializes variables. After you set the input values call
the signal source, physical layer, message parser, and data viewer in a loop. The loop keeps track of
the radio time using the frame duration.

% The default configuration runs using captured data. You can set
% |cmdlineInput| to |1|, then run the example to optionally change these
% configuration settings:
% # Reception duration in seconds,
% # Signal source (captured data or RTL-SDR radio or ADALM-PLUTO radio or USRP radio),
% # Optional output methods (map and/or text file).

% For the option to change default settings, set |cmdlineInput| to 1.
cmdlineInput = 0;
if cmdlineInput
 % Request user input from the command-line for application parameters
 userInput = helperAdsbUserInput;
else
 load('defaultinputsADSB.mat');
end

% Calculate ADS-B system parameters based on the user input
[adsbParam,sigSrc] = helperAdsbConfig(userInput);

% Create the data viewer object and configure based on user input
viewer = helperAdsbViewer('LogFileName',userInput.LogFilename, ...
 'SignalSourceType',userInput.SignalSourceType);
if userInput.LogData
 startDataLog(viewer);
end

1 Communications Toolbox Featured Examples

1-492

if userInput.LaunchMap
 startMapUpdate(viewer);
end

% Create message parser object
msgParser = helperAdsbRxMsgParser(adsbParam);

% Start the viewer and initialize radio time
start(viewer)
radioTime = 0;

% Main loop
while radioTime < userInput.Duration

 if adsbParam.isSourceRadio
 if adsbParam.isSourcePlutoSDR
 [rcv,~,lostFlag] = sigSrc();
 else
 [rcv,~,lost] = sigSrc();
 lostFlag = logical(lost);
 end
 else
 rcv = sigSrc();
 lostFlag = false;
 end

 % Process physical layer information (Physical Layer)
 [pkt,pktCnt] = helperAdsbRxPhy(rcv,radioTime,adsbParam);

 % Parse message bits (Message Parser)
 [msg,msgCnt] = msgParser(pkt,pktCnt);

 % View results packet contents (Data Viewer)
 update(viewer,msg,msgCnt,lostFlag);

 % Update radio time
 radioTime = radioTime + adsbParam.FrameDuration;
end

% Stop the viewer and release the signal source
stop(viewer)
release(sigSrc)

 Airplane Tracking Using ADS-B Signals

1-493

This figure shows the information about the detected airplanes.

1 Communications Toolbox Featured Examples

1-494

You can also observe the airplanes on a map if you have a Mapping Toolbox license.

 Airplane Tracking Using ADS-B Signals

1-495

Further Exploration

You can investigate ADS-B signals using the ADSBExampleApp app. Use this app to select the signal
source and change the duration. To launch the app, enter ADSBExampleApp in the MATLAB
Command Window.

References

1 International Civil Aviation Organization, Annex 10, Volume 4. Surveillance and Collision
Avoidance Systems.

2 Technical Provisions For Mode S Services and Extended Squitter (Doc 9871)

1 Communications Toolbox Featured Examples

1-496

Automatic Meter Reading

This example shows you how to use Communications Toolbox™ to read utility meters by processing
Standard Consumption Message (SCM) signals and Interval Data Message (IDM) signals which are
emitted by Encoder-Receiver-Transmitter (ERT) compatible meters. You can either use recorded data
from a file, or receive over-the-air signals in real time using an RTL-SDR or ADALM-PLUTO radio.

In Simulink®, you can explore the “Automatic Meter Reading in Simulink” on page 1-561 example.

Required Hardware and Software

To run this example using recorded data from a file, you need Communications Toolbox™.

To receive signals in real time, you also need one of these SDR devices and the corresponding
software add-on:

• RTL-SDR radio and the Communications Toolbox Support Package for RTL-SDR Radio add-on

• ADALM-PLUTO radio and the Communications Toolbox Support Package for Analog Devices®
ADALM-PLUTO Radio add-on

For more information, see the Software Defined Radio (SDR) discovery page.

Background

Automatic Meter Reading (AMR) is a technology that autonomously collects the consumption and
status data from utility meters (such as electric, gas, or water meters) and delivers the data to utility
providers for billing or analysis purposes. The AMR system utilizes low power radio frequency (RF)
communication to transmit meter readings to a remote receiver. The RF transmission properties
include:

• Transmission frequency within range: 910-920 MHz
• Data rate: 32768 bps
• On-off keyed Manchester coded signaling

The SCM and IDM are two types of the conventional message types that the meters send out. The
SCM packets are used with a fixed length of 96 bits, whereas IDM packets are used with a fixed
length of 736 bits. These tables show the packet format of the SCM and IDM messages:

 Automatic Meter Reading

1-497

https://www.mathworks.com/discovery/sdr.html

Meters capable of sending both SCM and IDM messages transmit them on the same channel with
separation of roughly 275 msec. Each meter transmits the SCM and IDM messages over multiple
frequencies using a hopping pattern. The actual transmission frequencies, the frequency hopping
pattern, and the time interval between transmissions are random to avoid interference from other
transmissions. For more information, see reference [1].

Run Example

When you run the example:

• The receiver initializes the simulation parameters and calculates the AMR parameters.
• A data viewer display shows the meter ID, consumption information, and commodity type.
• The simulation loop calls the signal source, physical layer, message parser, and data viewer.
• The processing loop keeps track of the radio time using the frame duration.
• The display updates for each data capture, showing unique meter IDs with the latest consumption

information.

Initialize Parameters

The default signal source is 'File', which runs the example using the recorded baseband signal file
amr_capture_01.bb. To run the example using your RTL or ADALM-PLUTO SDR, change the
setting for signalSource when you call the helperAMRInit.m file. Valid options for signalSource
are 'File', 'RTL-SDR', and 'ADALM-PLUTO'.

signalSource = 'File';
initParam = helperAMRInit(signalSource);

% Calculate AMR system parameters based on the initialized parameters
[amrParam,sigSrc] = helperAMRConfig(initParam);

% Create the data viewer object
viewer = helperAMRViewer('MeterID',initParam.MeterID, ...
 'LogData',initParam.LogData, ...
 'LogFilename',initParam.LogFilename, ...
 'Fc',amrParam.CenterFrequency, ...
 'SignalSourceType',initParam.SignalSourceType);

1 Communications Toolbox Featured Examples

1-498

start(viewer);
radioTime = 0; % Initialize the radio time

% Main Processing Loop
while radioTime < initParam.Duration
 rcvdSignal = sigSrc();
 amrBits = helperAMRRxPHY(rcvdSignal,amrParam);
 amrMessages = helperAMRMessageParser(amrBits,amrParam);
 update(viewer,amrMessages);
 radioTime = radioTime + amrParam.FrameDuration;
end

stop(viewer); % Stop the viewer
release(sigSrc); % Release the signal source

Receiver Code Structure

The flow chart summarizes the receiver code structure. The processing has four main parts: Signal
Source, Physical Layer, Message Parser and Data Viewer.

Signal Source

 Automatic Meter Reading

1-499

This example can use three signal sources:

1 ''File'': Over-the-air signals written to a file and read using a Baseband File Reader object at 1.0
Msps

2 ''RTL-SDR'': RTL-SDR radio at a sample rate of 1.0 Msps
3 ''ADALM-PLUTO'': ADALM-PLUTO radio at a sample rate of 1.0 Msps

If you assign ''RTL-SDR'' or ''ADALM-PLUTO'' as the signal source, the example searches your
computer for the radio you specified, either an RTL-SDR radio at radio address '0' or an ADALM-
PLUTO radio at radio address 'usb:0' and uses it as the signal source.

Physical Layer

The baseband samples received from the signal source are processed by the physical layer (PHY) to
produce packets that contain the SCM or IDM information. This diagram shows the physical layer
receive processing.

The RTL-SDR radio is capable of using a sampling rate in the range of 225-300 kHz or 900-2560 kHz.
The ADALM-PLUTO radio is capable of using a sampling rate in the range of 520 kHz-61.44 MHz. A
sampling rate of 1.0 Msps is used to produce a sufficient number of samples per Manchester encoded
data bit. For each frequency in the hopping pattern, every AMR data packet is transmitted. The
frequency hopping allows for increased reliability over time. Since every packet is transmitted on
each frequency hop, it is sufficient to monitor only one frequency for this example. The radio is tuned
to a center frequency of 915 MHz for the entire simulation runtime.

The received complex samples are amplitude demodulated by extracting their magnitude. The on-off
keyed Manchester coding implies the bit selection block includes clock recovery. This block outputs
bit sequences (ignoring the idle times in the transmission) which are subsequently checked for the
known preamble. If the preamble matches, the bit sequence is further decoded, otherwise, it is
discarded and the next sequence is processed.

When the known SCM preamble is found for a bit sequence, the received message bits are decoded
using a shortened (255,239) BCH code which can correct up to two bit errors. In the case where the
known IDM preamble is found, the receiver performs a cyclic redundancy check (CRC) of the meter
serial number and of the whole packet starting at the Packet type (the 5th byte) to determine if the
packet is valid. Valid, corrected messages are passed onto the AMR message parser.

Message Parser

For a valid message, the bits are then parsed into the specific fields of the SCM or the IDM format.

Data Viewer

1 Communications Toolbox Featured Examples

1-500

The data viewer shows the decoded packets on a separate MATLAB® figure. For each successfully
decoded packet, the meter ID, commodity type, AMR packet type, consumption information and the
capture time is shown. As data is captured and decoded, the application lists the information decoded
from these messages in a tabular form. The table lists only the unique meter IDs with their latest
consumption information.

You can also change the meter ID and start text file logging using the data viewer.

• Meter ID - Change the meter ID from 0, which is the default value and is reserved for displaying
all detected meters, to a specific meter ID which you would like to be displayed.

• Log data to file - Save the decoded messages in a TXT file. You can use the saved data for post
processing.

Further Exploration

The data file accompanying the example has only one meter reading and has been captured at center
frequency of 915 MHz. Using RTL-SDR or ADALM-PLUTO, the example will display readings from
multiple meters when it is run for a longer period in a residential neighborhood.

You can further explore AMR signals using the AMRExampleApp user interface. This app allows you
to select the signal source and change the center frequency of the RTL-SDR or ADALM-PLUTO. This
link launchs the AMRExampleApp app shown here.

You can also explore the following functions for details of the physical layer, AMR message formats:

• helperAMRRxPHY.m
• helperAMRRxDiscreteEvent.m
• helperAMRRxBitParser.m
• helperAMRMessageParser.m

 Automatic Meter Reading

1-501

For a version of the example that works with multiple radios, see AMRMultipleRadios.m. The multiple
radio version allows you to examine the frequency hop patterns for a meter by setting different center
frequencies per radio device available. The script is set for two radios, but can be extended for any
number.

Selected Bibliography

1 Automatic meter reading, https://en.wikipedia.org/wiki/Encoder_receiver_transmitter, 2016.
2 Itron Electricity meters, https://www.itron.com/solutions/who-we-serve/electricity, 2017.

1 Communications Toolbox Featured Examples

1-502

https://en.wikipedia.org/wiki/Encoder_receiver_transmitter
https://www.itron.com/solutions/who-we-serve/electricity

Packetized Modem with Data Link Layer

This example shows you how to implement a packetized modem with Data Link Layer [1] using
MATLAB® and Communications Toolbox™. The modem features a packet-based physical layer and an
ALOHA-based Data Link Layer. You can either simulate the system or run with radios using the
Communications Toolbox Support Package for USRP® Radio.

Required Hardware and Software

To simulate the system performance, you need the following software:

• Communications Toolbox™

To measure system performance with radios, you also need the following hardware:

• USRP® radios (B2xx, N2xx, or X3xx)

and the following software

• Communications Toolbox Support Package for USRP® Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

Packetized wireless modems are communications systems that transmit information in bursts called
packets through a wireless channel. Each modem, also called a node, features a physical layer where
packets are modulated, transmitted and received on a shared frequency band, and demodulated.
Since the same frequency band is used by all nodes, a medium access control (MAC) algorithm is
required to reduce the packet loss due to collisions (i.e. simultaneous transmissions). Data Link Layer
includes a MAC sublayer and a logical link control sublayer to share the same channel and provides
an error-free link between two nodes. Data Link Layer is also called Layer 2 and sits between
Network Layer (Layer 3) and Physical Layer (Layer 1).

Run the Example

The example code creates three packetized modem node objects and connects them through a
channel object. Each node can send packets to the other two nodes. ACKTimeout determines the
timeout duration before a node decides the DATA packet transmission was not successful.
ACKTimeout must be greater than the round trip duration for a DATA-ACK exchange, which is 0.21
seconds for this example. The simulation is time-based and simulates the full physical layer
processing together with the data link layer.

Set simulation parameters

runDuration = 10; % Seconds
numPayloadBits = 19530; % Bits
packetArrivalRate = 0.2; % Packets per second
ackTimeOut = 0.25; % ACK time out in seconds
maxBackoffTime = 10; % Maximum backoff time in ackTimeOut durations
mMaxDataRetries = 5; % Maximum DATA retries
queueSize = 10; % Data Link Layer queue size in packets
samplesPerFrame = 2000; % Number of samples processed every iteration

 Packetized Modem with Data Link Layer

1-503

https://www.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/discovery/sdr.html

verbose = true; % Print packet activity to command line
sampleRate = 200e3;

Fix random number generation seed for repeatable simulations.

rng(12345)

Create packetized modem nodes by using the helperPacketizedModemNode object.

node1 = helperPacketizedModemNode('Address',1, ...
 'DestinationList',[2, 3],'NumPayloadBits',numPayloadBits, ...
 'PacketArrivalRate',packetArrivalRate,'ACKTimeOut',ackTimeOut, ...
 'MaxBackoffTime',maxBackoffTime,'MaxDataRetries',mMaxDataRetries, ...
 'QueueSize',queueSize,'CarrierDetectorThreshold',1e-5, ...
 'AGCMaxPowerGain',65,'SamplesPerFrame',samplesPerFrame, ...
 'Verbose',verbose,'SampleRate',sampleRate);
node2 = helperPacketizedModemNode('Address',2, ...
 'DestinationList',[1 3],'NumPayloadBits',numPayloadBits, ...
 'PacketArrivalRate',packetArrivalRate,'ACKTimeOut',ackTimeOut, ...
 'MaxBackoffTime',maxBackoffTime,'MaxDataRetries',mMaxDataRetries, ...
 'QueueSize',queueSize,'CarrierDetectorThreshold',1e-5, ...
 'AGCMaxPowerGain',65,'SamplesPerFrame',samplesPerFrame, ...
 'Verbose',verbose,'SampleRate',sampleRate);
node3 = helperPacketizedModemNode('Address',3, ...
 'DestinationList',[1 2],'NumPayloadBits',numPayloadBits, ...
 'PacketArrivalRate',packetArrivalRate,'ACKTimeOut',ackTimeOut, ...
 'MaxBackoffTime',maxBackoffTime,'MaxDataRetries',mMaxDataRetries, ...
 'QueueSize',queueSize,'CarrierDetectorThreshold',1e-5, ...
 'AGCMaxPowerGain',65,'SamplesPerFrame',samplesPerFrame, ...
 'Verbose',verbose,'SampleRate',sampleRate);

Configure the propagation channel by using the helperMultiUserChannel object.

channel = helperMultiUserChannel(...
 'NumNodes',3,'EnableTimingSkew',true,'DelayType','Triangle', ...
 'TimingError',20,'EnableFrequencyOffset',true, ...
 'PhaseOffset',47,'FrequencyOffset',2000,'EnableAWGN',true, ...
 'EbNo',25,'BitsPerSymbol',2,'SamplesPerSymbol',4, ...
 'EnableRicianMultipath', true, ...
 'PathDelays',[0 node1.SamplesPerSymbol/node1.SampleRate], ...
 'AveragePathGains',[15 0],'KFactor',15,'MaximumDopplerShift',10, ...
 'SampleRate',node1.SampleRate);

Main simulation loop

radioTime = 0;
nodeInfo = info(node1);
frameDuration = node1.SamplesPerFrame/node1.SampleRate;
[rcvd1,rcvd2,rcvd3] = deal(complex(zeros(node1.SamplesPerFrame,1)));
while radioTime < runDuration
 trans1 = node1(rcvd1, radioTime);
 trans2 = node2(rcvd2, radioTime);
 trans3 = node3(rcvd3, radioTime);

 % Multi-user channel
 [rcvd1,rcvd2,rcvd3] = channel(trans1,trans2,trans3);

 % Update radio time.

1 Communications Toolbox Featured Examples

1-504

 radioTime = radioTime + frameDuration;
end

| Time | Link | Action | Seq # | Backoff (Node 1)

| Time | Link | Action | Seq # | Backoff (Node 2)

| Time | Link | Action | Seq # | Backoff (Node 3)

4.46000 s	3 ->> 1	DATA	# 0	
4.67000 s	1 <<- 3	DATA	# 0	
4.67000 s	1 ->> 3	ACK	# 0	
4.68000 s	3 <<- 1	ACK	# 0	
5.04000 s	1 ->> 3	DATA	# 0	
5.16000 s	2 ->> 3	DATA	# 0	
5.30000 s	1 ->> 3	Back Off	# 0	1.00000 s
5.42000 s	2 ->> 3	Back Off	# 0	1.00000 s
6.31000 s	1 ->> 3	DATA	# 0	
6.43000 s	2 ->> 3	DATA	# 0	
6.57000 s	1 ->> 3	Back Off	# 0	2.25000 s
6.69000 s	2 ->> 3	Back Off	# 0	1.75000 s
8.45000 s	2 ->> 3	DATA	# 0	
8.66000 s	3 <<- 2	DATA	# 0	
8.66000 s	3 ->> 2	ACK	# 0	
8.67000 s	2 <<- 3	ACK	# 0	
8.83000 s	1 ->> 3	DATA	# 0	
9.09000 s	1 ->> 3	Back Off	# 0	2.25000 s
9.52000 s	3 ->> 2	DATA	# 1	
9.73000 s	2 <<- 3	DATA	# 1	
9.73000 s	2 ->> 3	ACK	# 1	
9.74000 s	3 <<- 2	ACK	# 1	

Results

The packetized modem node objects collect statistics on the performance of the data link layer
algorithm. Call the info method of the Node object to access these statistics. Sample results for a 10
second simulated time with a packet arrival rate of 0.2 packets/second are shown here. Each data
packet is 200 msec long.

Display statistics

nodeInfo(1) = info(node1);
nodeInfo(2) = info(node2);
nodeInfo(3) = info(node3);

for p=1:length(nodeInfo)
 fprintf('\nNode %d:\n', p);
 fprintf('\tNumGeneratedPackets: %d\n', nodeInfo(p).NumGeneratedPackets)
 fprintf('\tNumReceivedPackets: %d\n', nodeInfo(p).NumReceivedPackets)
 fprintf('\tAverageRetries: %f\n', nodeInfo(p).Layer2.AverageRetries)
 fprintf('\tAverageRoundTripTime: %f\n', ...
 nodeInfo(p).Layer2.AverageRoundTripTime)
 fprintf('\tNumDroppedPackets: %d\n', ...
 nodeInfo(p).Layer2.NumDroppedPackets)
 fprintf('\tNumDroppedPackets (Max retries): %d\n', ...
 nodeInfo(p).Layer2.NumDroppedPacketsDueToRetries)
 fprintf('\tThroughput: %d\n', ...
 numPayloadBits / nodeInfo(p).Layer2.AverageRoundTripTime)

 Packetized Modem with Data Link Layer

1-505

 fprintf('\tLatency: %d\n', nodeInfo(p).Layer2.AverageLatency)
end

Node 1:
 NumGeneratedPackets: 2
 NumReceivedPackets: 1
 AverageRetries: NaN
 AverageRoundTripTime: NaN
 NumDroppedPackets: 0
 NumDroppedPackets (Max retries): 0
 Throughput: NaN
 Latency: Inf

Node 2:
 NumGeneratedPackets: 1
 NumReceivedPackets: 1
 AverageRetries: 2.000000
 AverageRoundTripTime: 3.509844
 NumDroppedPackets: 0
 NumDroppedPackets (Max retries): 0
 Throughput: 5.564350e+03
 Latency: 2.104687e-01

Node 3:
 NumGeneratedPackets: 2
 NumReceivedPackets: 1
 AverageRetries: 0.000000
 AverageRoundTripTime: 0.220254
 NumDroppedPackets: 0
 NumDroppedPackets (Max retries): 0
 Throughput: 8.867039e+04
 Latency: 1.749922e+00

Data Link Layer (Layer 2)

This example implements a Data Link Layer based on the ALOHA random access protocol [2]. The
following flow diagram shows how the ALOHA protocol transmits and receives data packets.

1 Communications Toolbox Featured Examples

1-506

 Packetized Modem with Data Link Layer

1-507

When Data Link Layer has a Layer 3 packet to transmit, it starts a new session and sends the packet
right away using a DATA packet. The algorithm waits for an acknowledgment (ACK) packet. If an ACK
is not received before the timeout period, it backs off a random amount of time and sends the DATA
packet again. If it fails to receive an ACK after a number of retries, it drops the packet. If during this
session, a new Layer 3 packet is received, the Layer 3 packet is put in a first-in-first-out (FIFO)
queue. If the FIFO queue is full, packet is dropped.

The algorithm is implemented in the helperPacketizedModemDataLinkLayer helper System object™.
The helperPacketizedModemDataLinkLayer System object defines a state machine with three
states: IDLE, ACK_WAIT, and BACKOFF. The following state machine describes how the data link
layer algorithm is implemented in this object. Statements in brackets, [...], and curly braces, {...}, are
conditions and actions, respectively. Small circles are passthrough states used to represent multiple
conditions.

1 Communications Toolbox Featured Examples

1-508

The original ALOHA protocol uses a hub/star topology. The uplink and downlink utilizes two separate
frequency bands. The following example employs a mesh network topology where nodes transmit and
receive using the same frequency band.

Modem Structure

The modem code structure executes these six main processing parts:

1 Source Controller
2 Message Generator
3 PHY Decoder
4 Data Link Layer
5 Message Parser
6 PHY Encoder

The Data Link Layer processes outputs of the Message Generator and PHY Decoder, so it must run
after those two operations. The Message Parser and PHY Encoder process outputs of the Data Link
Layer. This sequence ensures that the modem can receive packets and respond to them in the same
time interval. The helperPacketizedModemNode object implements the modem.

Source Controller

The Source Controller generates an enable signal and a random destination address based on the
user-selected packet arrival distribution.

Message Generator

The Message Generator starts creating layer 3 data packets when enabled by the source controller.
The packets contain a digitized text message. If the message does not fit into one packet, the
generator creates multiple packets. The packet structure is as follows:

• To Address: 8 bits
• From Address: 8 bits
• Packet Number: 16 bits
• Payload: M bits

PHY Decoder

The PHY Decoder receives baseband I/Q samples and creates layer 2 packets. PHY Decoder can
correct for amplitude variations using an AGC, frequency offsets with a frequency offset estimator
and compensator, and timing skews and multipath using a fractionally spaced decision feedback
equalizer (DFE). The block diagram of the physical layer (Layer 1) receiver is as follows:

 Packetized Modem with Data Link Layer

1-509

When data payload size is set to 19530 bits, the total packet length of the modem is 39956 samples.
The modem processes SamplesPerFrame samples, which is 2000 samples for this example, at each
iteration. A smaller SamplesPerFrame results in smaller latency but increases the overhead of the
modem algorithm. An increased overhead may increase the processing time such that the modem
does not run in real-time anymore.

Data Link Layer

Data Link Layer provides a link between two neighboring nodes. It employs the ALOHA-based
protocol described in the Data Link Layer (Layer 2) section. The packet structure contains these
fields:

• Type: 4 bits
• Version: 2 bits
• Reserved: 2 bits
• To Address: 8 bits
• From Address: 8 bits
• Sequence Number: 8 bits
• Time stamp: 32 bits
• Payload: N (= M+32) bits

The data link layer also collects these statistics:

• Number of successful packet transfers, which is defined as the number of successfully received
ACK packets

• Average retries
• Average round trip time in seconds
• Number of dropped packets due to layer 3 packet queue being full
• Number of dropped packets due to retries
• Throughput defined as successful data delivery rate in bits per second

1 Communications Toolbox Featured Examples

1-510

• Average latency in seconds defined as the time between the generation of the layer 3 data packet
and reception of it at the destination node

Message Parser

The message parser parses the received layer 2 payload and creates layer 3 packet. The message
parser collects these statistics:

• Number of received packets
• Number of received duplicate packets

PHY Encoder

The PHY encoder creates physical layer packets by modulating the layer 2 packets into baseband I/Q
samples. The packet structure is shown here.

The dummy symbols are used to train the AGC and for carrier detection. The synchronization symbols
are a modulated PN-sequence. The header has these fields:

• Payload length: 16 bits
• CRC: 16 bits

This image shows the block diagram of the physical layer (Layer 1) transmitter.

Channel Model

This example simulates a three-node network but any number of nodes can be simulated. The output
of each node is passed to the channel simulator. The channel adds baseband signals from all three
nodes after imposing the these channel impairments:

• Timing skew
• Frequency offset
• Rician multipath
• AWGN

In addition to these impairments, the signals from neighboring nodes are applied a path loss of 20 dB,
while the self-interference is added directly.

 Packetized Modem with Data Link Layer

1-511

Running Using Radios

You can also run this example using radios instead of a simulated channel. The combination of an
SDR hardware and a host computer that runs a MATLAB session comprises a node. The following
steps show you how to set up a three-node network. This example uses USRP® B200 and B210
radios.

1) Connect a USRP® radio to host computer A, which we will call Node 1. Follow the instruction in
“Installation and Setup” (Communications Toolbox Support Package for USRP Radio) to install and
setup your host computer for use with USRP® radios. Start a MATLAB session.

2) Set up Node 1 as a transmitter for initialization. The helperPacketizedModemInitializeRadio
initializes the connected USRP® radio. Run helperPacketizedModemInitializeRadio('tx',
PLATFORM, ADDRESS, FC, RT), where PLATFORM is the type of the USRP® radio, ADDRESS is
the serial number or IP address, FC is the center frequency, and RT is run time in seconds. This
example uses 915 MHz for the center frequency. Assuming that your radio is a B200 with serial
number 'ABCDE', the function call will be helperPacketizedModemInitializeRadio('tx',
'B200', 'ABCDE', 915e6, 120). This function will run the transmitter for 120 seconds. If you
need more time to finish the initialization, rerun the command with a longer run time.

3) Repeat step 1 for a second radio and host computer and call this node Node 2.

4) Set up Node 2 as a receiver for initialization. Run [CDT, MAXGAIN, RXGAIN] =
helperPacketizedModemInitializeRadio('rx', PLATFORM, ADDRESS, FC, RT). Assuming
that your radio is a B210 with serial number '12345', the function call will be [CDT1, MAXGAIN1,

1 Communications Toolbox Featured Examples

1-512

RXGAIN1] = helperPacketizedModemInitializeRadio('rx', 'B210', '12345', 915e6,
120). The function will run until it determines the best values for carrier detector threshold (CDT),
maximum AGC gain (MAXGAIN), and radio receive gain (RXGAIN) or until RT seconds have elapsed.
If the initialization algorithm cannot determine suitable parameters, it may suggest increasing or
decreasing the transmitter power and retrying the initialization.

5) Run the same experiment with Node 1 as the receiver and Node 2 as the transmitter to determine
best receiver parameters for Node 1. In most cases the channel should be dual and the parameters
will be very close.

6) Repeat steps 1-5 for all other pairs of radios, i.e. Node 1 and Node 3, Node 3 and Node 2. Obtain
CDT, MAXGAIN, and RXGAIN values for each node. If you get different values for the same node
while initializing for different links, choose the maximum values for MAXGAIN and RXGAIN, and
minimum of CDT.

7) Start Node 1 by running the helperPacketizedModemRadio helper function. Use the command
helperPacketizedModemRadio(P,RA,NA,DA,FC,CDT,MAXG,RGAIN,D), where P is platform, RA
is radio address, NA is node address, DA is destination address list, FC is center frequency, CDT is
carrier detection threshold, MAXG is maximum AGC gain, RGAIN is radio receiver gain, and D is
duration. For example, run as helperPacketizedModemRadio('B200','ABCDE',1,[2
3],915e6,CDT1,MAXGAIN1,RXGAIN1,120).

8) Start Node 2 by running helperPacketizedModemRadio('B210','12345',2,[1
3],915e6,CDT2,MAXGAIN2,RXGAIN2,120).

9) Start Node 3 by running helperPacketizedModemRadio('B200','A1B2C',3,[1
2],915e6,CDT3,MAXGAIN3,RXGAIN3,120).

10) Once the session ends, each node prints out its statistics.

A three network setup operated for two hours. Each node generated packets at a rate of 0.2 packets/
second according to a Poisson distribution. The nodes were placed approximately equal distance. One
of the links had line-of-sight while other two did not. The following are the results collected on all
three nodes. Since the round trip time of a DATA-ACK exchange using the B2xx radios connected over
USB can be as high as 800 msec, the average round trip time of the network is greater than 3 sec.
The algorithm minimizes packet loss and provides a fair access to the shared channel to all nodes.

Node 1:
 NumGeneratedPackets: 1440
 NumReceivedPackets: 1389
 AverageRetries: 0.533738
 AverageRoundTripTime: 3.725093
 NumDroppedPackets: 95
 NumDroppedPackets (Max retries): 23
 Throughput: 5.242823e+03

Node 2:
 NumGeneratedPackets: 1440
 NumReceivedPackets: 1340
 AverageRetries: 0.473157
 AverageRoundTripTime: 3.290775
 NumDroppedPackets: 31
 NumDroppedPackets (Max retries): 9
 Throughput: 5.934772e+03

Node 3:
 NumGeneratedPackets: 1440

 Packetized Modem with Data Link Layer

1-513

 NumReceivedPackets: 1385
 AverageRetries: 0.516129
 AverageRoundTripTime: 3.558408
 NumDroppedPackets: 107
 NumDroppedPackets (Max retries): 29
 Throughput: 5.488410e+03

Discussions

The simulation code from previous sections and the helperPacketizedModemRadio helper function
both utilize the helperPacketizedModemNode System object to implement the modem node. In this
example, the same code is used to evaluate a system, first using a simulated channel, then using SDR
hardware and over-the-air channels.

Even though the code using simulated channels is time-based, the modem node object could be used
to run an event-based simulation. This example does not provide an event-based simulation kernel.

Further Exploration

You can vary these parameters to investigate their effect on data link layer performance:

• PacketArrivalRate
• ACKTimeOut
• MaxBackoffTime
• MaxDataRetries
• QueueSize

You can also explore the helper functions for implementation details of the algorithms:

• helperPacketizedModemNode.m
• helperPacketizedSourceController.m
• helperPacketizedModemMessageGenerator.m
• helperPacketizedModemDataLinkLayer.m
• helperPacketizedModemPHYEncoder.m
• helperPacketizedModemPHYDecoder.m
• helperPacketizedModemMessageParser.m
• helperMultiUserChannel.m

You can examine the physical layer only performance using the
PacketizedModemPhysicalLayerTxRxExample script.

Selected Bibliography

1 Data Link Layer
2 ALOHANet

Copyright Notice

Universal Software Radio Peripheral® and USRP® are trademarks of National Instruments® Corp.

1 Communications Toolbox Featured Examples

1-514

https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/ALOHAnet

FM Broadcast Receiver

This example shows how to build an FM mono or stereo receiver using MATLAB® and
Communications Toolbox™. You can either use captured signals, or receive signals in real time using
the RTL-SDR Radio, ADALM-PLUTO Radio or USRP™ Radio.

Required Hardware and Software

To run this example using recorded data from a file, you need Communications Toolbox™.

To receive signals in real time, you also need one of these SDR devices and the corresponding
software add-on:

• RTL-SDR radio and the Communications Toolbox Support Package for RTL-SDR Radio add-on

• ADALM-PLUTO radio and the Communications Toolbox Support Package for Analog Devices®
ADALM-PLUTO Radio add-on

• USRP radio and the Communications Toolbox Support Package for USRP® Radio add-on

For more information, see the Software Defined Radio (SDR) discovery page.

Background

FM broadcasting uses frequency modulation (FM) to provide high-fidelity sound transmission over
broadcast radio channels. Pre-emphasis and de-emphasis filters are used to reduce the effect of noise
on high audio frequencies. Stereo encoding enables simultaneous transmission of both left and right
audio channels over the same FM channel [1].

Run the Example

To and run the example, you need to enter the following information:

1 Reception duration in seconds
2 Signal source (captured data, RTL-SDR radio, ADALM-PLUTO radio or USRP radio)
3 FM channel frequency

The example plays the received audio over your computer's speakers.

NOTE: This example utilizes a center frequency that is outside the default PlutoSDR tuning range. To
use your ADALM-PLUTO radio outside the qualified tuning range, at the MATLAB® command line,
run configurePlutoRadio (Communications Toolbox Support Package for Analog Devices ADALM-
Pluto Radio) using 'AD9364' as the input argument.

Receiver Structure

The FM Broadcast Demodulator Baseband System object™ converts the input sampling rate of the
228 kHz to 45.6 kHz, the sampling rate for your host computer's audio device. According to the FM
broadcast standard in the United States, the de-emphasis lowpass filter time constant is set to 75
microseconds. This example processes the received mono signals. The demodulator can also process
stereo signals.

To perform stereo decoding, the FM Broadcast Demodulator Baseband object uses a peaking filter
which picks out the 19 kHz pilot tone from which the 38 kHz carrier is created. Using the resulting

 FM Broadcast Receiver

1-515

https://www.mathworks.com/discovery/sdr.html

carrier signal, the FM Broadcast Demodulator Baseband block downconverts the L-R signal, centered
at 38 kHz, to baseband. Afterwards, the L-R and L+R signals pass through a 75 microsecond de-
emphasis filter . The FM Broadcast Demodulator Baseband block separates the L and R signals and
converts them to the 45.6 kHz audio signal.

Example Code

The receiver asks for user input and initializes variables. Then, it calls the signal source and FM
broadcast receiver in a loop. The loop also keeps track of the radio time using the frame duration and
lost samples reported by the signal source.

The latency output of the signal source is an indication of when the samples were actually received
and can be used to determine how close to real time the receiver is running. A latency value of 1 and
a lost samples value of 0 indicates that the system is running in real time. A latency value of greater
than one indicates that the receiver was not able to process the samples in real time. Latency is
reported in terms of the number of frames. It can be between 1 and 128. If latency is greater than
128, then samples are lost.

%For the option to change default settings, set |cmdlineInput| to 1.
cmdlineInput = 0;
if cmdlineInput
 % Request user input from the command-line for application parameters
 userInput = helperFMUserInput;
else
 load('defaultinputsFM.mat');
end

% Calculate FM system parameters based on the user input
[fmRxParams,sigSrc] = helperFMConfig(userInput);

% Create FM broadcast receiver object and configure based on user input
fmBroadcastDemod = comm.FMBroadcastDemodulator(...
 'SampleRate', fmRxParams.FrontEndSampleRate, ...
 'FrequencyDeviation', fmRxParams.FrequencyDeviation, ...
 'FilterTimeConstant', fmRxParams.FilterTimeConstant, ...
 'AudioSampleRate', fmRxParams.AudioSampleRate, ...
 'Stereo', false);

% Create audio player
player = audioDeviceWriter('SampleRate',fmRxParams.AudioSampleRate);

% Initialize radio time
radioTime = 0;

% Main loop
while radioTime < userInput.Duration
 % Receive baseband samples (Signal Source)
 if fmRxParams.isSourceRadio
 if fmRxParams.isSourcePlutoSDR
 rcv = sigSrc();
 lost = 0;
 late = 1;
 elseif fmRxParams.isSourceUsrpRadio
 rcv= sigSrc();
 lost = 0;
 else
 [rcv,~,lost,late] = sigSrc();

1 Communications Toolbox Featured Examples

1-516

 end
 else
 rcv = sigSrc();
 lost = 0;
 late = 1;
 end

 % Demodulate FM broadcast signals and play the decoded audio
 audioSig = fmBroadcastDemod(rcv);
 player(audioSig);

 % Update radio time. If there were lost samples, add those too.
 radioTime = radioTime + fmRxParams.FrontEndFrameTime + ...
 double(lost)/fmRxParams.FrontEndSampleRate;
end

% Release the audio and the signal source
release(sigSrc)
release(fmBroadcastDemod)
release(player)

Further Exploration

To further explore the example, you can vary the center frequency of the RTL-SDR radio, ADALM-
PLUTO radio or USRP radio and listen to other radio stations.

You can set the Stereo property of the FM demodulator object to true to process the signals in stereo
fashion and compare the sound quality.

You can explore following function for details of the system parameters:

• helperFMConfig.m

You can further explore the FM signals using FMReceiverExampleApp user interface. This app allows
you to select the signal source and change the center frequency of the RTL-SDR radio, ADALM-
PLUTO radio or USRP radio. To launch the app, type FMReceiverExampleApp in the MATLAB
Command Window. This user interface is shown in the following figure

 FM Broadcast Receiver

1-517

matlab:commandwindow;FMReceiverExampleApp

Selected Bibliography

1 https://en.wikipedia.org/wiki/FM_broadcasting

See Also
Blocks
Baseband File Reader | FM Broadcast Demodulator Baseband

Related Examples
• “RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink” on page 1-529

External Websites
• Software Defined Radio (SDR)

1 Communications Toolbox Featured Examples

1-518

https://en.wikipedia.org/wiki/FM_broadcasting
https://www.mathworks.com/discovery/sdr.html

RDS/RBDS and RadioText Plus (RT+) FM Receiver

This example shows how to extract program or song information from FM radio stations using the
RDS or RBDS standard and, optionally, the RadioText Plus (RT+) standard. You can use a captured
signal, or receive signals over-the-air in real time using an RTL-SDR radio, an ADALM-PLUTO radio,
or a USRP B200/B210 radio.

Required Hardware and Software

To run this example using recorded data from a file, you need Communications Toolbox™.

To receive signals in real time, you also need one of these SDR devices and the corresponding
software add-on:

• RTL-SDR radio and the Communications Toolbox Support Package for RTL-SDR Radio add-on
• ADALM-PLUTO radio and the Communications Toolbox Support Package for Analog Devices®

ADALM-PLUTO Radio add-on
• USRP radio and the Communications Toolbox Support Package for USRP Radio add-on

For more information, see the Software Defined Radio (SDR) discovery page.

Background

RBDS and RDS are very similar standards specifying how to supplement FM radio signals with
additional information. RBDS is used in North America, while RDS was originally used in Europe and
evolved to an international standard. RBDS and RDS comprise 3 layers:

• Physical Layer (Layer 1)
• Data-link Layer (Layer 2)
• Session and presentation Layer (Layer 3)

Physical Layer (Layer 1)

The RBDSPhyDecoder helper receives the captured signal from a file or the live signal from the radio
and performs these steps:

• FM demodulation: Once the FM signal is demodulated, the RDS/RBDS signal resides at the 57
kHz +/- 2.4 kHz band. Be aware that the RDS/RBDS signal is transmitted with relatively low
power, so it is not always visible in the FM spectrum as shown in this figure.

 RDS/RBDS and RadioText Plus (RT+) FM Receiver

1-519

https://www.mathworks.com/discovery/sdr.html

FM signals contain a pilot tone at 19 kHz, which can be used as a phase and frequency reference for
coherent demodulation of the RDS/RBDS signal at 57 kHz and the stereo audio at 38 kHz. Pilot tones
at 38 kHz and 57 kHz can be generated by doubling and tripling the frequency of the 19 kHz pilot
tone [2] on page 1-528.

Processing steps for coherent demodulation of the RDS/RBDS signal are:

• Bandpass filtering: The PHY receiver conducts bandpass filtering at 19 kHz and 57 kHz, to
isolate the pilot tone and the RDS/RBDS signal, respectively.

• Frequency tripling: Raise the complex representation of the 19 kHz pilot tone to the 3rd power
to triple its frequency and obtain a 57 kHz pilot tone.

• AM Demodulation: RDS and RBDS symbols are generated at an 1187.5 Hz rate and are AM-
modulated to a 57 kHz carrier. The 57 kHz RDS/RBDS signal can be coherently demodulated with
a 57 kHz carrier that is locked in frequency and phase. Typically, the frequency-tripled 19 kHz
pilot tone suffices for coherent demodulation. The next figures show the 19 kHz and 57 kHz pilot
tones, the 57 kHz RDS/RBDS signal, and the AM-demodulated baseband RDS/RBDS signal.

1 Communications Toolbox Featured Examples

1-520

At the same time, there exist several FM stations whose 57 kHz RDS/RBDS signal exhibits a time-
varying phase offset from the 19 kHz pilot tone and its frequency-tripled version. The PHY receiver
contains a Costas loop to compensate for such time-varying phase offsets.

• Costas loop: The Costas loop performs 2 orthogonal AM demodulations, one demodulation with a
57 kHz sine and another with a 57 kHz cosine. The sampling rate of the received signal is
carefully chosen as 228 kHz, which provides 4 samples per 57 kHz cycle. Therefore, a one sample
delay of the 57 kHz pilot tone results to a one quarter wavelength phase offset, and allows us to
generate a cosine wave from a sine wave. The sine-demodulated signal corresponds to the
coherent demodulation output. The cosine-demodulated signal is used for detection of phase error.
The products of the 57 kHz RDS/RBDS signal with the sine/cosine waves are low-pass filtered with
the filter specified in Sec. 1.7 of [1] on page 1-528. The product of the two filter outputs is an
error signal. The larger it is, the more the 19 kHz pilot tone is delayed to behave more like the
cosine-based demodulator.

• Clock extraction: To perform biphase symbol decoding, a clock matching the RDS/RBDS symbol
rate of 1187.5 Hz is extracted from the 19 kHz pilot tone. Note, 1187.5 Hz x 16 = 19 kHz. To
account for frequency offsets, frequency division is used to extract the clock from the 19 kHz pilot
tone. Since the frequency division operation provides multiple correct answers, the baseband
RDS/RBDS signal serves as training data that aid in the determination of the desired output.

 RDS/RBDS and RadioText Plus (RT+) FM Receiver

1-521

• Biphase symbol decoder: RDS and RBDS use bi-phase-level (bi- ϕ -L) coding, which is commonly
known as Manchester coding. In each clock cycle, the RDS/RBDS symbol takes two opposite
amplitude values, either a positive followed by a negative, or a negative followed by a positive.
The biphase symbol decoder negates the second amplitude level, so that each symbol holds the
same amplitude level throughout the entire clock cycle. The new clock-wide amplitude level
corresponds to the symbol's bit representation. These plots correspond to the waveforms #1-6 in
Figure 2 of [1] on page 1-528.

To obtain each symbol's bit value, the waveform is integrated over each clock cycle, and the outcome
is compared to zero (slicer).

1 Communications Toolbox Featured Examples

1-522

• Differential decoding: Finally, the bits are differentially decoded to revert the differential
encoding at the transmitter.

Data-link Layer (Layer 2)

Layer 2 is implemented using the RBDSDataLinkDecoder helper. This layer is responsible for
synchronization and error correction.

The bit output of the PHY layer is logically organized in 104-bit groups comprising four 26-bit blocks.
Each block contains a 16-bit information word and 10 parity bits (see Figure 8 in [1] on page 1-
528). A distinct 10-bit offset word is modulo-2 added to the parity bits of each block.

• Synchronization: Initially, block and group boundaries are sought exhaustively using a sliding
window of 104 bits. For each 104-bit window, the 4 offset words are sought at the last 10 bits of
each 26-bit block. An offset word is identified if no bit errors are detected by the
RBDSErrorDetection helper. Once the offset words are identified, group-level synchronization is

 RDS/RBDS and RadioText Plus (RT+) FM Receiver

1-523

attained and the exhaustive sliding-window processing stops. Subsequently, the next 104 bits will
be treated as the next group.

If future groups contain bit errors and the offset words cannot be identified at their expected
position, synchronization may be lost. In this case, Layer 2 first examines the possibility of 1-bit
synchronization slips, exploiting the fact that the first information word (16 bits) is always the same
for all bit groups. If the first information word is found dislocated by 1 bit (either leftward or
rightward), synchronization is retained and the group boundaries are adjusted accordingly. If bit
errors persist for 25 group receptions and at the same time synchronization cannot be reestablished
using such leftward/rightward 1-bit shifts, then synchronization is lost and Layer 2 re-enters the
exhaustive, sliding-window-based search for synchronization.

• Error correction: The RDS/RBDS error correction code is a (26, 16) cyclic code shortened from
(341, 331). The RBDSErrorCorrection helper uses the shift-register scheme described in Annex
B of [1] on page 1-528.

Session and Presentation Layer (Layer 3)

Layer 2 removes the parity/offset bits, therefore Layer 3 receives groups of 64-bits, comprising four
16-bit blocks. There exist up to 32 different group types, each labeled with a number from 0 to 15 and
the letter 'A' or 'B', for example, 0B, 2A, 3A. The format of each group can be fixed or it can be
abstract if this group is allocated for an Open Data Application (ODA, see list in [3] on page 1-528).

Layer 3 is implemented using the RBDSSessionDecoder helper. This object supports decoding of the
0A, 0B, 2A, 2B, 3A, 4A, 10A fixed-format group types.

• 0A and 0B convey an 8-character string, which typically changes in a scrolling-text fashion.
• 2A and 2B convey longer 64- or 32-character strings.
• 3A registers ODAs and specifies their dedicated abstract-format group type.
• 4A conveys the system time.
• 10A further categorizes the program type, such as 'Football' for 'Sports' program type.

For ODAs, the RDS/RBDS receiver supports decoding of RadioText Plus (RT+). This ODA can break
down the long 32- or 64-character string from group types 2A or 2B into two specific content types
(for example, artist and song).

Registering ODA Implementations: RadioText Plus (RT+)

The RDS/RBDS receiver is extensible. ODA implementations can be specified using the
registerODA' function of the RBDSSessionDecoder helper. This function accepts the hexadecimal
ID of the ODA (ODA IDs can be found in [3] on page 1-528), and handles to the functions that
process the main ODA group type, as well as the ODA-specific part of the 3A group type. For example,
the session decoder RBDSSessionDecoder object can be extended for RadioText Plus (RT+) using
this code:

rtID = '4BD7'; % hexadecimal ID of RadioText Plus (RT+)
registerODA(sessionDecoder, rtID, @RadioTextPlusMainGroup,
@RadioTextPlus3A);

Run the Example Code

Use the helperRBDSInit helper function to set RDS/RBDS system parameters. The commented
code lines shows alternate settings to run the example from captured data or various SDRs. Use the
helperRBDSConfig helper function to configure the RDS/RBDS system.

1 Communications Toolbox Featured Examples

1-524

userInput = helperRBDSInit();
userInput.Duration = 10.8;
% userInput.SignalSource = 'File';
% userInput.SignalFilename = 'rbds_capture.bb';
% userInput.SignalSource = 'RTL-SDR';
% userInput.CenterFrequency = 98.5e6;
% userInput.SignalSource = 'ADALM-PLUTO';
% userInput.CenterFrequency = 98.5e6;
% userInput.SignalSource = 'USRP';
% userInput.CenterFrequency = 98.5e6;

[rbdsParam, sigSrc] = helperRBDSConfig(userInput);

Create and configure an FM broadcast receiver System object™ with the RDS/RBDS parameters.

fmBroadcastDemod = comm.FMBroadcastDemodulator(...
 'SampleRate',228e3, ...
 'FrequencyDeviation',rbdsParam.FrequencyDeviation, ...
 'FilterTimeConstant',rbdsParam.FilterTimeConstant, ...
 'AudioSampleRate',rbdsParam.AudioSampleRate, ...
 'Stereo',true);

% Create audio player
player = audioDeviceWriter('SampleRate',rbdsParam.AudioSampleRate);

% Layer 2 object
datalinkDecoder = RBDSDataLinkDecoder();

% Layer 3 object
sessionDecoder = RBDSSessionDecoder();
% register processing implementation for RadioText Plus (RT+) ODA:
rtID = '4BD7';
registerODA(...
 sessionDecoder,rtID,@RadioTextPlusMainGroup,@RadioTextPlus3A);

% Create the data viewer object
viewer = helperRBDSViewer();

% Start the viewer and initialize radio time
start(viewer)
radioTime = 0;
% Main loop
while radioTime < rbdsParam.Duration
 % Receive baseband samples (Signal Source)
 rcv = sigSrc();

 % Demodulate FM broadcast signals and play the decoded audio
 audioSig = fmBroadcastDemod(rcv);
 player(audioSig);

 % Process physical layer (Layer 1)
 bitsPHY = RBDSPhyDecoder(rcv, rbdsParam);

 % Process data-link layer (Layer 2)
 [enabled,iw1,iw2,iw3,iw4] = datalinkDecoder(bitsPHY);

 % Process session and presentation layer (Layer 3)
 outStruct = sessionDecoder(enabled,iw1,iw2,iw3,iw4);

 RDS/RBDS and RadioText Plus (RT+) FM Receiver

1-525

 % View results packet contents (Data Viewer)
 update(viewer, outStruct);

 % Update radio time
 radioTime = radioTime + rbdsParam.FrameDuration;
end

% Stop the viewer and release the signal source and audio writer
stop(viewer);

release(sigSrc);
release(player);

1 Communications Toolbox Featured Examples

1-526

Viewing Results

This window shows the processed RDS/RBDS data.

• Basic RDS/RBDS information:
• The first field contains the program type, which is conveyed by the second information word of all

group types. If 10A group types are received, the first field also provides further characterization,
such as, Sports \ Football.

• The second field contains the 8-character text conveyed by 0A/0B groups. The displayed text
wraps if the transmitted character string exceeds eight characters.

• The third field contains the longer 32/64-character text conveyed by 2A/2B group types.
• RadioText Plus (RT+): This section is populated if any 3A groups indicate that the RadioText

Plus (RT+) ODA uses an abstract-format group type, such as 11A. Upon reception of this abstract
group type, the 32/64-character text conveyed by groups 2A/2B will be split to two substrings. The
two labels will be updated to characterize the substrings (such as Artist and Song).

• Group type receptions: The tables provide a histogram displaying which group types have been
received from a station and with what frequency. As a result, users may want to look at the logged
data for further information that is not depicted in the graphical viewer (specifically, system time
in 4A, alternate frequencies in 0A etc.).

• Open data applications (ODA): If any 3A group types are received, this ODA list displays the
name and the dedicated group type for each ODA received.

Further Exploration

You can further explore RDS/RBDS signals using the RBDSExampleApp app. The RBDSExampleApp
app allows you to:

• Select the source of the signal (capture file or RTL-SDR, ADALM-PLUTO or USRP).
• Specify the station frequency (for RTL-SDR, ADALM-PLUTO or USRP).
• Run Layers 1 and 2 of the RDS/RBDS receiver though generated C code. These are the most time-

consuming parts of the RDS/RBDS chain and generating code can help you achieve real-time
processing.

• Disable audio playback.
• Open scopes, such as a Spectrum Analyzer and Time Scopes, that analyze the received signal and

illustrate the decoding process. Enabling scopes requires extra computational effort and may
preclude real-time decoding. In this case, RDS/RBDS decoding may only be successful for
captured signals loaded from a file.

• Log RBDS fields from other group types by selecting Log data to file.

You can explore the RBDS implementation, initialization, and configuration in these functions and
System objects:

• RBDSPhyDecoder
• RBDSCostasLoop
• RBDSDataLinkDecoder
• RBDSSessionDecoder
• helperRBDSInit
• helperRBDSConfig

 RDS/RBDS and RadioText Plus (RT+) FM Receiver

1-527

References

1. National Radio Systems Committee, United States RBDS standard, April 1998

2. Der, Lawrence. "Frequency Modulation (FM) Tutorial". Silicon Laboratories Inc.

3. National Radio Systems Committee, List of ODA Applications in RDS

4. RadioText Plus (RT+) Specification

5. Joseph P. Hoffbeck, "Teaching Communication Systems with Simulink® and the USRP", ASEE
Annual Conference, San Antonio, TX, June 2012

See Also
Objects
comm.BasebandFileReader | comm.FMBroadcastDemodulator

Related Examples
• “RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink” on page 1-529

External Websites
• Software Defined Radio (SDR)

1 Communications Toolbox Featured Examples

1-528

https://www.mathworks.com/discovery/sdr.html

RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink

This example shows how to extract program or song information from FM radio stations using the
RDS or RBDS standard and, optionally, the RadioText Plus (RT+) standard. You can use a captured
signal, or receive signals over-the-air in real time using an RTL-SDR radio, an ADALM-PLUTO radio,
or a USRP B200/B210 radio.

Required Hardware and Software

To run this example using captured signals, you need Simulink® and Communications Toolbox™
software.

To receive signals in real time, you also need one of these SDR devices and the corresponding
software add-on:

• RTL-SDR radio and Communications Toolbox Support Package for RTL-SDR Radio add-on

• ADALM-PLUTO radio and Communications Toolbox Support Package for ADALM-PLUTO Radio
add-on

• USRP radio and Communications Toolbox Support Package for USRP Radio add-on

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of the Software Defined Radio (SDR) discovery page.

Background

RBDS and RDS are very similar standards specifying how to supplement FM radio signals with
additional information. RBDS is used in North America, while RDS was originally used in Europe and
evolved to an international standard. RBDS and RDS comprise 3 layers:

• Physical layer (Layer 1)
• Data-link layer (Layer 2)
• Session and presentation layer (Layer 3)

The RBDSSimulinkExample model in this diagram receives FM signals either from a captured file or
over the air. The model plays the audio signal and displays the RBDS information.

 RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink

1-529

https://www.mathworks.com/discovery/sdr.html

Physical Layer (Layer 1)

The physical layer subsystem receives the captured signal from a file or the live signal from the radio
and performs these steps:

• FM demodulation: Once the FM signal is demodulated, the RDS/RBDS signal resides at the 57
kHz +/- 2.4 kHz band. Be aware that the RDS/RBDS signal is transmitted with relatively low
power, so it is not always visible in the FM spectrum as shown in this figure.

1 Communications Toolbox Featured Examples

1-530

FM signals contain a pilot tone at 19 kHz, which can be used as a phase and frequency reference for
coherent demodulation of the RDS/RBDS signal at 57 kHz and the stereo audio at 38 kHz. Pilot tones
at 38 kHz and 57 kHz can be generated by doubling and tripling the frequency of the 19 kHz pilot
tone [2].

Processing steps for coherent demodulation of the RDS/RBDS signal are:

• Bandpass filtering: The PHY receiver conducts bandpass filtering at 19 kHz and 57 kHz, to
isolate the pilot tone and the RDS/RBDS signal, respectively.

• Frequency tripling: Raise the complex representation of the 19 kHz pilot tone to the 3rd power
to triple its frequency and obtain a 57 kHz pilot tone.

• AM Demodulation: RDS and RBDS symbols are generated at an 1187.5 Hz rate and are AM-
modulated to a 57 kHz carrier. The 57 kHz RDS/RBDS signal can be coherently demodulated with
a 57 kHz carrier that is locked in frequency and phase. Typically, the frequency-tripled 19 kHz
pilot tone suffices for coherent demodulation. The next figures show the 19 kHz and 57 kHz pilot
tones, the 57 kHz RDS/RBDS signal, and the AM-demodulated baseband RDS/RBDS signal.

 RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink

1-531

At the same time, there exist several FM stations whose 57 kHz RDS/RBDS signal exhibits a time-
varying phase offset from the 19 kHz pilot tone and its frequency-tripled version. The PHY receiver
contains a Costas loop to compensate for such time-varying phase offsets.

• Costas loop: The Costas loop performs 2 orthogonal AM demodulations, one demodulation with a
57 kHz sine and another with a 57 kHz cosine. The sampling rate of the received signal is
carefully chosen as 228 kHz, which provides 4 samples per 57 kHz cycle. Therefore, a one sample
delay of the 57 kHz pilot tone results to a one quarter wavelength phase offset, and allows us to
generate a cosine wave from a sine wave. The sine-demodulated signal corresponds to the
coherent demodulation output. The cosine-demodulated signal is used for detection of phase error.
The products of the 57 kHz RDS/RBDS signal with the sine/cosine waves are low-pass filtered with
the filter specified in Sec. 1.7 of [1]. The product of the two filter outputs is an error signal. The
larger it is, the more the 19 kHz pilot tone is delayed to behave more like the cosine-based
demodulator.

1 Communications Toolbox Featured Examples

1-532

• Clock extraction: To perform biphase symbol decoding, a clock matching the RDS/RBDS symbol
rate of 1187.5 Hz is extracted from the 19 kHz pilot tone. Note, 1187.5 Hz x 16 = 19 kHz. To
account for frequency offsets, frequency division is used to extract the clock from the 19 kHz pilot
tone. Since the frequency division operation provides multiple correct answers, the baseband
RDS/RBDS signal serves as training data that aid in the determination of the desired output.

• Biphase symbol decoder: RDS and RBDS use bi-phase-level (bi- -L) coding, which is commonly
known as Manchester coding. In each clock cycle, the RDS/RBDS symbol takes two opposite
amplitude values, either a positive followed by a negative, or a negative followed by a positive.
The biphase symbol decoder negates the second amplitude level, so that each symbol holds the
same amplitude level throughout the entire clock cycle. The new clock-wide amplitude level
corresponds to the symbol's bit representation. These screenshots correspond to the waveforms
#1-6 in Figure 2 of [1].

 RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink

1-533

To obtain each symbol's bit value, the waveform is integrated over each clock cycle, and the outcome
is compared to zero (slicer).

1 Communications Toolbox Featured Examples

1-534

• Differential decoding: Finally, the bits are differentially decoded to revert the differential
encoding at the transmitter.

Data-link Layer (Layer 2)

Layer 2 is implemented using the RBDSDataLinkDecoder System block. This layer is responsible for
synchronization and error correction.

The bit output of the PHY layer is logically organized in 104-bit groups comprising four 26-bit blocks.
Each block contains a 16-bit information word and 10 parity bits (see Figure 8 in [1]). A distinct 10-
bit offset word is modulo-2 added to the parity bits of each block.

• Synchronization: Initially, block and group boundaries are sought exhaustively using a sliding
window of 104 bits. For each 104-bit window, the 4 offset words are sought at the last 10 bits of
each 26-bit block. An offset word is identified if no bit errors are detected in the
RBDSErrorDetection System block. Once the offset words are identified, group-level

 RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink

1-535

synchronization is attained and the exhaustive sliding-window processing stops. Subsequently, the
next 104 bits will be treated as the next group.

If future groups contain bit errors and the offset words cannot be identified at their expected
position, synchronization may be lost. In this case, Layer 2 first examines the possibility of 1-bit
synchronization slips, exploiting the fact that the first information word (16 bits) is always the same
for all bit groups. If the first information word is found dislocated by 1 bit (either leftward or
rightward), synchronization is retained and the group boundaries are adjusted accordingly. If bit
errors persist for 25 group receptions and at the same time synchronization cannot be reestablished
using such leftward/rightward 1-bit shifts, then synchronization is lost and Layer 2 re-enters the
exhaustive, sliding-window-based search for synchronization.

• Error correction: The RDS and RBDS error correction code is a (26, 16) cyclic code shortened
from (341, 331). The RBDSErrorCorrection System block uses the shift-register scheme described
in Annex B of [1].

Session and Presentation Layer (Layer 3)

Layer 2 removes the parity/offset bits, therefore Layer 3 receives groups of 64-bits, comprising four
16-bit blocks. There exist up to 32 different group types, each labeled with a number from 0 to 15 and
the letter 'A' or 'B', for example, 0B, 2A, 3A. The format of each group can be fixed or it can be
abstract if this group is allocated for an Open Data Application (ODA, see list in [3]).

Layer 3 is implemented using the RBDSSessionDecoder System block. This block supports decoding
of the 0A, 0B, 2A, 2B, 3A, 4A, 10A fixed-format group types.

• 0A and 0B convey an 8-character string, which typically changes in a scrolling-text fashion.
• 2A and 2B convey longer 64- or 32-character strings.
• 3A registers ODAs and specifies their dedicated abstract-format group type.
• 4A conveys the system time.
• 10A further categorizes the program type, such as 'Football' for 'Sports' program type).

For ODAs, the RDS/RBDS receiver supports decoding of RadioText Plus (RT+) [4]. This ODA can
break down the long 32 or 64-character string from group types 2A and 2B into two specific content
types (for example, artist and song).

Viewing Results

This screenshot illustrates the graphical display of the processed RDS/RBDS data:

Win32; Microsoft Visual C++ version 14.2; Boost_107800; UHD_4.2.0.0-vendor

---------- see libuhd version information above this line ----------

1 Communications Toolbox Featured Examples

1-536

matlab:openExample('comm/RBDSInSimulinkExample','supportingFile',

• Basic RDS/RBDS information:

1 The first field corresponds to the program type, which is conveyed by the second information
word of all group types. If 10A group types are received, the first field provides further
characterization, such as Sports \ Football.

2 The second field illustrates the 8-character text conveyed by 0A/0B groups.
3 The third field illustrates the longer 32/64-character text conveyed by 2A/2B group types.

• RadioText Plus (RT+): This section is used if any 3A groups indicate that the RadioText Plus (RT
+) ODA [4] uses a certain abstract-format group type, such as 11A. Then, upon receptions of this
abstract group type, the 32/64-character text conveyed by groups 2A/2B will be split to two
substrings. Moreover, the two labels will be updated to characterize the substrings, such as Artist
and Song).

 RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink

1-537

• Group type receptions: The tables act as a histogram illustrating which group types have been
received from a station and with what frequency. As a result, users may want to look at the logged
data for further information not depicted in the graphical viewer. For example, system time in 4A,
alternate frequencies in 0A, or others.

• Open data applications (ODA): If any 3A group types are received, then the list of encountered
ODAs is updated with the ODA name and their dedicated group type.

Moreover, you can enable the 'Log data to file' checkbox in order to log further fields from all group
types.

Selected Bibliography

1 National Radio Systems Committee, United States RBDS standard, April 1998
2 Der, Lawrence. "Frequency Modulation (FM) Tutorial". Silicon Laboratories Inc.
3 National Radio Systems Committee, List of ODA Applications in RDS
4 RadioText Plus (RT+) Specification
5 Joseph P. Hoffbeck, "Teaching Communication Systems with Simulink® and the USRP", ASEE

Annual Conference, San Antonio, TX, June 2012

See Also
Blocks
Baseband File Reader | FM Broadcast Demodulator Baseband

Related Examples
• “RDS/RBDS and RadioText Plus (RT+) FM Receiver” on page 1-519

External Websites
• Software Defined Radio (SDR)

1 Communications Toolbox Featured Examples

1-538

https://www.mathworks.com/discovery/sdr.html

FRS/GMRS Walkie-Talkie Receiver

This example shows how to build a walkie-talkie receiver using MATLAB® and Communications
Toolbox™. The specific radio standard this example follows is FRS/GMRS (Family Radio Service /
General Mobile Radio Service) with CTCSS (Continuous Tone-Coded Squelch System). You can use
simulated signals, captured signals, or received signals from a commercial walkie-talkie using the
Communications Toolbox Support Package for RTL-SDR Radio.

This example is designed to work with USA standards for FRS/GMRS operation. The technical
specifications for these standards can be found in the reference list below. Operation in other
countries may or may not work.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Communications Toolbox

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio
• Walkie-talkie

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the "MATLAB and
Simulink Hardware Support for SDR" section of Software-Defined Radio (SDR).

Background

Walkie-talkies provide a subscription-free method of communicating over short distances. Although
their popularity has been diminished by the rise of cell phones, walkie-talkies are still useful when
lack of reception or high per-minute charges hinders cell phone use.

Modern walkie-talkies operate on the FRS/GMRS standards. Both standards use frequency
modulation (FM) at 462 or 467 MHz, which is in the UHF (Ultra High Frequency) band.

Run the Example

Click the 'Open Script' button to open and run the example. You need to enter the following
information:

1 Reception duration in seconds
2 Signal source (simulated signal, captured signal or RTL-SDR radio)
3 Channel number (1-14)
4 CTCSS code (1-38, 0 no CTCSS filtering)
5 Detection threshold for received signal

The example plays the received audio over your computer's speakers.

 FRS/GMRS Walkie-Talkie Receiver

1-539

https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/discovery/sdr.html

Receiver Structure

The following block diagram summarizes the receiver code structure. The processing has four main
parts: Signal Source, Channel Selector, FM Demodulator, and CTCSS processing.

Signal Source

This example can use three signal sources:

1 ''Simulated Signal'': Simulated FRS/GMRS signal at 240e3 samples/sec
2 ''Captured Signal'': Over-the-air signals written to a file and sourced from a baseband file reader

object at 240e3 samples/sec
3 ''RTL-SDR Radio'': RTL-SDR radio at 240e3 samples/sec

If you choose ''RTL-SDR Radio'' as the signal source, this application will search your computer for
RTL-SDR radios and ask you to choose one of them as the signal source.

Channel Selector

The receiver removes the DC component and applies a variable gain to the received signal to obtain
an approximately known amplitude signal with reduced interference. The receiver then applies a low
pass channel separation filter to reduce the signals from adjacent channels. The gap between
adjacent channels is 25 kHz, which means the baseband bandwidth is, at most, 12.5 kHz. Thus, we
choose the cutoff frequency to be 10 kHz.

Next, a channel selector computes the average power of the filtered signal. If it is greater than a
threshold (set to a default of 10%), the channel selector determines that the received signal is from
the correct channel and allows the signal to pass through. In the case of an out-of-band signal,
although the channel separation filter reduces its magnitude, it is still FM modulated and the
modulating signal will be present after FM demodulation. To completely reject such a signal, the
channel selector outputs all zeros.

FM Demodulator

This example uses the FM Demodulator Baseband System object™ whose sample rate and maximum
frequency deviation are set to 240 kHz and 2.5 kHz, respectively.

CTCSS

First, a decimation filter converts the sampling rate from 240 kHz to 8 kHz. This rate is one of the
native sampling rates of your host computer's output audio device. Then, the CTCSS decoder
computes the power at each CTCSS tone frequency using the Goertzel algorithm and outputs the
code with the largest power. The Goertzel algorithm provides an efficient method to compute the

1 Communications Toolbox Featured Examples

1-540

frequency components at predetermined frequencies, that is, the tone code frequencies used by FRS/
GMRS.

The script compares the estimated received code with the preselected code. If the two codes match,
the signals are passed to the audio device. When the preselected code is zero, it indicates no squelch
system is used and the decision block passes the signal at the channel to the audio device no matter
which code is used.

Finally, a high pass filter with a cutoff frequency of 260 Hz filters out the CTCSS tones, which have a
maximum frequency of 250 Hz. Use an audioDeviceWriter System object™ to play the received
signals through your computer's speakers. If you do not hear any sound, select another device using
the DeviceName property of the audio device writer object, audioPlayer.

Example Code

The receiver asks for user input and initializes variables. Then it calls the signal source, channel
selector, FM demodulator, and CTCSS processor in a loop. The loop also keeps track of the radio time
using the frame duration and lost samples reported by the signal source.

The latency output of the signal source is an indication of when the samples were actually received
and can be used to determine how close to real time the receiver is running. A latency value of 1 and
a lost samples value of 0 indicates that the system is running in real-time. A latency value of greater
than one indicates that the receiver was not able to process the samples in real time. Latency is
reported in terms of the number of frames. It can be between 1 and 128. If latency is greater than
128, then samples are lost.

% Request user input from the command-line for application parameters
userInput = helperFRSReceiverUserInput;

% Calculate FRS receiver parameters based on the user input
[frsRxParams,sigSrc] = helperFRSReceiverConfig(userInput);

% Create channel selector components
dcBlocker = dsp.DCBlocker('Algorithm', 'Subtract mean');
agc = comm.AGC;
channelFilter = frsRxParams.ChannelFilter;

% Create FM demodulator
fmDemod = comm.FMDemodulator(...
 'SampleRate', frsRxParams.FrontEndSampleRate, ...
 'FrequencyDeviation', frsRxParams.FrequencyDeviation);

% Create CTCSS and audio output components
decimator = dsp.FIRDecimator(...
 frsRxParams.DecimationFactor, ...
 frsRxParams.DecimationNumerator);
decoder = helperFRSCTCSSDecoder(...
 'MinimumBlockLength', frsRxParams.CTCSSDecodeBlockLength, ...
 'SampleRate', frsRxParams.AudioSampleRate);
audioFilter = frsRxParams.AudioFilter;
audioPlayer = audioDeviceWriter(frsRxParams.AudioSampleRate);

% Initialize radio time
radioTime = 0;

% Main loop

 FRS/GMRS Walkie-Talkie Receiver

1-541

while radioTime < userInput.Duration
 % Receive baseband samples (Signal Source)
 if frsRxParams.isSourceRadio
 [rcv,~,lost,late] = sigSrc();
 else
 rcv = sigSrc();
 lost = 0;
 late = 1;
 end

 % Channel selector
 rcv = dcBlocker(rcv);
 outAGC = agc(rcv);
 outChanFilt = channelFilter(outAGC);
 rxAmp = mean(abs(outChanFilt));
 if rxAmp > frsRxParams.DetectionThreshold
 x = outChanFilt;
 else
 x = complex(single(zeros(frsRxParams.FrontEndSamplesPerFrame, 1)));
 end

 % FM demodulator
 y = fmDemod(x);

 % CTCSS decoder and audio output
 outRC = decimator(y);
 rcvdCode = decoder(outRC);
 if (rcvdCode == frsRxParams.CTCSSCode) || (frsRxParams.CTCSSCode == 0)
 rcvdSig = outRC;
 else
 rcvdSig = single(zeros(frsRxParams.AudioFrameLength, 1));
 end
 audioSig = audioFilter(rcvdSig);
 audioPlayer(audioSig);

 % Update radio time. If there were lost samples, add those too.
 radioTime = radioTime + frsRxParams.FrontEndFrameTime + ...
 double(lost)/frsRxParams.FrontEndSampleRate;
end

% Release the resources
release(fmDemod)
release(audioPlayer)
release(sigSrc)

Further Exploration

The CTCSS decoding computes the DFT (Discrete Fourier Transform) of the incoming signal using
the Goertzel algorithm and computes the power at the tone frequencies. Because the tone
frequencies are very close to each other (only 3-4 Hz apart) the block length of the DFT should be
large enough to provide enough resolution for the frequency analysis. However, long block lengths
cause decoding delay. For example, a block length of 16384 will cause 2 seconds of delay because the
CTCSS decoder operates at an 8 kHz sampling rate. This creates a trade-off between detection
performance and processing latency. The optimal block length may depend on the quality of the
transmitter and receiver, the distance between the transmitter and receiver, and other factors. You
are encouraged to change the block length in the initialization function by navigating to the
helperFRSReceiverConfig function and changing the value of the CTCSSDecodeBlockLength field.

1 Communications Toolbox Featured Examples

1-542

This will enable you to observe the trade-off and find the optimal value for your transmitter/receiver
pair.

You can explore following functions and System objects for details of the physical layer
implementation:

• helperFRSReceiverConfig.m
• helperFRSCTCSSDecoder.m
• helperFRSSignalGenerator.m

References

• Family Radio Service
• General Mobile Radio Service
• Continuous Tone-Coded Squelch System
• Goertzel Algorithm

 FRS/GMRS Walkie-Talkie Receiver

1-543

https://en.wikipedia.org/wiki/Family_Radio_Service
https://en.wikipedia.org/wiki/General_Mobile_Radio_Service
https://en.wikipedia.org/wiki/Continuous_Tone-Coded_Squelch_System
https://en.wikipedia.org/wiki/Goertzel_algorithm

Frequency Offset Calibration for Receivers in Simulink

This example shows how to measure and calibrate for transmitter/receiver frequency offset at the
receiver using Simulink® and Communications Toolbox™. You can either use captured signals or
receive signals in real time using the Communications Toolbox Support Package for RTL-SDR Radio.
The receiver monitors the received signal, calculates and display the transmitter/receiver frequency
offset.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

For an introduction on the frequency offset calibration for receivers, refer to the “Frequency Offset
Calibration for Receivers” on page 1-480 example.

Running the Example

To run the example using captured signals, select the Frequency Offset Captured Signal block
as the source using the Signal Source Selector block. Then click the run button. The model
processes signals that were captured with an RTL-SDR radio at a center frequency of 560309440 Hz.
This value corresponds to the pilot tone of channel 29 of digital TV signals in the USA.

To run the example using the RTL-SDR radio as the source, select the RTL-SDR Receiver block as
the source using the Signal Source Selector block. Double-click the Expected Center
Frequency block and set to the expected tone frequency. Begin transmitting with your known signal
source. If you are in the USA, you can set the expected center frequency to the pilot tone of a near by
digital TV transmitter. For a list of channel number and frequency values, see North American
television frequencies. Then click the run button.

If you use the RTL-SDR radio as the source, to compensate for a transmitter/receiver frequency
offset, specify the displayed PPM correction value as the Frequency correction (ppm) parameter of
the RTL-SDR Receiver block. Be sure to use the sign of the offset in your specification. The spectrum
displayed by the Spectrum Analyzer block should then have its maximum at 0 Hz.

Structure of the Example

The following figure shows the receiver model:

1 Communications Toolbox Featured Examples

1-544

https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/discovery/sdr.html
https://en.wikipedia.org/wiki/North_American_television_frequencies#Broadcast_television
https://en.wikipedia.org/wiki/North_American_television_frequencies#Broadcast_television

 Frequency Offset Calibration for Receivers in Simulink

1-545

The following figure shows the detailed structure of the Receiver subsystem:

• The Find Peak Frequency block - uses an FFT to find the frequency with the maximum power in
the received signal.

• The Spectrum Analyzer block - computes and displays the power spectral density of the received
signal.

Find Peak Frequency

The Find Peak Frequency subsystem finds the frequency with the maximum power in the received
signal, which equals the frequency offset. The following diagram shows the subsystem. In this
subsystem, the Periodogram block returns the PSD estimate of the received signal. The Probe block
finds the frame size and the frame sample time. With this information, this subsystem finds the index

1 Communications Toolbox Featured Examples

1-546

of the maximum amplitude across the frequency band and converts the index to the frequency value
according to

Foffset = IndexofMaxAmplitude * FrameSize / (FFTLength * FrameSampleTime)

The MATLAB function findpeakfreq.m performs this conversion.

Spectrum Analyzer

The following figure shows the output of the Spectrum Analyzer on a frequency range of -200 kHz to
200 kHz. In the case shown below, the frequency with the maximum power of the received signal is
about -35 kHz.

 Frequency Offset Calibration for Receivers in Simulink

1-547

1 Communications Toolbox Featured Examples

1-548

Airplane Tracking Using ADS-B Signals in Simulink

This example shows how to track planes by processing automatic dependent surveillance-broadcast
(ADS-B) signals using Simulink® and Communications Toolbox™. You can use captured and saved
signals, or receive signals in real time using an RTL-SDR radio, an ADALM-PLUTO radio or a
Universal Software Radio Peripheral (USRP™) radio. You can also visualize the tracked planes on a
map, if you have the Mapping Toolbox™ software.

Required Hardware and Software

To run this example using captured signals, you need Simulink® and Communications Toolbox™
software.

To receive signals in real time, you also need one of these SDR devices and the corresponding
software add-on:

• An RTL-SDR radio and Communications Toolbox Support Package for RTL-SDR Radio add-on
• An ADALM-PLUTO radio and Communications Toolbox Support Package for Analog Devices®

ADALM-PLUTO Radio add-on
• A USRP radio and the corresponding Communications Toolbox Support Package for USRP Radio

Add-On

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

For an introduction on the Mode-S signaling scheme and ADS-B technology for tracking aircraft, refer
to the “Airplane Tracking Using ADS-B Signals” on page 1-489 MATLAB® example.

Receiver Structure

This diagram summarizes the receiver code structure. The processing has four main parts: signal
source, physical layer, message parser, and data viewer.

 Airplane Tracking Using ADS-B Signals in Simulink

1-549

https://www.mathworks.com/discovery/sdr.html

Signal Source

You can specify one of these signal sources:

• ''Captured Signal'' - Over-the-air signals written to a file and sourced using a baseband file
reader block at 2.4 Msps

• ''RTL-SDR Radio'' - RTL-SDR radio at 2.4 Msps
• ''ADALM-PLUTO'' - ADALM-PLUTO radio at a sample rate of 12 Msps
• ''USRP Radio'' - USRP radio at a sample rate of 20 Msps for all radios except N310/N300

radio, that uses 2.4 Msps sample rate

The extended squitter message is 120 micro seconds long, so the signal source is configured to
process enough samples to contain 180 extended squitter messages simultaneously, and set
SamplesPerFrame of the signal property accordingly. The rest of the algorithm searches for Mode-S
packets in this frame of data and outputs all correctly identified packets. This type of processing is
reffered to as batch processing. An alternative approach is to process one extended squitter message
at a time. This single packet processing approach incurs 180 times more overhead than the batch
processing, while it has 180 times less delay. Since the ADS-B receiver is delay tolerant, you use
batch processing in this example.

Physical Layer

1 Communications Toolbox Featured Examples

1-550

The physical layer (PHY) processes the baseband samples from the signal source are processed by
the to produce packets that contain the PHY layer header information and the raw message bits. This
diagram shows the physical layer structure.

The RTL-SDR radio can use a sampling rate in the range [200e3, 2.8e6] Hz. When the source is an
RTL-SDR radio, the example uses a sampling rate of 2.4 MHz and interpolates by a factor of 5 to a
practical sampling rate of 12 MHz.

The ADALM-PLUTO radio can use a sampling rate in the range [520e3, 61.44e6] Hz. When the source
is an ADALM-PLUTO radio, the example samples the input directly at 12 MHz.

The USRP radios are capable of using different sampling rates. When the source is a USRP radio, the
example samples the input directly at 20 MHz. For the N310/N300 radio the data is received at 2.4
MHz sample rate and interpolates by a factor of 5 to a practical sampling rate of 12e6.

For example, if the data rate is 1 Mbit/s and the effective sampling rate is 12 MHz, the signal contains
12 samples per symbol. The receive processing chain uses the magnitude of the complex symbols.

The packet synchronizer works on subframes of data that is equivalent to two extended squitter
packets, i.e. 1440 samples at 12 MHz or 120 micro seconds. This subframe length ensures that the
subframe contains the whole extended squitter. Packet synchronizer first correlates the received
signal with the 8 microsecond preamble and finds the peak value. The synchronizer then validates the
found synchronization point by checking if it confirms to the preamble sequence, [1 0 0 0 0 0 1 0 1 0
0 0 0 0 0], where a value of 1 represents a high value and a value of 0 represents a low value.

The Mode-S PPM scheme defines two symbols. Each symbol has two chips, where one has a high
value and the other has a low value. If the first chip is high and the subsequent chip is low, then the
symbol is 1. Alternatively, if the first chip is low and subsequent chip is high, then the symbol is 0.
The bit parser demodulates the received chips and creates a binary message. The CRC checker
validates the binary message. The output of bit parser is a vector of Mode-S physical layer header
packets that contains these fields:

• RawBits - Raw message bits
• CRCError - FALSE if CRC passes, TRUE if CRC fails
• Time - Time of reception in seconds, from the start of reception
• DF - Downlink format (packet type)
• CA - Capability

Message Parser

 Airplane Tracking Using ADS-B Signals in Simulink

1-551

The message parser extracts the raw bits based on the packet type as described in [2]. This example
can parse short squitter packets and extended squitter packets that contain airborne velocity,
identification, and airborne position data.

Data Viewer

The data viewer shows the received messages on a graphical user interface (GUI). For each packet
type, the data viewer shows the number of detected packets, the number of correctly decoded
packets and the packet error rate (PER). As the radio captures data, the application lists information
decoded from these messages in a table.

Launch Map and Log Data

You can also launch the map and start text file logging using the two slider switches(Launch Map and
Log Data).

• Log Data* - When Log Data is On, it Saves the captured data in a TXT file. You can use the saved
data for later for post processing.

• Launch Map - When Launch Map is On, map will be launched where the tracked flights can be
viewed. NOTE: You must have a valid license for the Mapping Toolbox if you want to use this
feature.

These figures illustrate how the application tracks and lists flight details and displays them on a map.

1 Communications Toolbox Featured Examples

1-552

 Airplane Tracking Using ADS-B Signals in Simulink

1-553

References

1 International Civil Aviation Organization, Annex 10, Volume 4. Surveillance and Collision
Avoidance Systems.

2 Technical Provisions For Mode S Services and Extended Squitter (Doc 9871)

1 Communications Toolbox Featured Examples

1-554

Airplane Tracking Using ADS-B Signals with Raspberry Pi and
RTL-SDR

This example shows you how to create a remote sensing station that tracks planes using a Raspberry
Pi™ and RTL-SDR radio. You will learn how to deploy a Simulink® model that processes Automatic
Dependent Surveillance-Broadcast (ADS-B) signals and sends the demodulated data to a host PC
using UDP packets for visualization.

Required Hardware and Software

To run this example, you need the following hardware:

• RTL-SDR radio
• Raspberry Pi

and the following software

• Simulink
• Communications Toolbox™
• Communications Toolbox Support Package for RTL-SDR Radio
• Simulink Support Package for Raspberry Pi Hardware
• Optionally, Mapping Toolbox™ (to track planes on a map)

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

For an introduction on implementing a ADS-B receiver in Simulink, refer to the “Airplane Tracking
Using ADS-B Signals in Simulink” on page 1-549 example, pictured below. We also recommend
completing “Getting Started with MATLAB Support Package for Raspberry Pi Hardware” (MATLAB
Support Package for Raspberry Pi Hardware) example.

modelName = 'ADSBSimulinkExample';
open_system(modelName);
set_param(modelName, 'SimulationCommand', 'update');

 Airplane Tracking Using ADS-B Signals with Raspberry Pi and RTL-SDR

1-555

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/raspberry-pi-simulink.html
https://www.mathworks.com/discovery/sdr.html

Remote ADS-B Receiver with Raspberry Pi

You can set up a remote sensing station for airplane tracking using the Raspberry Pi hardware with
an RTL-SDR radio attached to it. You can run the PHY Layer block of the ADS-B receiver on the
Raspberry Pi and send the received data over the Internet using UDP packets. You can receive these
UDP packets on your local computer and run the Message Parser and Data Viewer blocks to
visualize the results. The following is the modified remote ADS-B receiver model that runs on
Raspberry Pi.

close_system(modelName,0)
modelName = 'ADSBRaspberryPiSimulinkExample';
open_system(modelName);
set_param(modelName, 'SimulationCommand', 'update');

1 Communications Toolbox Featured Examples

1-556

Run ADS-B Receiver Model on Raspberry Pi Hardware

Follow the following steps to run the ADS-B receiver model on the Raspberry Pi hardware.

1. Attach an RTL-SDR radio to one of the USB ports of the Raspberry Pi hardware

2. Open the Tracking Airplanes Using ADS-B Signals with Raspberry Pi - Sensor model

3. Double-click on the UDP Send block. Open the block mask and enter the IP address of your
host computer in the Remote IP address edit box. For example, if the IP address of your host
computer is 10.10.10.1, enter '10.10.10.1' in the block mask. Do not change the Remote IP port
parameter. Click OK to save and close the block mask.

4. In your Simulink model, click the Deploy To Hardware button on the toolbar.

5. The model running on Raspberry Pi hardware will start sending UDP packets to port 25000 of your
host computer.

Run ADS-B Aggregator Model on the Host Computer

Follow the following steps to run the host model that receives the UDP packets sent by the model
running on Raspberry Pi hardware.

1. Open the Tracking Airplanes Using ADS-B Signals - Aggregator. This model has a UDP Receive
block that is configured to receive UDP packets sent by the model running on Raspberry Pi hardware.
Double-click on the UDP Receive block mask. Note that the Local IP port is set to 25000, and the
output data type is set to "uint8".

2. Click the Play button to start the model.

close_system(modelName,0)
modelName = 'ADSBAggregatorSimulinkExample';
open_system(modelName);
set_param(modelName, 'SimulationCommand', 'update');

 Airplane Tracking Using ADS-B Signals with Raspberry Pi and RTL-SDR

1-557

matlab:realtime.internal.displayHostIPAddress
matlab:realtime.internal.displayHostIPAddress

The following figures illustrate how the application tracks and lists flight details and displays them on
a map.

1 Communications Toolbox Featured Examples

1-558

 Airplane Tracking Using ADS-B Signals with Raspberry Pi and RTL-SDR

1-559

Stop the Model Running on Raspberry Pi Hardware

When you want to stop the model running on Raspberry Pi, execute the following on MATLAB®
command line.

rPi = raspberrypi;
stop(rPi,'ADSBRaspberryPiSimulinkExample');

Troubleshooting

If you cannot receive any data on the host model, make sure that the Raspberry Pi and your host
computer are on the same local area network. In other words, make sure that the first three numbers
of the IP addresses are the same.

Also, make sure that your Internet security software allows the transmission and reception of UDP
packets on port 25000.

close_system(modelName,0)

1 Communications Toolbox Featured Examples

1-560

Automatic Meter Reading in Simulink

This example shows you how to use Simulink® and Communications Toolbox™ to read utility meters
by processing Standard Consumption Message (SCM) or Interval Data Message (IDM) signals
emitted by meters. You can either use recorded data from a file, or receive over-the-air signals in real
time using the RTL-SDR Radio or ADALM-PLUTO Radio.

Required Hardware and Software

To run this example using recorded data from a file, you need Simulink® and Communications
Toolbox™ software.

To receive signals in real time, you also need one of the following SDR devices and the corresponding
software add-on:

• RTL-SDR radio and Communications Toolbox Support Package for RTL-SDR Radio add-on

• ADALM-PLUTO radio and Communications Toolbox Support Package for Analog Devices®
ADALM-PLUTO Radio add-on

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of the Software Defined Radio (SDR) discovery page.

Introduction

For an introduction to the SCM/IDM signaling scheme and AMR technology for reading utility meters,
refer to the “Automatic Meter Reading” on page 1-497 example in MATLAB®.

Receiver Model Structure

The following block diagram summarizes the receiver structure. The processing has four main parts:
Signal Source, Physical Layer, Message Parser, and Data Viewer.

 Automatic Meter Reading in Simulink

1-561

https://www.mathworks.com/discovery/sdr.html

Signal Source

This example can use three signal sources:

1 ''File'': Over-the-air signals written to a file and read using a Baseband File Reader block at 1.0
Msps

2 ''RTL-SDR Radio'': RTL-SDR radio at a sample rate of 1.0 Msps
3 ''ADALM-PLUTO Radio'': ADALM-PLUTO radio at a sample rate of 1.0 Msps

If you assign ''RTL-SDR'' or ''ADALM-PLUTO'' as the signal source, the example searches your
computer for the radio you specified, either an RTL-SDR radio at radio address '0' or an ADALM-
PLUTO radio at radio address 'usb:0' and uses the radio as the signal source.

Physical Layer

The baseband samples received from the signal source are processed by the physical layer (PHY) to
produce packets that contain the SCM or IDM information. This diagram shows the physical layer
receive processing.

The RTL-SDR radio is capable of using a sampling rate in the range of 225-300 kHz or 900-2560 kHz
and ADALM-PLUTO radio is capable of using a sampling rate in the range of 520 kHz-61.44 MHz. A
sampling rate of 1.0 Msps is used to produce a sufficient number of samples per Manchester encoded
data bit. For each frequency in the hopping pattern, every AMR data packet is transmitted. The
frequency hopping allows for increased reliability over time. Since every packet is transmitted on
each frequency hop, it is sufficient to monitor only one frequency for this example. The radio is tuned
to a center frequency of 915 MHz for the entire simulation runtime.

The received complex samples are amplitude demodulated by extracting their magnitude. The on-off
keyed Manchester coding implies that the bit selection block includes clock recovery. The output of
this block is bit sequences (ignoring the idle times in the transmission) which are subsequently
checked for the known preamble. If the preamble matches, the bit sequence is further decoded,
otherwise, it is discarded and the next sequence is processed.

When the known SCM preamble is found for a bit sequence, the received message bits are decoded
using a shortened (255,239) BCH code which can correct up to two bit errors. In the case where the
known IDM preamble is found, the receiver performs a cyclic redundancy check (CRC) of the meter
serial number and of the whole packet starting at the Packet type (the 5th byte) to determine if the
packet is valid. Valid, corrected messages are passed onto the AMR Message parser.

Message Parser

For a valid message, the bits are then parsed into the specific fields of either the IDM or SCM format.
This example can parse both the SCM format and the IDM format.

1 Communications Toolbox Featured Examples

1-562

Data Viewer

The data viewer shows the decoded SCM or IDM messages on a user interface. For each successfully
decoded SCM/IDM, the commodity type, meter ID, consumption information and the capture time is
shown. As data is captured and decoded, the application lists the information decoded from these
messages in a tabular form. The table lists only the unique meter IDs with their latest consumption
information.

You can also change the meter ID and start text file logging using the user interface.

• Meter ID - The default value, 0, is reserved for displaying all detected meters. You can enter the
ID of a specific meter to display readings from only that meter ID.

• Log data to file - Save the decoded messages in a TXT file. You can use the saved data for post
processing.

This figures shows the meter readings displayed in the user interface.

Further Exploration

The data file accompanying the example has only one meter reading and has been captured at center
frequency of 915 MHz. Using RTL-SDR or ADALM-PLUTO radio, the example will display readings
from multiple meters when it is run for a longer period in a residential neighborhood.

You can further explore AMR signals using the AMRSimulinkExampleApp app. The app allows you to
set the run duration, select the signal source, change the center frequency of the radio, and run to
log meter readings.

 Automatic Meter Reading in Simulink

1-563

Selected Bibliography

1 Automatic meter reading, https://en.wikipedia.org/wiki/Encoder_receiver_transmitter, 2016.
2 Itron Electricity meters, https://www.itron.com/solutions/who-we-serve/electricity, 2017.

See Also
Baseband File Reader

External Websites
• Software Defined Radio (SDR)

1 Communications Toolbox Featured Examples

1-564

https://en.wikipedia.org/wiki/Encoder_receiver_transmitter
https://www.itron.com/solutions/who-we-serve/electricity
https://www.mathworks.com/discovery/sdr.html

FM Broadcast Receiver in Simulink

This example shows how to build an FM mono or stereo receiver using Simulink® and
Communications Toolbox™. You can either use captured signals, or receive signals in real time using
the RTL-SDR, ADALM-PLUTO or USRP radio.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need one of the following hardware:

• RTL-SDR radio and the corresponding software Communications Toolbox Support Package for
RTL-SDR Radio

• ADALM-PLUTO radio and the corresponding software Communications Toolbox Support Package
for ADALM-PLUTO Radio

• USRP radio and the corresponding software Communications Toolbox Support Package for USRP
Radio

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR).

Introduction

For an introduction to the FM broadcasting technology and demodulation of these signals, refer to
the “FM Broadcast Receiver” on page 1-515 example.

Running the Example

To run the example using captured signals, select the FM Broadcast Captured Signal block as
the source using the Signal Source Selector block. Then click the run button.

To run the example using the RTL-SDR radio, ADALM-PLUTO radio or USRP radio as the source,
select the corresponding RTL-SDR Receiver, ADALM-PLUTO Radio Receiver or USRP Radio
Receiver block as the source using the Signal Source Selector block. Double-click the Center
Frequency (MHz) block and select the value to the center frequency to a broadcast FM radio
station near you.

If you hear some dropouts or delay in the sound, run the model in Accelerator mode. From the model
menu, select Simulation->Accelerator, then click the run button. If you still experience dropouts or
delay in Accelerator mode, try running the model in Rapid Accelerator mode.

Receiver Structure

The receiver structure in this block diagram represents the FMReceiverSimulinkExample.slx model
used in this example. The processing has three main parts: signal source, FM broadcast
demodulation, and audio output.

 FM Broadcast Receiver in Simulink

1-565

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://in.mathworks.com/hardware-support/usrp.html
https://in.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/discovery/sdr.html

Signal Source

This example can use three signal sources:

1 ''Captured Signal'': Over-the-air signals written to a file and sourced using a Baseband File
Reader block at 228e3 samples per second.

2 ''RTL-SDR Radio'': RTL-SDR radio running at 200e3 samples per second. Set the center
frequency to a broadcast FM radio station near you.

3 ''ADALM-PLUTO Radio Receiver'': ADALM-PLUTO radio running at 200e3 samples per second.
Set the center frequency to a broadcast FM radio station near you.

4 ''USRP Radio Receiver'': USRP radio running at 200e3 samples per second. Set the center
frequency to a broadcast FM radio station near you.

FM Broadcast Demodulation

The baseband samples received from the signal source are processed by the FM Broadcast
Demodulation Baseband block. This block converts the input sampling rate of 228 kHz to 45.6
kHz, the sampling rate for your host computer's audio device. According to the FM broadcast

1 Communications Toolbox Featured Examples

1-566

standard in the United States, the de-emphasis lowpass filter time constant is set to 75 microseconds.
This example processes received mono signals. The demodulator can also process stereo signals.

To perform stereo decoding, the FM Broadcast Demodulator Baseband object uses a peaking filter
which picks out the 19 kHz pilot tone from which the 38 kHz carrier is created. Using the resulting
carrier signal, the FM Broadcast Demodulator Baseband block downconverts the L-R signal, centered
at 38 kHz, to baseband. Afterwards, the L-R and L+R signals pass through a 75 microsecond de-
emphasis filter. The FM Broadcast Demodulator Baseband block separates the L and R signals and
converts them to the 45.6 kHz audio signal.

Audio Device Writer

Play the demodulated audio signals through your computer's speakers using the Audio Device
Writer block.

Further Exploration

To further explore the example, you can vary the center frequency of the RTL-SDR radio, ADALM-
PLUTO radio or USRP radio and listen to other radio stations using the Center Frequency (MHz)
block.

You can set the Stereo property of the FM Broadcast Demodulator Baseband block to true to
process the signals in stereo fashion and compare the sound quality.

Selected Bibliography

https://en.wikipedia.org/wiki/FM_broadcasting

See Also
Baseband File Reader

Related Examples
• “FM Broadcast Receiver” on page 1-515

External Websites
• Software Defined Radio (SDR)

 FM Broadcast Receiver in Simulink

1-567

https://en.wikipedia.org/wiki/FM_broadcasting
https://www.mathworks.com/discovery/sdr.html

FM Reception with RTL-SDR Radio on Raspberry Pi Hardware
with Simulink

This example shows how to build an FM mono receiver using a Raspberry Pi™ and RTL-SDR radio.
You will learn how to deploy a Simulink® model that processes FM broadcast signals and play the
audio through the Raspberry Pi's speaker.

Required Hardware and Software

To run this example, you need the following hardware:

• RTL-SDR radio
• Raspberry Pi

and the following software

• Simulink
• Communications Toolbox™
• Communications Toolbox Support Package for RTL-SDR Radio
• Simulink Support Package for Raspberry Pi Hardware

For a full list of Communications Toolbox supported SDR platforms, refer to Supported Hardware
section of Software Defined Radio (SDR) discovery page.

Introduction

Simulink Support Package for Raspberry Pi Hardware enables you to create and run Simulink models
on Raspberry Pi hardware. Communications Toolbox Support Package for RTL-SDR Radio enables you
to receive radio signals from the RTL-SDR radio. You can use these two support packages together to
receive and process RF signals on the Raspberry Pi hardware using Simulink software. In this
example, you will learn how to run an FM receiver model as a standalone application on the
Raspberry Pi hardware.

For an introduction on implementing an FM broadcast receiver in Simulink, refer to the “FM
Broadcast Receiver in Simulink” on page 1-565 example. We also recommend completing “Getting
Started with MATLAB Support Package for Raspberry Pi Hardware” (MATLAB Support Package for
Raspberry Pi Hardware) example.

FM Receiver

The following shows the FM receiver model. The model uses the RTL-SDR Receiver block to
receive radio signals and sends them to the FM Broadcast Demodulator Baseband block. The
FM demodulator block demodulates the received signal and generates mono audio. The mono signals
are sent to the ALSA Audio Playback block optimized for the Raspberry Pi hardware.

1 Communications Toolbox Featured Examples

1-568

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/hardware-support/raspberry-pi-simulink.html
https://www.mathworks.com/discovery/sdr.html

Configure and Run the Model as a Standalone Application

The following steps show you how to configure the model to run on the Raspberry Pi hardware.

1. If your Raspberry Pi hardware is not connected to an Ethernet network, follow the instructions in
“Configure Network Settings of Raspberry Pi Hardware” (Simulink Support Package for Raspberry Pi
Hardware).

2. In the model, set simulation stop time to 'inf' to run the simulation until you explicitly pause or stop
the model.

3. In the Simulink model, click Tools > Run on Target Hardware> Options....

4. When the Configuration Parameters page opens up, set the Target hardware parameter to
Raspberry Pi. Review the other parameters on that page. If you performed a Firmware Update, Board
information will be automatically populated with the IP address, user name and password of your
Raspberry Pi hardware. Also, notice the TCP/IP port edit box under Signal monitoring and
parameter tuning. The default value of TCP/IP port is 17725. Simulink uses this TCP/IP port to
communicate with Raspberry Pi hardware. Leave the TCP/IP port parameter at its default value. Click
OK when you are done.

 FM Reception with RTL-SDR Radio on Raspberry Pi Hardware with Simulink

1-569

5. In the Simulink model, click the Deploy to Hardware button on the toolbar or press Ctrl+B.

6. The model will now run on the Raspberry Pi hardware. A system command window will open that
shows the messages coming from the model running on Raspberry Pi hardware.

7. Connect speakers to the audio output of the Raspberry Pi hardware to listen to the radio.

8. Stop the model running on the Raspberry Pi hardware by executing the following on the
MATLAB® command line

h = raspberrypi;
stopModel(h,'FMReceiverRaspberryPiSimulinkExample');

1 Communications Toolbox Featured Examples

1-570

Running and Stopping the Model on Raspberry Pi Hardware

Simulink Support Package for Raspberry Pi Hardware generates a Linux® executable for each
Simulink model you run on the Raspberry Pi hardware.

1. To run/stop a Simulink model, you use the run and stop methods of the raspberrypi communication
object. First, create a communication object to the Raspberry Pi hardware:

rpi = raspberrypi;

This command generates a Raspberry Pi object that is your gateway to communicating with your
Raspberry Pi hardware from MATLAB command line.

2. Execute the following on the MATLAB command line to stop the Simulink model you ran in
previous section:

stopModel(rpi, 'FMReceiverRaspberryPiSimulinkExample')

3. To run a previously built Simulink model on your board, you use runModel method. In order to run
the FMReceiverRaspberryPiSimulinkExample model, execute the following on the MATLAB command
line:

runModel(rpi, 'FMReceiverRaspberryPiSimulinkExample')

Summary

This example introduced the workflow for receiving radio signals with an RTL-SDR radio and
processing the received signals using a Simulink model running on Raspberry Pi hardware.

 FM Reception with RTL-SDR Radio on Raspberry Pi Hardware with Simulink

1-571

FRS/GMRS Receiver in Simulink

This example shows how to implement a walkie-talkie receiver using Simulink® and Communications
Toolbox™. The specific radio standard that this example follows is FRS/GMRS (Family Radio Service /
General Mobile Radio Service) with CTCSS (Continuous Tone-Coded Squelch System). You can use
simulated signals, captured signals, or received signals from a commercial walkie-talkie using the
Communications Toolbox Support Package for RTL-SDR Radio.

This example is designed to work with USA standards for FRS/GMRS operation. The technical
specifications for these standards can be found in the reference list below. Operation in other
countries may or may not work.

Required Hardware and Software

To run this example using captured signals, you need the following software:

• Simulink
• Communications Toolbox™

To receive signals in real time, you also need the following hardware:

• RTL-SDR radio
• Walkie-talkie

and the following software

• Communications Toolbox Support Package for RTL-SDR Radio

For a full list of Communications Toolbox supported SDR platforms, refer to the "MATLAB and
Simulink Hardware Support for SDR" section of Software-Defined Radio (SDR).

Introduction

For an introduction on FRS/GMRS technology and demodulation of these signals, refer to the “FRS/
GMRS Walkie-Talkie Receiver” on page 1-539 example.

Running the Example

To run the example using simulated signals, select the FRS/GMRS Signal Generator block as the
source using the Signal Source Selector block. Double click the FRS/GMRS Signal
Generator block to select the CTCSS code and source type as one of 'Single tone', 'Chirp', or
'Audio'. Then click the run button.

To run the example using captured signals, select the FRS/GMRS Captured Signal block as the
source using the Signal Source Selector block. Then click the run button.

To run the example using the RTL-SDR radio as the source, select the RTL-SDR Receiver block as
the source using the Signal Source Selector block. Then click the run button. Turn on your
walkie-talkie, set the channel to be one of the 14 channels (numbered 1 to 14) and the private code to
be either one of the 38 private codes (numbered 1 to 38) or 0, in which case no squelch system is
used and all received messages are accepted. Note that the private codes above 38 are digital codes
and are not implemented in this example.

1 Communications Toolbox Featured Examples

1-572

https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/communications.html
https://www.mathworks.com/hardware-support/rtl-sdr.html
https://www.mathworks.com/discovery/sdr.html

Double-click the Channel Number block and select the same channel number as the walkie-talkie.
Double-click the CTCSS Code block and set the CTCSS Code to the private code you set in the
walkie-talkie. Run the model, and see if you can hear your voice come out of the computer speakers.
If not, try adjusting the Detection Threshold block value downward slightly. You can change the
channel and private code without stopping and restarting the model.

If you hear some dropouts or delay in the sound, run the model in Accelerator mode. From the model
menu, select Simulation->Accelerator, then click the run button. If you still experience dropouts or
delay in Accelerator mode, try running the model in Rapid Accelerator mode.

The "Signal Spectrum" shows the spectrum of the received signal at the input of the Channel
Selector block. You can observe how the spectrum changes as you speak into your walkie-talkie.

Receiver Structure

The following block diagram summarizes the receiver structure. The processing has four main parts:
Signal Source, Channel Selector, FM Demodulator, and CTCSS processing.

 FRS/GMRS Receiver in Simulink

1-573

Signal Source

This example can use three signal sources:

1 ''Simulated Signal'': Simulated FRS/GMRS signal at 240e3 samples/sec
2 ''Captured Signal'': Over-the-air signals written to a file and sourced using a baseband file reader

block at 240e3 samples/sec
3 ''RTL-SDR Radio'': RTL-SDR radio at 240e3 samples/sec. Use a walkie-talkie as a transmitter. Set

the channel number to the channel number of your walkie-talkie.

Channel Selector

The receiver removes the DC component and applies a variable gain to the received signal to obtain
an approximately known amplitude signal with reduced interference. The receiver then applies a low
pass channel separation filter to reduce the signals from adjacent channels. The gap between
adjacent channels is 25 kHz, which means the baseband bandwidth is, at most, 12.5 kHz. Thus, we
choose the cutoff frequency to be 10 kHz.

Next, a channel selector computes the average power of the filtered signal. If it is greater than a
threshold (set to a default of 10%), the channel selector determines that the received signal is from

1 Communications Toolbox Featured Examples

1-574

the correct channel and allows the signal to pass through. In the case of an out-of-band signal,
although the channel separation filter reduces its magnitude, it is still FM modulated and the
modulating signal will be present after FM demodulation. To completely reject such a signal, the
channel selector outputs all zeros.

FM Demodulator

This example uses the FM Demodulator Baseband block whose sample rate and maximum
frequency deviation are set to 240 kHz and 2.5 kHz, respectively.

CTCSS

First, a decimation filter converts the sampling rate from 240 kHz to 8 kHz. This rate is one of the
native sampling rates of your host computer's output audio device. Then, the CTCSS decoder
computes the power at each CTCSS tone frequency using the Goertzel algorithm and outputs the
code with the largest power. The Goertzel algorithm provides an efficient method to compute the
frequency components at predetermined frequencies, that is, the tone code frequencies used by FRS/
GMRS.

The model compares the estimated received code with the preselected code and then sends the signal
to the audio device if the two codes match. When the preselected code is zero, it indicates no squelch
system is used and the decision block passes the signal at the channel to the audio device no matter
which code is used.

Finally, a high pass filter with a cutoff frequency of 260 Hz filters out the CTCSS tones, which have a
maximum frequency of 250 Hz. Use an Audio Device Writer block to play the received signals
through your computer's speakers. If you do not hear any sound, please select another device using
the DeviceName parameter of the Audio Device Writer block.

Audio Output

Before the audio device, a high pass filter with a cutoff frequency of 260 Hz is used to filter out the
CTCSS tones (which have a maximum frequency of 250 Hz) so that they are not heard.

The Audio Device Writer block is set up by default to output to the current audio device in your
system preferences.

Exploring the Example

The CTCSS decoding computes the DTFT (Discrete-Time Fourier Transform) of the incoming signal
using the Goertzel algorithm and computes the power at the tone frequencies. Because the tone
frequencies are very close to each other (only 3-4 Hz apart) the block length of the DTFT should be
large enough to provide enough resolution for the frequency analysis. However, long block lengths
cause decoding delay. For example, a block length of 16384 will cause 2 seconds of delay, since the
CTCSS decoder operates at an 8 kHz sampling rate. This creates a tradeoff between detection
performance and processing latency. The optimal block length may depend on the quality of the
transmitter and receiver, the distance between the transmitter and receiver, and other factors. You
are encouraged to change the block length in the initialization function by navigating to the
helperFRSReceiverConfig function and changing the value of the CTCSSDecodeBlockLength field.
This will enable you to observe the tradeoff and find the optimal value for your transmitter/receiver
pair.

When the FRS/GMRS Signal Generator is selected as the source, you can change the CTCSS
tone amplitude parameter of this block and observe how this affects the signal spectrum.

 FRS/GMRS Receiver in Simulink

1-575

Appendix

The following script is used in this example:

• helperFRSReceiverConfig.m

References

• Family Radio Service
• General Mobile Radio Service
• Continuous Tone-Coded Squelch System
• Goertzel Algorithm

1 Communications Toolbox Featured Examples

1-576

https://en.wikipedia.org/wiki/Family_Radio_Service
https://en.wikipedia.org/wiki/General_Mobile_Radio_Service
https://en.wikipedia.org/wiki/Continuous_Tone-Coded_Squelch_System
https://en.wikipedia.org/wiki/Goertzel_algorithm

ALOHA and CSMA/CA Packetized Wireless Networks

This example shows how to simulate a basic ALOHA or CSMA/CA MAC using Simulink®, Stateflow®
and the Communications Toolbox™.

Background

ALOHA: ALOHA is a seminal random-access protocol that became operational in 1971. In ALOHA,
nodes transmit packets as soon as these are available, without sensing the wireless carrier. As a
result, wireless packets may collide at a receiver if they are transmitted simultaneously. Hence,
successful packet reception is acknowledged by transmitting a short acknowledgment packet. If an
acknowledgment is not received timely enough, then the data packet is resent at a later instant
determined, e.g., by binary exponential backoff.

CSMA/CA: Carrier Sense Multiple Access with Collision Avoidance is an improved random-access
scheme, according to which wireless nodes first sense the wireless medium before transmitting their
data packets. If the medium is sensed busy, then transmissions are deferred, e.g., according to a
binary exponential backoff. Collision avoidance is enabled by: (i) waiting for an interframe spacing
(IFS) duration after the channel has been sensed idle, (ii) transmitting only after a certain number of
(not necessarily contiguous) sensed idle time slots, chosen randomly from the contention window
(i.e., an adaptive range of possible backoff durations), (iii) exchanging Request-to-Send and Clear-to-
Send frames (RTS and CTS). Out of these three methods, this example models the first two (IFS and
contention window). CSMA/CA has been employed in Ethernet, IEEE® 802.11, and IEEE 802.15.4,
among other standards.

Overview

This example models a three-node PHY/MAC network. All nodes are within range; transmissions
between two nodes can be received by and interfere with the third one.

 ALOHA and CSMA/CA Packetized Wireless Networks

1-577

The default configuration enables data frame transmissions from node 1 to node 3, from node 3 to
node 2, and from node 2 to node 1. Acknowledgment frames are transmitted from node 3 to node 1,
from node 2 to node 3, and from node 1 to node 2.

The MAC scheme can be either ALOHA or CSMA/CA, as determined by the top-level switch. MAC
frames are encoded to or decoded from a PHY waveform using a QPSK-based PHY layer.

The MAC layer operates at a very fine timescale (every 0.8 microseconds), as the backoff duration is
typically much shorter than the duration of a data frame. As a result, the Simulink model is scalar-
based (i.e., the length of most signals is equal to 1) and the MAC/PHY layers do not process frames,
i.e., batches of samples.

Radio Transceiver

Each radio transceiver is a joint PHY and MAC implementation enabling both receive and transmit
operations. The left side of the next diagram corresponds to the PHY layer, while the right side
corresponds to the Data Link Layer (MAC and Logical Link Control).

On the receive-side chain, the transceiver decodes the PHY layer of the received waveforms and
passes the corresponding MAC Protocol Data Unit (MPDU) to the MAC layer, which processes data
and acknowledgment frames.

On the transmit-side chain, the Data Link layer initiates MAC frame transmissions either when the
Logical Link Control sublayer determines that a new data frame is injected or when the MAC
sublayer needs to transmit an acknowledgment for a received data frame. The data MAC frames are
generated by prepending a MAC header and appending a CRC MAC footer to a payload that is the
input from the higher, third layer (network layer). The acknowledgment MAC frames do not contain a
payload; they only contain the MAC header and CRC footer.

1 Communications Toolbox Featured Examples

1-578

Logical Link Control

The Logical Link Control (LLC) sublayer is responsible for injecting data packets into the transceiver.
It is mainly implemented using a Stateflow chart. The packet interarrival time is exponentially
distributed, which corresponds to a Poisson process.

Then, the Stateflow chart counts down the packet inter-arrival time until the next packet arrives. This
chart also models the segmentation of large packets into smaller data frames by determining the
number of additional frame transmissions ("TxMore").

ALOHA MAC Layer

When the top-level MAC switch is set to ALOHA, the MAC subsystem of the Data link layer essentially
operates as the following Stateflow chart:

 ALOHA and CSMA/CA Packetized Wireless Networks

1-579

The left side of the chart is responsible for acknowledging a received data frame. Before transmitting
the acknowledgment, the transmitter first waits for a short interframe spacing (SIFS). Then, it
outputs a positive 'TxAckOn' signal for the duration of the acknowledgment frame.

The right side of the chart is responsible for transmitting a data frame. Before transmitting the data
frame, the transmitter first waits for a short interframe spacing (SIFS). Then, it transmits the signal,
without sensing the wireless medium, by outputting a positive 'TxDataOn' signal for the duration of
the data frame. Subsequently, the node awaits to receive an acknowledgment within a certain time
interval. If the acknowledgment is received before timeout, the current data frame transmission is
concluded. If it is not, then the node enters a backoff state and it doubles its contention window (CW)
every time except for the first backoff instance. The backoff duration is randomly chosen from the [0,
CW] interval. If the maximum number of backoff attempts is reached, then the transceiver declares a
failure in transmitting this data frame.

CSMA/CA MAC Layer

When the top-level MAC switch is set to CSMA/CA, the MAC subsystem of the Data link layer
essentially operates as the following Stateflow chart:

1 Communications Toolbox Featured Examples

1-580

The CSMA/CA chart has some similarities with the ALOHA chart, but it also has some differences:

• The transceiver senses the wireless medium.
• Data frames are not transmitted before an interframe spacing (IFS) duration elapses since the

wireless medium has been sensed as idle.
• The backoff counter decrements only when the medium is sensed idle.

Physical Layer

Transmitter: The transmitter performs QPSK modulation on the MPDU bits. The bit rate is 20 MHz
and the symbol rate is 10 MHz. The QPSK symbols are subsequently filtered with the raised cosine
filter of the "Tx/Rx Switch" subsystem.

 ALOHA and CSMA/CA Packetized Wireless Networks

1-581

Channel: The filtered PHY waveform passes through a network channel, which imposes multipath
fading and white Gaussian noise. The network channel allows each node to receive superimposed
signals transmitted by multiple other nodes. Multipath fading is applied using the NetworkChannel
System block. White noise is added using the multichannel capability of the AWGN Channel block.

Receiver: Transceivers process the signal waveform only when its amplitude exceeds a certain
threshold (see Signal Detection subsystem). Subsequently, the received waveform is equalized using a
Decision Feedback Equalizer (DFE); this component reduces intersymbol interference (ISI) caused by
multipath fading, corrects small symbol timing offsets and carrier offsets, and its fast convergence
suits packetized networks. Next, the equalized QPSK symbols are demodulated. The corresponding
bits are passed to a CRC detector in order to identify the frame start, the PHY payload length and the
frame type (data or acknowledgment).

1 Communications Toolbox Featured Examples

1-582

Simulation Results

Model simulation shows one scope for each transceiver. Each scope depicts the transmitted signal
(top axes) and the backoff counter (bottom axes) for each transceiver.

 ALOHA and CSMA/CA Packetized Wireless Networks

1-583

1 Communications Toolbox Featured Examples

1-584

At the same time, the top-level model depicts per-node throughput in three display blocks.
Throughput is calculated by measuring the number of successfully acknowledged data packets.

Further Exploration

• The used MAC scheme can be toggled between ALOHA and CSMA/CA (default). Changing the
MAC scheme to ALOHA yields lower node throughput for the default packet arrival rates. This is
because ALOHA packets collide more frequently as nodes do not sense the wireless carrier.

• The packet arrival rates can be customized through the dialog mask of each node. The network
saturation point can be empirically and iteratively found, e.g., by gradually increasing the same
packet arrival rate for each node. Increasing low arrival rates can increase node throughput;
increasing high arrival rates (past the saturation point) can actually have a detrimental effect on
throughput as packets collide and nodes backoff more frequently.

• If the arrival rates are disproportional for each node, then unfairness scenarios can be
established. For example, one node may be capturing the medium very frequently and maintain a
low contention window, while other nodes may back off for a long time and only sporadically
access the medium.

• You can change the random seed of the nodes at their block mask to enable different random-
access scenarios. For example, for a given packet arrival rate, the random seed determines how
soon the first transmission occurs.

Selected Bibliography

1 N. Abramson, The ALOHA System Final Technical Report, NASA Advanced Research Projects
Agency, October 11, 1974

2 IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Nov. 1997. P802.11

 ALOHA and CSMA/CA Packetized Wireless Networks

1-585

Multicore Simulation of Comparing Demodulation Types

This example compares an LLR and hard decision demodulation. It uses the dataflow domain in
Simulink® to automatically partition the data-driven portions of the communications system into
multiple threads and thereby improve the performance of the simulation by executing it on your
desktop's multiple cores.

Introduction

Dataflow execution domain allows you to make use of multiple cores in the design of computationally
intensive systems. This example shows how dataflow as the execution domain of a subsystem
improves simulation performance of the model. To learn more about dataflow and how to run
Simulink models using multiple threads, see “Multicore Execution using Dataflow Domain”.

LLR vs Hard Decision Demodulation

This example shows a communication system that compares BER performance when using LLR
instead of hard decision demodulation in the decoder. This example has one transmitter, an AWGN
channel and three receivers. The three receivers use different decoding techniques to compare the
BER of each approach. Bit error rate computation is shown in Display blocks for comparing the
performance of the three receivers.

Setting up the Dataflow Subsystem

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to
improve simulation performance. The Domain parameter of the dataflow subsystem in this model is
set as Dataflow. You can view this by selecting the subsystem and then accessing Property
Inspector. To access Property Inspector, in the Simulink Toolstrip, on the Modeling tab, in the Design
gallery select Property Inspector or on the Simulation tab, Prepare gallery, select Property Inspector.

1 Communications Toolbox Featured Examples

1-586

Dataflow domains automatically partition your model into multiple threads for better performance.
Once you set the Domain parameter to Dataflow, you can use the Multicore tab analysis to
analyze your model to get better performance. The Multicore tab is available in the toolstrip when
there is a dataflow domain in the model. To learn more about the Multicore tab, see “Perform
Multicore Analysis for Dataflow”.

Analyzing Concurrency in Dataflow Subsystem

For this example the Multicore tab mode is set to Simulation Profiling for simulation
performance analysis.

It is recommended to optimize model settings for optimal simulation performance. To accept the
proposed model settings, on the Multicore tab, click Optimize. Alternatively, you can use the drop
menu below the Optimize button to change the settings individually. In this example the model
settings are already optimal.

On the Multicore tab, click the Run Analysis button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Analysis Report and Suggestions window
shows how many threads the dataflow subsystem uses during simulation.

After analyzing the model, the Analysis Report and Suggestions window shows 3 threads because the
three different receiver types can run independently in parallel. When Latency is zero, dataflow can
only use this inherent parallelism in the model. The three receivers are data dependent on one
transmitter. This causes bottleneck since the transmitter needs to complete its processing before any
receivers start processing. Without pipeline delays only the inherent parallelism in the model can be
utilized to run dataflow subsystem using multiple threads. By pipelining the data dependent blocks,
the dataflow subsystem can increase concurrency for higher data throughput. The Analysis Report
and Suggestions window shows the recommended number of pipeline delays as Suggested for
Increasing Concurrency. The suggested latency value is computed to give the best performance.

The following diagram shows the Analysis Report and Suggestions window where the suggested
latency is 3 for the dataflow subsystem.

 Multicore Simulation of Comparing Demodulation Types

1-587

Click the Accept button to use the recommended latency for the dataflow subsystem. This value can
also be entered directly in the Property Inspector for Latency parameter. Simulink shows the latency
parameter value using tags at the output ports of the dataflow subsystem.

The Analysis Report and Suggestions window now shows the number of threads as 5 meaning that
the blocks inside the dataflow subsystem simulate in parallel using 5 threads. Use of three pipeline
delays increased the number of blocks that can be run in parallel inside the dataflow subsystem.
Highlight threads highlights the blocks with colors based on their thread allocation as shown in the
Thread Highlighting Legend. Show pipeline delays shows where pipelining delays were inserted
within the dataflow subsystem using tags.

Multicore Simulation Performance

We measure the performance improvement of using multiple cores by comparing the execution time
taken for running the model using multiple threads with the time taken when the model does not use
dataflow. Execution time is measured using the sim command, which returns the simulation execution
time of the model. These numbers and analysis were published on a Windows desktop computer with
Intel® Xeon® CPU W-2133 @ 3.6 GHz 6 Cores 12 Threads processor.

Simulation execution time for multithreaded model = 4.26s
Simulation execution time for single-threaded model = 10.81s
Actual speedup with dataflow: 2.5x

1 Communications Toolbox Featured Examples

1-588

Summary

This example shows how dataflow execution domain can improve performance in a communication
system model using multiple cores on the desktop.

 Multicore Simulation of Comparing Demodulation Types

1-589

Shared comm_simrf Examples

2

Idealized Baseband Amplifier with Nonlinearity and Noise

The example shows how to use the idealized baseband library Amplifier block to amplify a signal with
nonlinearity and noise. The Amplifier uses the Cubic Polynomial model with a Linear power
gain of 10 dB, an Input IP3 nonlinearity of 30 dBm, and a Noise figure of 3 dB.

System Architecture

The DSP Sine Wave block inputs two complex baseband tones with a power level of -20 dBm and -25
dBm at frequencies of -30 MHz and 20 MHz. In this block you can also:

• Increase the samples per frame to increase the simulation speed.
• Use output complexity and phase offset to control the I-Q relationship of each baseband signal
• Control the bandwidth of the scopes using the inverse of the sample time parameter.

The Amplifier block only accepts a vector input. The Sum block combines the two baseband signals
into a vector length equal to the samples per frame in the DSP Sine Wave block.

The Thermal Noise block creates a thermal noise floor input of -174 dBm/Hz.

Simulation Analysis

The Amplifier block with Linear power gain of 10 dB outputs tone with magnitude -10 dBm and
-15 dBm as seen in the Power plot. The Amplifier also increases the thermal noise floor to -161
dBm/Hz. You can calculate the output thermal noise using:

The following plots illustrate the differences in the input and output noise floors. The spurs appear at
70 MHz (2*20 MHz + 30 MHz) and -80 MHz (2*(-30 MHz) - 20 MHz). This shows the third order
intercept nature of the spurs.

2 Shared comm_simrf Examples

2-2

Increasing the Slider value from 1 to 10, shows nonlinear effects in the plots. These are the Noise and
Power plots when the gain of the Slider is 10.

See Also
Memoryless Nonlinearity

Related Examples
• “Impact of RF Effects on Communication System Performance” on page 1-63
• “Impact of Thermal Noise on Communication System Performance” on page 2-39

 Idealized Baseband Amplifier with Nonlinearity and Noise

2-3

Power Amplifier Characterization

This example shows how to characterize a power amplifier (PA) using measured input and output
signals of an NXP Airfast PA. Optionally, you can use a hardware test setup including an NI PXI
chassis with a vector signal transceiver (VST) to measure the signals at run time.

You can use the characterization results to simulate the PA using the
comm.MemorylessNonlinearity System object™ or Memoryless Nonlinearity block. For a PA
model with memory, you can use Power Amplifier (RF Blockset) block. You can use these models to
design digital predistortion (DPD) using comm.DPD and comm.DPDCoefficientEstimator System
objects or DPD and DPD Coefficient Estimator blocks. For more information, see “Digital
Predistortion to Compensate for Power Amplifier Nonlinearities” on page 2-28.

Optional Hardware and Software

This example can run on an NI PXI chassis with a VST to measure PA input and output signals during
run time. The VST is a high-bandwidth RF instrument that combines a Vector Signal Generator (VSG)
with a Vector Signal Analyzer (VSA). The following NI PXI chassis configuration was used to capture
the saved signal:

• NI PXIe-5840 Vector Signal Transceiver (VST)
• NI PXIe-4139 Source Measure Unit (SMU)
• NI PXIe-4145 SMU
• NI RFmx SpecAn software
• NI-RFSG software
• NI-RFSG Playback Library software

As the device under test (DUT), this example uses an NXP Airfast LDMOS Doherty PA with operating
frequency 3.6-3.8 GHz and 29 dB gain. This PA requires 29V, 5V, 3 V, 1.6V and 1.4V DC bias, which
are provided using PXIe-4139 and PXIe-4145 SMUs.

Install MATLAB® on the NI PXI controller to run this example with the hardware setup, which is
illustrated in the following figure. MATLAB, running on the PXI controller, generates test waveform
and downloads the waveform to the VSG. The VSG transmits this test waveform to the PA and the
VSA receives the impaired waveform at the PA output. MATLAB collects the PA output from the VSA
and performs PA characterization.

Set dataSource variable to "Hardware" to run a test signal though the PA using the hardware setup
described above. The test signal can be either a 5G-like OFDM waveform or two tones, as described
in the following section. Set dataSource variable to "From file" to use prerecorded data.

2 Shared comm_simrf Examples

2-4

https://www.ni.com/en-us/support/downloads/software-products/download.rfmx-specan.html#341840
https://www.ni.com/en-us/support/downloads/drivers/download.ni-rfsg.html#344209
https://www.ni.com/en-us/support/downloads/drivers/download.ni-rfsg-playback-library.html#332845

dataSource = ;

Generate Test Signals

To generate a test signal, specify the type of test signal as "OFDM" or "Tones". Specifying the
testSignal as "OFDM" uses a 5G-like OFDM waveform with 64-QAM modulated signals for each
subcarrier. "Tones" uses two tones at 1.8 MHz and 2.6 MHz, to test the intermodulation caused by
the PA.

The example will use an oversampling factor of 7 to run the grid search up to an expected seventh-
order nonlinearity, and normalize the waveform amplitude.

testSignal = ;
switch testSignal
 case "OFDM"

 bw = ;
 [txWaveform,sampleRate,numFrames] = helperPACharGenerateOFDM(bw);
 case "Tones"
 bw = 3e6;
 [txWaveform,sampleRate,numFrames] = helperPACharGenerateTones();
end
txWaveform = txWaveform/max(abs(txWaveform)); % Normalize the waveform

Hardware Test

If the dataSource variable is set to "From file", load the prerecorded data. If the dataSource
variable is set to "Hardware", run the test signal through the PA using the VST. Create a
helperVSTDriver object to communicate with the VST device. Set the resource name to the resource
name assigned to the VST device. This example uses 'VST_01'. For NI devices, you can find the
resource name using the NI Measurement & Automation Explorer (MAX) application.

if strcmp(dataSource, "Hardware")
 VST = helperVSTDriver('VST_01');

Set the expected gain values of the DUT and the attenuator. Since PA output is connected to a 30 dB
attenuator, set VSA external attenuation to 30. Set the expected gain of the DUT to 29 dB and gain
accuracy to 1 dB. Set the acquisition time to a value that will result in about 40k samples. Set the
target input power to 8 dBm. You can increase this value to drive the PA more into the non-linear
region.

 VST.DUTExpectedGain = 29; % dB
 VST.ExternalAttenuation = 30; % dB
 VST.AcquisitionTime = 0.9e-3*(53.76e6/sampleRate); % seconds

 VST.DUTTargetInputPower = ; % dBm
 VST.CenterFrequency = 3.7e9 % Hz

Download the test waveform to the VSG. Measure PA output.

 writeWaveform(VST,txWaveform,sampleRate,testSignal)
 results = runPAMeasurements(VST);
 release(VST)
else
 % Load the prerecorded results from VST
 switch testSignal

 Power Amplifier Characterization

2-5

 case "OFDM"
 dataFileName = sprintf("helperPACharSavedData%dMHz",bw/1e6);
 case "Tones"
 dataFileName = "helperPACharSavedDataTones";
 end
 load(dataFileName,"results","sampleRate","overSamplingRate","testSignal","numFrames")
end

Map results into local variables.

referencePower = results.ReferencePower;
measuredAMToAM = results.MeasuredAMToAM;
paInput = results.InputWaveform;
paOutput = results.OutputWaveform;
linearGaindB = results.LinearGain;

Plot the spectrum of the test signal using the spectrumAnalyzer function.

saInput = helperPACharPlotInput(paInput, sampleRate, testSignal, bw);

Plot the AM/AM characteristics of the PA.

helperPACharPlotSpecAnAMAM(referencePower, measuredAMToAM)

2 Shared comm_simrf Examples

2-6

For a better view, focus on gain vs input power instead of output power vs input power and plot
again.

helperPACharPlotSpecAnGain(referencePower, measuredAMToAM)

 Power Amplifier Characterization

2-7

The PA is mostly linear of the input power range -1 to 17 dBm, with only about 1dB variation over that
range. The width of the gain curve is due to the memory effects of the PA.

PA Characterization

Use the measured PA input and output data to model the PA. Then, you can use this model to simulate
a system that contains this PA and fine tune the parameters. This example considers three models:
memoryless nonlinearity, memory polynomial and memory polynomial with cross terms.

Memoryless Nonlinearity Model

Memoryless nonlinear impairments distort the input signal amplitude and phase. The amplitude
distortion is amplitude-to-amplitude modulation (AM/AM) and the phase distortion is amplitude-to-
phase modulation (AM/PM). The comm.MemorylessNonlinearity System object and Memoryless
Nonlinearity block implements several such distortions. Use the PA input and output data to create a
lookup table to use with this object or block.

To characterize the AM/AM transfer function, calculate the average output power for a range of input
power values. Measurements are in volts over an overall 100 ohm impedance, split between the
transmitter and receiver. Convert the measured baseband samples to power values in dBm. The +30
dB term is for dBW to dBm conversion and the -20 dB term is for the 100 ohm impedance.

paInputdBm = mag2db(abs(paInput)) + 30 - 20;
paOutputdBm = mag2db(abs(paOutput)) + 30 - 20;

Partition the input power values into bins. The edges variable contains the bin edges, and the idx
variable contains the index of the bin values for each input power value.

2 Shared comm_simrf Examples

2-8

[N,edges,idx] = histcounts(paInputdBm, 'BinWidth', 0.5);

For each bin, calculate the midpoint of the bin, average output power and average phase shift. Do not
include any input power value that is less than 20 dB below the maximum input power. Store the
results in a three-column matrix where the first column is the input power in dBm, second column is
the output power in dBm and last column is the phase shift.

minInPowerdBm = max(paInputdBm) - 20;
minIdx = find(edges < minInPowerdBm, 1, 'last');
tableLen = length(edges)-minIdx-1;
inOutTable = zeros(tableLen,2);
for p = minIdx+1:length(edges)-1
 inOutTable(p-minIdx,1) = mean(paInputdBm(idx == p)); % Average input power for current bin
 inOutTable(p-minIdx,2) = mean(paOutputdBm(idx == p)); % Average output power for current bin
 inOutTable(p-minIdx,3) = mean(angle(paOutput(idx == p)./paInput(idx == p))); % Average phase shift for current bin
end

Use the table in the comm.MemorylessNonlinearity System object to model the PA. Compare the
estimated output with the actual output.

pa = comm.MemorylessNonlinearity('Method','Lookup table','Table',inOutTable,'ReferenceImpedance',100)

pa =
 comm.MemorylessNonlinearity with properties:

 Method: 'Lookup table'
 Table: [40×3 double]
 ReferenceImpedance: 100

paOutputFitMemless = pa(paInput);
err = abs(paOutput - paOutputFitMemless)./abs(paOutput);
rmsErrorMemless = rms(err)*100;
disp(['Percent RMS error in time domain is ' num2str(rmsErrorMemless) '%'])

Percent RMS error in time domain is 12.1884%

To visualize both the measured output signal and the fitted output signal, plot the actual and fitted
time-domain output voltages.

helperPACharPlotTime(paOutput, paOutputFitMemless, sampleRate)

 Power Amplifier Characterization

2-9

Plot the magnitude of the gain.

helperPACharPlotGain(paInput, paOutput, paOutputFitMemless)

2 Shared comm_simrf Examples

2-10

Memory Polynomial Model

The memory polynomial model includes the memory effects of the PA in addition to the nonlinear
gain. Use the multipurpose helper function helperPACharMemPolyModel to determine the complex
coefficients of a memory polynomial model for the amplifier characteristics. Set the model type to
'Memory Polynomial'.

modType = ;

Perform a grid search as shown in Appendix Grid Search for Memory Length and Polynomial Order
on page 2-14. Based on this grid search results, the best fit is obtained when memory length and
polynomial degree values are as follows:

memLen = 5;
degLen = 5;

Perform the fit and RMS error calculation for these values. Only half of the data is used to compute
the fitting coefficients, as the whole data set will be used to compute the relative error. The helper
function helperPACharMemPolyModel calculates the coefficients of the model.

numDataPts = length(paInput);
halfDataPts = round(numDataPts/2);

The helper function helperPACharMemPolyModel is editable for custom modifications, and to return
the desired matrix. The PA model has some zero valued coefficients, which results in a rank deficient
matrix.

 Power Amplifier Characterization

2-11

fitCoefMatMem = helperPACharMemPolyModel('coefficientFinder', ...
 paInput(1:halfDataPts),paOutput(1:halfDataPts),memLen,degLen,modType);

Warning: Rank deficient, rank = 24, tol = 1.870608e-01.

disp(abs(fitCoefMatMem))

 23.1549 8.8540 17.8385 13.3026 3.2168
 0 11.7686 26.4685 23.1937 5.5476
 20.9745 16.8531 25.7336 22.1925 5.0688
 32.6199 8.4042 9.4903 10.6984 2.5613
 15.3875 2.3630 2.0867 2.9339 0.7370

To validate the fitting, use the helper function to compute percent RMS error with respect to the
measured signal.

rmsErrorTimeMem = helperPACharMemPolyModel('errorMeasure', ...
 paInput, paOutput, fitCoefMatMem, modType);
disp(['Percent RMS error in time domain is ' num2str(rmsErrorTimeMem) '%'])

Percent RMS error in time domain is 6.1056%

To visualize both the measured output signal and the fitted output signal, plot the actual and fitted
time-domain output voltages.

paOutputFitMem = helperPACharMemPolyModel('signalGenerator', ...
 paInput, fitCoefMatMem, modType);
helperPACharPlotTime(paOutput, paOutputFitMem, sampleRate)

2 Shared comm_simrf Examples

2-12

Plot the magnitude of the gain.

helperPACharPlotGain(paInput, paOutput, paOutputFitMem)

Discussions

The percent RMS estimation error in time domain for the memoryless nonlinearity model, which is
between 9% and 13%, is about 3 to 4 times more than the error for the memory polynomial model is,
which is between 2% and 6%, for the OFDM signals with different bandwidths.

Check the estimation error in frequency domain by plotting the spectrum of the actual PA output
together with the spectrum of the estimated PA output for all three models. The memoryless
nonlinearity table lookup model is not able to simulate the spectral growth seen in the measured PA
output. For this PA, memory polynomial model provides a good approximation of the PA
characteristics.

sa = helperPACharPlotSpectrum(...
 [paOutput paOutputFitMemless paOutputFitMem],...
 {'Actual PA Output','Memoryless Model Output', ...
 'Memory Polynomial Output'},...
 sampleRate,testSignal);

 Power Amplifier Characterization

2-13

The helper function helperPACharMemPolyModel can also use the memory polynomial with cross
terms model, which includes the leading and lagging memory cross terms in addition to the memory
effects of the PA and the nonlinear gain. Set the model type to 'Cross-Term Memory' to explore
this model.

For further exploration, try different memory length and polynomial degree combinations. Modify the
oversampling factor and explore its effect on the PA model performance. Modify the helper function
helperPACharMemPolyModel to try different PA models.

Using PA Model for DPD Testing

Save the coefficient matrix of the PA model to be used in the Power Amplifier (RF Blockset) block for
simulation at the system-level in the “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities” on page 2-28.

frameSize = floor(length(paInput)/numFrames);
paIn.signals.values = double(reshape(paInput(1:frameSize*numFrames,1),numFrames,frameSize));
paIn.signals.dimensions = frameSize;
paIn.time = [];
save('PAcoefficientsAndInput.mat','modType','fitCoefMatMem','memLen','degLen','paIn','linearGaindB')

Appendix: Grid Search for Memory Length and Polynomial Order

Uncomment following lines to perform the grid search when the cost function is the percent RMS
error in time. First choose the model type.

2 Shared comm_simrf Examples

2-14

modType = ;
% rmsErrorTime = helperPACharGridSearchTime(paInput,paOutput,modType,overSamplingRate)

Repeat the search when the cost function is the percent RMS error in frequency.

% rmsErrorFreq = helperPACharGridSearchFrequency(paInput,paOutput,modType,overSamplingRate)

 Power Amplifier Characterization

2-15

Top-Down Design of an RF Receiver

This example designs an RF receiver for a ZigBee®-like application using a top-down methodology. It
verifies the BER of an impairment-free design, then analyzes BER performance after the addition of
impairment models. The example uses the RF Budget Analyzer App to rank the elements
contributing to the noise and nonlinearity budget.

Design specifications:

• Data rate = 250 kbps
• OQPSK modulation with half sine pulse shaping, as specified in IEEE® 802.15.4 for the physical

layer of ZigBee
• Direct sequence spread spectrum with chip rate = 2 Mchips/s
• Sensitivity specification = -100 dBm
• Bit Error Rate (BER) specification = 1e-4
• Analog to digital converter (ADC) with 10 bits and 0 dBm saturation power

To create fully standard-compliant ZigBee waveforms, you can use the Communications Toolbox
Library for ZigBee and UWB Add-on.

This example guides you through the following steps:

• Develop the baseband transmitter model for waveform generation
• Determine SNR specification to achieve the 1e-4 BER from a link-level idealized baseband model
• Derive RF subsystem specifications from equivalent-baseband model of RF receiver and ADC
• Derive direct conversion specifications from circuit envelope model of RF receiver
• Perform multi-carrier simulation including interfering signals and derive the specifications of the

DC offset compensation algorithm

Design and Verify Baseband Transmitter

To evaluate the performance of the RF receiver design, it is necessary and sufficient to use a signal
spectrally representative of an 802.15.4 waveform.

The baseband transmitter model creates and illustrates a spectrally representative ZigBee waveform
in the spectral and constellation domains. This model and all the subsequent models use callbacks to
create MATLAB workspace variables that parameterize the systems.

2 Shared comm_simrf Examples

2-16

https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb
https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb

 Top-Down Design of an RF Receiver

2-17

Determine Receiver SNR Requirement

To design the receiver, first determine the SNR needed to achieve the specified BER less than 1e-4.
calculated in the simulation bandwidth of 4 MHz. Run the link-level model to simulate the receiver
processing required to achieve the target BER.

Computing the BER accurately requires alignment of the transmit and receive signals. The simulation
must compensate for a two-sample delay of the received signal compared to the transmitted signal.
Also, to ensure correct chip-to-symbol-to-bit mapping, the simulation must align the chips to frame
boundaries at the input to the Chips to Symbol block on a frame boundary. Accounting for the receive
signal delay and the frame boundary alignment requires addition of a Delay block set to a 32-2=30
delay on the receiver branch before recovering the received symbols.

2 Shared comm_simrf Examples

2-18

The model achieves a 1e-4 BER at an SNR of -2.7 dB, which can be verified by collecting 100 bit
errors.

In the link-level model, the AWGN block accounts for the overall channel and RF receiver SNR
budget.

Add ADC and Determine Receiver Total Gain and Noise Figure (NF)

This section uses traditional heuristic derivations to determine the high-level specifications of the RF
receiver and ADC.

• B = 4 MHz = simulation bandwidth = simulation sampling frequency
• kT = 174 dBm/Hz = thermal noise floor power density
• Sensitivity = -100 dBm = receiver sensitivity
• SNR = -2.7 dB
• Noise power in simulation bandwidth = Pn = sensitivity-SNR = -100 dBm - (-2.7 dB) = -97.3 dBm
• Pn = kT + 10*log10(B) + NF = -97.3 dBm

Solving for the receiver noise figure (NF):

NF = -97.3 dBm + 174 dBm/Hz -10*log10(4e6 Hz) = 10.7 dB

Derive the receiver gain using the ADC specifications and dynamic range.

• ADC Number of bits = Nbits = 10

 Top-Down Design of an RF Receiver

2-19

• ADC Saturation power = Psat = 0 dBm (50 Ohm normalization)
• ADC Sampling frequency = Fadc = 2.6 MHz
• ADC Dynamic Range = 6 * Nbits + 1.8 = 61.8 dB
• Noise power in ADC bandwidth = PNadc = Pn + 10log10(Fadc/Fs) = -99.2 dBm
• Assuming a 0.1 dB contribution to SNR, Quantization noise = PNadc - 16 dB
• Receiver Gain = (Psat - Dynamic Range) - PNadc + 16 dB = (0 dBm - 61.8 dB) - (-99.2 dBm) + 16

dB = 53.4 dB

Simulating an idealized baseband model of the RF Receiver, verify the preliminary RF receiver
specifications (NF = 10.7 dB and receiver gain = 53.4 dB). This can be done by collecting 100 errors.

The spectrum analyzer shows that the received spectrum with the ADC is roughly identical in shape
to the spectrum of the previous section, without the ADC.

2 Shared comm_simrf Examples

2-20

Refine Architectural Description of RF Receiver

In this section the RF receiver, and its noise figure and gain budget specifications, are modelled by
using four discrete subcomponents with these characteristics:

• SAW Filter: Noise Figure = 2.3 dB, Gain = -3 dB
• LNA: Noise Figure = 6 dB, Gain = 22 dB
• Passive Mixer: Noise Figure = 10 dB, Gain = -5 dB
• VGA: Noise Figure = 14 dB, Gain = 40 dB

The SAW filter performance is derived from a Touchstone file that specifies S-parameters
characteristics. You can verify the gain by visualizing the S21 parameter in the X-Y plane at the
operating frequency of 2.45 GHz. You can verify the noise figure by visualizing the NF parameter in
the X-Y plane at the operating frequency of 2.45 GHz. Typically, an LNA with low noise and high gain
follows the SAW filter, which greatly reduces the impact of the noise figure of the components after
the LNA. Also, the passive mixer is specified with a high IP2. Similar to the SAW filter, you can verify
the mixer gain by visualizing the S21 parameter in the X-Y plane over a user-specified frequency
range of [2e9 3e9].

An equivalent baseband model simulates the refined RF receiver.

Run the simulation and verify the RF receiver link budget by using the output port visualization pane.
The total noise figure and gain across the four stages has been divided according to the following
budget:

 Top-Down Design of an RF Receiver

2-21

• Component NF (dB) = [2.3, 6, 10, 14]
• Component noise factor F (linear) = 10^(NF/10) = [1.78 3.98 10.0 25.1]
• Power gain (dB) = [-3, 22, -5, 40] = 54 dB > 53.4 dB
• Voltage gain VG (linear) = 10^(Power gain/20) = [0.71 12.59 0.56 100.0]
• System noise factor Fsys (linear) =

• System noise figure NFsys (dB) = 10*log10(Fsys) = 10.7 dB

The actual noise figure of the chain, taking into account impedance mismatches, can be verified at
the output port of the Equivalent Baseband Model of Receiver, and it is equal to 9.42dB.

With this model you can verify that a BER < 1e-4 corresponds to a Chip Error Rate (ChER) around
7%. By computing ChER, you can run the subsequent models for less time and still collect accurate
BER statistics.

2 Shared comm_simrf Examples

2-22

Use Circuit Envelope to Simulate Additional RF Impairments

The equivalent baseband modeling technique used in the previous section cannot model a true direct
conversion receiver. That model used a mixer with an input frequency of 2.45 GHz and an LO
frequency of 2.4 GHz, which led to a spectrum analyzer center frequency of 50 MHz. This modeling
limitation motivates a change to the circuit envelope method.

Using the circuit envelope modeling approach, continue refining the RF receiver architecture by
adding more realistic impairments.

The circuit envelope model of the RF Receiver differs from the equivalent baseband model as it:

• Replaces the equivalent baseband mixer with a quadrature modulator, consisting of
parameterizable I and Q mixers and phase shifter block, and an LO with impairments

• Uses broadband impedances (50 ohm) to explicitly model the power transfer between blocks

Comparing spectra, power measurements, and ChER to the equivalent baseband model, there are no
significant performance differences. However, with the circuit envelope model, you can include even
order nonlinearity effects, I/Q imbalance, and specifications of colored noise distributions for each of
the components.

 Top-Down Design of an RF Receiver

2-23

You can manually build the circuit envelope model of the RF Receiver by using blocks from the Circuit
Envelope library, or it can be automatically generated using the RF Budget Analyzer app.

The RF Budget Analyzer app

• Uses Friis equations to determine the noise, gain, and nonlinearity budget of an RF chain, also
taking into account impedance mismatches

• Allows you to explore the receiver design space and determine how to break down the
specifications across the elements of the chain

• Helps you determine which element has the largest contribution to the noise and nonlinearity
budget

2 Shared comm_simrf Examples

2-24

• Can generate an RF receiver model with which you can perform multi-carrier simulation and
further modify.

Type rfBudgetAnalyzer('TopDownRFReceiverDesign.mat') command at the command line to
visualize the RF receiver in the RF Budget Analyzer app.

Add Wideband Interference, LO Leakage, and DC Offset Cancellation

This section modifies the circuit envelope model to create this circuit envelope with interferer model.
The circuit envelope with interferer model includes a wideband interfering signal and these
impairments:

• LO-RF isolation of 90 dB in the quadrature demodulator
• OIP2 equal to 55 dBm in the quadrature demodulator
• WCDMA-like out-of-band blocker of -30 dBm at 2500 MHz

This simulation models a non-standard-compliant interfering signal that has power and spectral
distribution characteristics realistic for a WCDMA signal. The simulation of the wideband interfering
signal requires a larger simulation bandwidth of 16MHz. Therefore the 1 MHz OQPSK signal is
oversampled by 16, and the Circuit Envelope simulation bandwidth is also increased to 16 MHz.

The design requires a DC offset compensation algorithm to achieve the desired ChER due to the DC
offset that results from the LO leakage and the nonlinearity in the demodulator caused by the high
out-of-band interfering signal power. In this case you include a very selective filter, that introduces a
long latency with corresponding computation delay increases in the ChER measurement block.

The spectrum centered at 0 Hz shows the DC offset compensation reducing the DC offset. As you run
the model, note that the DC offset is eventually completely removed.

 Top-Down Design of an RF Receiver

2-25

2 Shared comm_simrf Examples

2-26

Conclusion

Following a top-down design methodology, RF receiver components specifications were derived.
Impairment, interferer, and RF receiver subcomponent models were iteratively refined to increase
fidelity and validated at each stage to confirm overall system performance goals were achieved.

 Top-Down Design of an RF Receiver

2-27

Digital Predistortion to Compensate for Power Amplifier
Nonlinearities

This example shows how to use digital predistortion (DPD) in a transmitter to offset the effects of
nonlinearities in a power amplifier. This example use power amplifier models that were obtained from
“Power Amplifier Characterization” on page 2-4 example to simulate two cases. In the first
simulation, the RF transmitter sends two tones. In the second simulation, the RF transmitter sends a
5G-like OFDM waveform with 100 MHz bandwidth.

DPD with Two Sinusoidal Test Signals

Open the Simulink RF Blockset model: System-level model PA + DPD with two tones.

The model includes a two-tone signal generator that is used for testing the output-referred third-
order intercept point of the system. The model includes upconversion to RF frequency using an I-Q
modulator, the PA model, a coupler to sniff the output of the PA, and an S-parameter block
representing the antenna loading effect. The receiver chain performs downconversion to low
intermediate frequency. Notice that the simulation bandwidth of this system is 107.52 MHz.

The model can be simulated without DPD when the toggle switch is in the up position.

model = 'simrfV2_powamp_dpd';
open_system(model)
sim(model)

2 Shared comm_simrf Examples

2-28

The manual switch is toggled to enable the DPD algorithm. When toggled, the TOI (third-order
intercept point) is improved significantly. Inspect the distortion measurement in the Spectrum
Analyzer to validate these results and see how the power of the harmonics is reduced thanks to the
DPD linearization.

Before the two-tone signal enters the DPD block or the power amplifier, it goes through an FIR
interpolator, the same FIR interpolator used during PA characterization. This is necessary because
the power amplifier model was obtained for the sample rate after interpolation, not the original
sample rate of the two-tone signal, and oversampling the signal is required for modeling high order
nonlinearities introduced by the power amplifier.

The desired amplitude gain of the DPD Coefficient Estimator is set based on the expected gain of the
power amplifier (obtained during PA characterization), because in addition to linearization, the
overall goal is to make the combined gain from the DPD input to the power amplifier output as close
to the expected gain as possible. To estimate the DPD coefficients correctly, the input signals to the
DPD Coefficient Estimator block, PA In and PA Out, must be aligned in the time domain. This is

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

2-29

verified by the Find Delay block which shows that the delay introduced by the RF system is 0.
Moreover, PA In and PA Out must be accurate baseband representations of the power amplifier input
signal and output signal, i.e. no extra gain or phase shift. Otherwise, the DPD Coefficient Estimator
block would not observe the power amplifier correctly and would not produce the right DPD
coefficients. This is done by ensuring that both the upconversion and downconversion steps have a
gain of 1 and the loss and phase shift due to the coupler are properly compensated for before the
feedback signal reaches PA Out.

The purpose of the scale factor in front of the FIR interpolator is to help utilize the linearized power
amplifier effectively. Even with DPD enabled, two undesirable scenarios may occur. The two-tone
signal may be very small with respect to the input range of the linearized system, hence under-
utilizing the amplification capability of the linearized system. Or the two-tone signal may be so large
that the power amplifier model operates outside the range observed during PA characterization and
therefore the power amplifier model may not be an accurate model of the physical device. We use the
following heuristic approach to set the scale factor.

Assuming that the DPD block perfectly linearizes the power amplifier to achieve the expected
amplitude gain, then the maximum input amplitude allowed by the DPD block should be the maximum
power amplifier output amplitude observed during PA characterization divided by the expected
amplitude gain. The scale factor before the DPD block should then be the maximum input amplitude
allowed by the DPD block divided by the maximum amplitude of the interpolated signal observed
during PA characterization.

The system model has a block that calculates the maximum normalized PA input amplitude. If it is
equal to 1, it means that the baseband signal entering the RF system has a maximum amplitude equal
to the maximum PA input amplitude observed during PA characterization. Therefore, if the maximum
normalized PA input amplitude is smaller than 1, the scale factor set by the heuristic approach above
may be increased. If the maximum normalized PA input amplitude is greater than 1, the scale factor
should be reduced.

set_param([model '/Manual Switch'], 'action', '1')
sim(model)

2 Shared comm_simrf Examples

2-30

By changing the degree and the memory depth defined in the DPD Coefficient Estimator block, you
can find the most suitable tradeoff between performance and implementation cost.

close_system(model,0)
close all; clear

DPD with a 5G-like OFDM Waveform

Open the Simulink RF Blockset model: System-level model PA + DPD with a 5G-like OFDM waveform.

The structure of this Simulink model is the same as that of the previous Simulink model. The signal
being amplified is now a 5G-like OFDM waveform, rather than a two-tone signal. Oversampling is
done at the OFDM modulator within the baseband signal generation block. The spectrum analyzer
measures ACPR instead of TOI and we add a subsystem to measure the EVM and MER of the
amplified OFDM waveform.

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

2-31

Without DPD linearization, the system achieves an average Modulation Error Ratio of 24.4 dB, as
seen from the constellation plot measurement.

model = 'simrfV2_powamp_dpd_comms';
open_system(model)
sim(model)

2 Shared comm_simrf Examples

2-32

The manual switch is toggled to enable the DPD algorithm. When toggled, the average MER is
improved significantly.

set_param([model '/Manual Switch'], 'action', '1')
sim(model)

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

2-33

2 Shared comm_simrf Examples

2-34

close_system(model,0)
close all; clear

Selected Bibliography

1 Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. "A
Generalized Memory Polynomial Model for Digital Predistortion of Power Amplifiers." IEEE®
Transactions on Signal Processing. Vol. 54, No. 10, October 2006, pp. 3852–3860.

2 Gan, Li, and Emad Abd-Elrady. "Digital Predistortion of Memory Polynomial Systems Using Direct
and Indirect Learning Architectures." In Proceedings of the Eleventh IASTED International
Conference on Signal and Image Processing (SIP) (F. Cruz-Roldán and N. B. Smith, eds.), No.
654-802. Calgary, AB: ACTA Press, 2009.

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

2-35

RF Noise Modeling

This example shows how to use the RF Blockset™ Circuit Envelope library to simulate noise and
calculate noise power. Results are compared against theoretical calculations and a Communications
Toolbox™ reference model.

System Architecture

The model defines variables for block parameters using the PreloadFcn callback function. To access
model callbacks, select MODELING > Model Settings > Model Properties and select the
Callbacks tab in the Model Properties window.

The RF system, shown in white, consists of these blocks.

• Configuration block - This block sets global simulation parameters for the RF Blockset system.
Selecting Simulate Noise adds noise to the simulation.

• External Noise block - This block adds a power spectral density of at the input. In this
equation, is the Boltzmann constant, is the temperature of the source, and is the noise
reference impedance. The calculated noise level of -174 dBm/Hz is used in this example. The
External Noise block provides an explicit signal source.

• Amplifier block - This block specifies the power gain and noise figure.
• Voltage Sensor block - This is an Outport block with the Source type parameter set to Ideal

voltage.

2 Shared comm_simrf Examples

2-36

• Resistor blocks - These blocks specify the source and load resistance.

The Communications Toolbox reference system, shown in green, consists of these blocks.

• Constant Power block - This block provides a constant input signal source.
• Gain blocks - These blocks model front end gain, amplifier gain and loading effects.
• Receiver Thermal Noise blocks - These blocks model the external noise floor and the reference
amplifier noise, respectively.

The Calculate Power block computes RMS noise power for the actual load resistance, R_load.

Run Example

1 Use the Open Model button to open and run the model.

The Noise Power Display block verifies that the RF Blockset and Communications Toolbox noise
models are equivalent.

Compute RF System Noise

To enable noise in the RF Blockset circuit envelope environment:

• In the Configuration block dialog, select Simulate noise.
• Specify a Temperature. RF Blockset uses this value to calculate the equivalent noise temperature

inside the amplifier.
• Specify the Noise figure (dB) parameter of any amplifiers or mixers in the system.

In the example, for a specified LNA gain of 4 dB and noise figure of 3 dB, the output noise is
calculated using the following equations:

The next equation converts the noise factor to an equivalent noise temperature. is the
Temperature parameter of the RF Blockset Configuration block.

The final equation calculates the output noise power. is the temperature of the SimRF™ External
Noise block and the Communications Toolbox External Noise Floor block.

The available noise power is the power that can be supplied by a resistive source when it is feeding a
noiseless resistive load equal to the source resistance. The green External Noise Floor block
generates an available power referenced to 50 ohms.

The Front End Gain block models the voltage divider due to the source resistance and the input
impedance of the amplifier.

The green Reference Amplifier Noise and Amplifier Gain blocks model the noise added by the
amplifier and the amplifier gain, respectively.

 RF Noise Modeling

2-37

The output of the green Amplifier Gain block is equal to the voltage across the RF Blockset R_load
block.

2 Shared comm_simrf Examples

2-38

Impact of Thermal Noise on Communication System
Performance

This example shows how to use the RF Blockset™ Circuit Envelope library to model thermal noise in
a super-heterodyne RF receiver and measure its effects on a communications system noise figure
(NF) and bit error rate (BER). A Communications Toolbox™ reference model with parameters
computed using Friis equations and a RF Blockset Noise Testbench are used to verify the results.

RF Receiver System Architecture

The Modulator and Channel subsystems consist of Communications Toolbox blocks that model:

• A QPSK-modulated waveform of random bits
• A raised cosine pulse-shaping filter for spectral limiting
• free-space path loss

The RF receiver subsystem, shown in light purple, consists of RF Blockset blocks:

• An Inport block converts the complex input waveform to available power in the RF system with
reference impedance equal to the Source impedance and assigns the input modulation waveform
to a 2.1 GHz RF carrier.

• A noise source to set the RF system noise floor for all simulation carrier frequencies. The block
performs this action when White is selected for the mask Noise distribution option. To set the
Noise power spectral density level, a value of 4*K*T*50 is used (K is Boltzmann's constant, T is
set to a room temperature of 290 kelvin, and 50 ohms is the system reference impedance).

• Cascaded RF amplifier and RF demodulator blocks with specified noise figure and gain. These
blocks only enable noise impairments. The Demodulator block's image reject filter is enabled
using a mask checkbox and defines with other mask parameters a bandpass filter whose edges are
2.0 and 2.2 GHz. This filter prevents the down-conversion of thermal noise centered around 2.6
GHz or folding of other carrier frequencies with noise into the intermediate frequency (IF) defined
as the absolute difference of the RF and LO frequencies. If the image rejection filter is removed,
the noise contribution on the IF increases above the estimation provided by Friis equations and
the BER will deteriorate.

• An Outport block, with the parameter Sensor type is set to Power, Carrier frequencies set to
the IF frequency, and Output parameter is set to Complex baseband. These block settings
enable the RF system to supply a complex baseband communication signal to the ensuing
Communication Toolbox system blocks.

• A Configuration block to set model conditions for simulation. Since the model's RF Blockset
section has only included noise impairments, an accurate simulation can be achieved by setting
the Configuration block Fundamental tones to the Inport Carrier (RF), 5e8 Hz and Demodulator
Local oscillator (LO), 1.6e9 Hz frequencies and the Harmonic order 1 . Use the Configuration
blocks View button to explore simulation carrier frequencies.

• All blocks in the RF receiver are matched to 50 ohms. To understand the effects of impedance
mismatch on noise simulation see, “RF Noise Modeling” (RF Blockset).

The reference system, shown in red, consists of:

• A Communications Toolbox Receiver Thermal Noise block that includes both the thermal noise
floor along with the amplifier and demodulator block noise. The Friis Equation is used to correctly

 Impact of Thermal Noise on Communication System Performance

2-39

combined noise contributed by the amplifier and demodulator blocks. You can find the calculation
in the model's pre-load callback function.

• A Simulink Gain block that models the combined gain of the RF receiver.
• Baseband filters and demodulators process the received signal.

Circuit Envelope Simulation of RF Receiver

Select Simulation > Run .

Error Rate Calculation blocks compute the BER for the system and reference. To observe the BER as
it approaches steady state, increase the total simulation time. For this example, the steady-state bit
error rate is approximately 1e-4 .

Computing RF Receiver Noise Figure and Gain

To model noise and gain in the RF Blockset circuit envelope environment:

• In the Configuration block dialog, select Simulate noise.
• Specify the Noise figure (dB) parameter of RF Amplifier and RF Mixer blocks in your system.

The following specifications for the RF receiver in this example produce a combined noise figure
of 9.16 dB (as per the Friis Equation): LNA gain of 20 dB, LNA noise figure of 9 dB, Demodulator
gain of -5 dB and RF Demodulator noise figure of 15 dB.

2 Shared comm_simrf Examples

2-40

RF Blockset Noise Figure Testbench

The RF Blockset Noise Figure Testbench simplifies the measurement of system noise figure. To setup
a noise figure test system, insert an RF Noise Figure Testbench in a new model. Copy the settings
found in the Model Properties Callbacks PreLoadFcn to the new models Model Properties Callback
InitFcn.

For the system composed of RF Blockset blocks in the above model, copy the LNA and Demodulator
blocks with previously set parameters to the new model. The Testbench includes a Noise source that
sets the noise floor.

• Connect the Stimulus terminal of the testbench to the In terminal of the LNA and the Out terminal
of the Demodulator to testbench Response terminal. A Display block can be connected to the
testbench NF terminal to display the measured Noise figure.

• Set the Testbench mask parameters. The RF Input frequency (Hz) is 2.1 GHz and the IF
Output frequency (Hz) is .5 GHz as in the previous example. A 10e6 Hz Baseband bandwidth
(Hz) was chosen for this example. The mask instructions provide additional information for
configuring the testbench.

For the Communications Friis system in the above model, copy the Combined Noise and Gain blocks
with previously set parameters to the new model. The Combined Noise block's Add 290K antenna
noise checkbox needs to be deselected since the Testbench includes a Noise source that sets the
noise floor.

• Three RF Blockset blocks are included: an Outport, an Inport and a Configuration since the
testbench expects RF Blockset blocks at its connection points. The type setting for the Inport and
Outport blocks is Power. Since the Communication branch is agnostic to carrier frequencies, these
blocks Carrier frequencies and Fundamental tones need to be the same and are set to 2.1 GHz.
The Output parameter of the Outport is Complex Baseband. For accuracy, the configuration
block Step size needs an Envelope bandwidth (Step size of 1/80e6 s) at least 8 times larger
than the 10 MHz Baseband bandwidth of the testbench.

Run Noise Figure Testbench

Select Simulation > Run .

 Impact of Thermal Noise on Communication System Performance

2-41

Exploring Example

You can include additional RF model impairments using RF block mask selections: Impedance
mismatch, nonlinearities or LO isolation.

See Also
Memoryless Nonlinearity

Related Examples
• “Impact of RF Effects on Communication System Performance” on page 1-63

2 Shared comm_simrf Examples

2-42

Architectural Design of a Low IF Receiver System

This example shows how to use the RF Blockset™ Circuit Envelope library to simulate the
performance of a Low IF architecture with the following RF impairments:

• Component noise
• Interference from blocker signals
• LO phase noise
• Analog-to-digital converter (ADC) dynamic range
• Component mismatch

Design variables in the RF portion of the model include explicit specification of gain, noise figure,
IP3, input/output impedance, LO phase offset, and LO phase noise. Carrier frequencies for waveforms
entering RF Blockset subsystems are specified in the Inport blocks. Design variables for the
transmitter side of the RF interface include carrier frequency, modulation scheme, signal power, and
blocker power level. Baseband design variables are number of bits and full scale range of the ADC.

System Architecture

This model illustrates the design and simulation of an ISM Band Receiver. Primary subsystems
include a digital transmitter, an RF receiver, an ADC, a phase noise block for noisy LO modeling, and
a digital receiver. The remaining blocks are used for analysis.

 Architectural Design of a Low IF Receiver System

2-43

2 Shared comm_simrf Examples

2-44

The digital transmitter consists of three FSK modulated waveforms and a high power tone. The three
FSK waveform generators use a bandlimiting filter that suppresses the FSK sidebands below the
expected thermal noise level. The target waveform at 2450 MHz has a 1 ohm referenced passband
power level of approximately -70 dBm. Similarly defined image and intermodulation distortion (IMD)
blocker waveforms have passband powers of approximately -40 dBm and -33 dBm, respectively. The
IMD tone that couples with the IMD blocker to generate in-band IM3 products has a passband power
of -33 dBm. Since the baseband processing defines the complex envelope waveforms, computing
passband power requires the insertion of 1/sqrt(2) gain as shown in the design. An IF of 2 MHz can
be inferred by inspecting the demodulator input signal spectrum, where a 2 MHz offset is specified
for the display.

The Low IF receiver is comprised of a receive band SAW filter, a frequency conversion stage, an
image rejection stage, and two gain stages. Resistors are used to model input and output impedances.
Each nonlinear block has a noise figure specification. Power nonlinearities in the low noise amplifier
(LNA), IF amplifier and mixers are specified by IP3. Image rejection is accomplished with a Hartley
design, and single LO and phase shift blocks provide cosine and sine terms to mix with the I and Q
branches, respectively. The summation block recombines the signals on the I branch and the phase-
shifted Q branch. Image rejection quality can be controlled directly by setting a non-ideal phase offset
in the Phase Shift block. To capture the RF, Image, IMD Signal and IMD Tone waveforms/spectra,
choose the Fundamental tones to be 2450 MHz, 1 MHz and the Harmonic Order as 1 for the first
tone and 8 for the second tone within the Configuration block. To model a thermal noise floor in the
RF Blockset environment, the Temperature within the System Parameters section in the
Configuration block is set to a noise temperature of 290.0 K.

 Architectural Design of a Low IF Receiver System

2-45

The ADC is modeled using an a 12-bit quantizer. The quantizer takes into account the full-scale and
dynamic ranges of the ADC, properly modeling its quantization noise floor.

A digital receiver demodulates the waveform for bit error rate calculation. This noncoherent FSK
receiver assumes perfect timing synchronization, such that each FSK pulse is integrated over one and
only one symbol.

Running the Example

Running the example simulates a design that meets an uncoded BER spec of less than 1%.
Modifications to the signals and component specifications in the receiver and ADC have a direct
impact on the receiver performance. Manual switches enable you to:

1 Select a power level for the IMD blocker tone of -33 dBm or -45 dBm
2 Select an ideal or noisy LO.

Other possible changes to the design include:

• Image rejection ratio (IRR) of the Hartley design. The IRR of the present design (dPhi=0.01
degrees) is -40 dB. For more information on calculating IRR, see the example “Measuring Image
Rejection Ratio in Receivers” (RF Blockset) Measuring Image Rejection Ratio in
Receivers>.

• Modulation schemes
• Baseband filtering options
• Signal power levels
• Signal carrier frequencies
• Noise figures
• Non-linear gain parameters
• Interstage matching
• ADC bit length and full scale range

2 Shared comm_simrf Examples

2-46

 Architectural Design of a Low IF Receiver System

2-47

See Also

Related Examples
• “RF Noise Modeling” on page 2-36
• “Top-Down Design of an RF Receiver” on page 2-16

More About
• “Circuit Envelope Simulation” (RF Blockset)

2 Shared comm_simrf Examples

2-48

Shared spc_channel Examples (comm/
antenna/phased)

3

RF Propagation and Visualization
RF propagation models describe the behavior of signals as they travel through the environment. You
can display transmitter sites, receiver sites, and RF propagation visualizations by using Site Viewer,
an interactive 3-D viewer. Site Viewer enables you to visualize propagation models in both outdoor
and indoor environments.

Visualize Outdoor Wireless Coverage

Display transmitter and receiver sites on a 3-D globe, calculate the distance and angles between the
sites, and analyze the signal strength of the transmitter at the receiver site. Display a communication
link, a coverage map, and a signal-to-interference-plus-noise ratio (SINR) map.

Display Sites

Create a transmitter site and a receiver site. Specify the position using geographic coordinates in
degrees.

tx = txsite("Latitude",42.3001,"Longitude",-71.3504);
rx = rxsite("Latitude",42.3021,"Longitude",-71.3764);

Display the sites in Site Viewer. Site Viewer displays geographic sites on an interactive 3-D globe. You
can customize the propagation environment of the 3-D globe by using DTED terrain and
OpenStreetMap® buildings.

show(tx)
show(rx)

Pan the map by clicking and dragging. Zoom out by using the scroll wheel.

3 Shared spc_channel Examples (comm/antenna/phased)

3-2

Find Distance and Angles

Calculate the distance between the sites in meters. By default, the distance function calculates the
distance along a straight line between the sites. This straight-line path is called the Euclidean path
and ignores all obstructions, including the Earth.

dm = distance(tx,rx)

dm = 2.1556e+03

You can also calculate distance using a great circle path, which considers the curvature of the Earth.

Calculate the azimuth and elevation angles between the sites. For geographic sites, the angle
function returns the azimuth angle in degrees, measured counterclockwise from the east. The angle
function returns the elevation angle in degrees from the horizontal plane.

[az,el] = angle(tx,rx)

az = 174.0753

el = -0.7267

Analyze Signal Strength

The signal strength of a transmitter at a receiver site is given by the following equation:

Prx = Ptx + Gtx + Grx− pathloss

where:

 RF Propagation and Visualization

3-3

• Prx is the power available at the receiver.
• Ptx is the transmitter output power.
• Gtx is the transmitter gain.
• Grx = is the receiver gain.
• pathloss is the RF attenuation suffered by the transmitter signal when it arrives at the receiver.

Calculate the signal strength at the desk receiver site. By default, the sigstrength function
calculates signal strength in power units (dBm). You can also calculate the signal strength in electric
field strength units (dBμV/m).

ss = sigstrength(rx,tx)

ss = -67.0767

The link margin measures the robustness of the communication link. Calculate the link margin by
subtracting the required receiver sensitivity from the signal strength.

margin = abs(rx.ReceiverSensitivity - ss)

margin = 32.9233

Display Communication Link

Display the communication link status between the sites. The success of the link depends on the
power received by the receiver from the transmitter. By default, a green line indicates that the
received power meets or exceeds the receiver sensitivity. A red line indicates unsuccessful
communication.

link(rx,tx)

3 Shared spc_channel Examples (comm/antenna/phased)

3-4

Display Coverage Map

Display the coverage map of the transmitter. A coverage map visualizes the service area of the
transmitter, which is where the received signal strength for a reference receiver meets its sensitivity.
You can create coverage maps that depict signal strength as either a power quantity (typically dBm)
or a voltage quantity (typically dBμV/m).

coverage(tx,"SignalStrengths",-100:5:-60)

Find New Transmitter Site

Create and display a new transmitter site that is 1 km north of the existing transmitter site. Specify
the antenna height as 30 m.

[lat,lon] = location(tx,1000,90);
tx2 = txsite("Latitude",lat,"Longitude",lon,"AntennaHeight",30);
show(tx2)

 RF Propagation and Visualization

3-5

Calculate SINR

Calculate the SINR in decibels. The SINR of a receiver is given by the following equation:

SINR = S
I + N

where:

• S is the received power of the signal of interest.
• I is the received power of interfering signals in the network.
• N is the total received noise power.

When Site Viewer has terrain data, the sinr function incorporates the terrain into the calculations.

sinr([tx,tx2])

3 Shared spc_channel Examples (comm/antenna/phased)

3-6

Visualize Indoor Propagation Paths

Import a 3-D scene model of a conference room. Display sites and find propagation paths between the
sites.

Import Scene

Import and view an STL file. The file models an indoor office with a conference room and open space
separated by a partial wall. STL files contain geometry information and do not contain information
about colors, surfaces, or textures.

viewer = siteviewer("SceneModel","office.stl","ShowOrigin",false);

Display Sites

Place one transmitter near the ceiling in the conference room. Place one receiver on a desk in the
open space and another receiver on a shelf. Specify the position using Cartesian coordinates in
meters.

tx = txsite("cartesian","AntennaPosition",[2; 1.3; 2.5]);
rx_desk = rxsite("cartesian","AntennaPosition",[3.6; 7.5; 1]);
rx_shelf = rxsite("cartesian","AntennaPosition",[0.4; 3.3; 1]);

Display the receivers and the line-of-sight paths.

los(tx,[rx_desk rx_shelf])

Pan the scene by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate by
clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.

 RF Propagation and Visualization

3-7

The path to the shelf receiver is clear and the path to the desk receiver is obstructed.

Display Propagation Paths

Create a ray tracing propagation model, which MATLAB® represents using a RayTracing object.
Configure the model to use a Cartesian coordinate system and wooden surface materials. By default,
the model uses the shooting and bouncing rays (SBR) method.

pm = propagationModel("raytracing", ...
 "CoordinateSystem","cartesian", ...
 "SurfaceMaterial","wood");

Display propagation paths that are within the line of sight by setting the MaxNumReflections
property to 0. Unlike the los function, the raytrace function does not show obstructed paths.

pm.MaxNumReflections = 0;
clearMap(viewer)
raytrace(tx,[rx_desk rx_shelf],pm)

3 Shared spc_channel Examples (comm/antenna/phased)

3-8

The raytrace function finds one line-of-sight path. You can view information about the path, such as
the received power, by clicking on the path.

Display propagation paths with up to one reflection.

pm.MaxNumReflections = 1;
raytrace(tx,[rx_desk rx_shelf],pm)

 RF Propagation and Visualization

3-9

Display propagation paths with up to one reflection and one diffraction.

pm.MaxNumDiffractions = 1;
raytrace(tx,[rx_desk rx_shelf],pm)

3 Shared spc_channel Examples (comm/antenna/phased)

3-10

See Also
Functions
coverage | sigstrength | link | sinr | raytrace

Objects
siteviewer | txsite | rxsite

More About
• “Visualize Antenna Coverage Map and Communication Links” on page 3-12
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 3-20
• “Indoor MIMO-OFDM Communication Link using Ray Tracing” on page 1-39

 RF Propagation and Visualization

3-11

Visualize Antenna Coverage Map and Communication Links

This example shows how to calculate and visualize signal strength between a transmitter and
multiple receivers. The visualizations include an area coverage map and colored communication links.
The example also shows selection of a directional antenna in order to achieve a communication link to
a specific location.

Define Transmitter Site

% Define transmitter site at MathWorks (3 Apple Hill Dr, Natick, MA)
fq = 6e9; % 6 GHz
tx = txsite("Name","MathWorks", ...
 "Latitude",42.3001, ...
 "Longitude",-71.3504, ...
 "Antenna",design(dipole,fq), ...
 "AntennaHeight",60, ... % Units: meters
 "TransmitterFrequency",fq, ... % Units: Hz
 "TransmitterPower",15); % Units: Watts

Define Receiver Sites

% Define receiver sites in several surrounding towns and cities
rxNames = [...
 "Boston, MA","Lexington, MA","Concord, MA","Marlborough, MA", ...
 "Hopkinton, MA","Holliston, MA","Foxborough, MA","Quincy, MA"];

rxLocations = [...
 42.3601 -71.0589; ... % Boston
 42.4430 -71.2290; ... % Lexington
 42.4604 -71.3489; ... % Concord
 42.3459 -71.5523; ... % Marlborough
 42.2287 -71.5226; ... % Hopkinton
 42.2001 -71.4245; ... % Holliston
 42.0654 -71.2478; ... % Foxborough
 42.2529 -71.0023]; % Quincy

% Define receiver sensitivity. Sensitivity is the minimum signal strength in
% power that is necessary for the receiver to accurately detect the signal.
rxSensitivity = -90; % Units: dBm

rxs = rxsite("Name",rxNames, ...
 "Latitude",rxLocations(:,1), ...
 "Longitude",rxLocations(:,2), ...
 "Antenna",design(dipole,tx.TransmitterFrequency), ...
 "ReceiverSensitivity",rxSensitivity); % Units: dBm

Show Sites on a Map

Show the transmitter and receiver sites on a map. You can display information about a site by clicking
on a marker.

viewer = siteviewer;
show(tx)
show(rxs)

3 Shared spc_channel Examples (comm/antenna/phased)

3-12

Set the map imagery by using the Basemap property. Alternatively, open the map imagery picker in
Site Viewer by clicking the second button from the right. Select "OpenStreetMap" to see streets and
labels on the map. Rotate the view to show an overhead perspective.

viewer.Basemap = "openstreetmap";

Display Idealized Coverage Map using Dipole Antenna

Display coverage map. A coverage map shows the geographic area where a receiver will obtain good
reception, which is where transmitted signal strength meets or exceeds the receiver"s sensitivity.
Transmitted signal strength in power (dBm) is computed using a free-space propagation model, which
disregards terrain, obstacles, and atmospheric effects. As a result, the coverage map shows idealized
coverage area in the absence of any path loss impairments beyond free space loss.

coverage(tx,"freespace", ...
 "SignalStrengths",rxSensitivity)

 Visualize Antenna Coverage Map and Communication Links

3-13

Plot Communication Links using Dipole Antenna

Plot communication links on the map. Red links appear where the receiver is outside of the coverage
zone, and green links appear where the receiver is within the coverage zone. Link lines may be
clicked to display link statistics. To contrast the colors of the coverage zone and successful links,
specify the color of successful links as dark green.

sc = [0 0.3 0];
link(rxs,tx,"freespace","SuccessColor",sc)

3 Shared spc_channel Examples (comm/antenna/phased)

3-14

Use Rain Propagation Model

Update the coverage map and links to include path loss due to rain. Note that Boston, MA is no
longer inside the coverage zone.

coverage(tx,"rain","SignalStrengths", rxSensitivity)
link(rxs,tx,"rain","SuccessColor",sc)

 Visualize Antenna Coverage Map and Communication Links

3-15

Define Directional Antenna

The dipole antenna transmitter results in a few receiver sites outside of the coverage zone, including
the receiver in Boston, MA. Now assume a requirement of the transmitter is to achieve a
communication link with Boston. Define a directional antenna that can increase antenna gain in that
direction.

% Define Yagi-Uda antenna designed for transmitter frequency
yagiAnt = design(yagiUda,tx.TransmitterFrequency);

% Tilt antenna to direct radiation in XY-plane (i.e. geographic azimuth)
yagiAnt.Tilt = 90;
yagiAnt.TiltAxis = "y";

f = figure;

% Show directivity pattern
patternAzimuth(yagiAnt,tx.TransmitterFrequency)

3 Shared spc_channel Examples (comm/antenna/phased)

3-16

%Close the previous figure
if (isvalid(f))
 close(f);
end

Display Coverage Map using Yagi-Uda Antenna

Update the coverage map and links. Boston is now within the coverage zone, but communication links
with receivers in other directions are lost.

% Update transmitter antenna
tx.Antenna = yagiAnt;

% Point main beam toward Boston, MA by assigning azimuth angle between
% transmitter location and Boston receiver location
tx.AntennaAngle = angle(tx, rxs(1));

% Update visualizations, using "rain" propagation model
coverage(tx,"rain","SignalStrengths",rxSensitivity)
link(rxs,tx,"rain","SuccessColor",sc)

 Visualize Antenna Coverage Map and Communication Links

3-17

Display Contoured Coverage Map using Multiple Signal Strengths

When a single signal strength is specified, the coverage map is green for the coverage region. Specify
multiple signal strengths to generate a coverage map with contours for different signal levels.

% Define signal strengths from sensitivity to -60 dB
sigStrengths = rxSensitivity:5:-60;

% Update coverage map
coverage(tx,"rain","SignalStrengths",sigStrengths)

3 Shared spc_channel Examples (comm/antenna/phased)

3-18

See Also
Functions
coverage | link | design

Objects
txsite | rxsite | siteviewer

Related Examples
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 3-20

 Visualize Antenna Coverage Map and Communication Links

3-19

Urban Link and Coverage Analysis Using Ray Tracing

This example shows how to use ray tracing to analyze communication links and coverage areas in an
urban environment. Within the example:

• Import and visualize 3-D buildings data into Site Viewer
• Define a transmitter site and ray tracing propagation model corresponding to a 5G urban scenario
• Analyze a link in non-line-of-sight conditions
• Visualize coverage using the shooting and bouncing rays (SBR) ray tracing method with different

numbers of reflections, diffractions, and launched rays
• Optimize a non-line-of-sight link using beam steering and Phased Array System Toolbox™

Import and Visualize Buildings Data

Import an OpenStreetMap (.osm) file corresponding to Canary Wharf in London, UK. The file was
downloaded from https://www.openstreetmap.org, which provides access to crowd-sourced map data
all over the world. The data is licensed under the Open Data Commons Open Database License
(ODbL), https://opendatacommons.org/licenses/odbl/. The buildings information contained within the
OpenStreetMap file is imported and visualized in Site Viewer.

viewer = siteviewer("Buildings","canarywharf.osm","Basemap","topographic");

Define Transmitter Site

Define a transmitter site to model a small cell scenario in a dense urban environment. The
transmitter site represents a base station that is placed on a pole servicing the surrounding area

3 Shared spc_channel Examples (comm/antenna/phased)

3-20

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

which includes a neighboring park. The transmitter uses the default isotropic antenna, and operates
at a carrier frequency of 28 GHz with a power level of 5 W.

tx = txsite("Name","Small cell transmitter", ...
 "Latitude",51.50375, ...
 "Longitude",-0.01843, ...
 "AntennaHeight",10, ...
 "TransmitterPower",5, ...
 "TransmitterFrequency",28e9);
show(tx)

View Coverage Map for Line-of-Sight Propagation

Create a ray tracing propagation model using the shooting and bouncing rays (SBR) method. The SBR
propagation model uses ray tracing analysis to compute propagation paths and their corresponding
path losses. Path loss is calculated from free-space loss, reflection and diffraction loss due to
interactions with materials, and antenna polarization loss.

Limit the initial analysis to only line-of-sight propagation paths by setting the maximum number of
reflections to 0. Set the building and terrain material types to model perfect electrical conductors.

rtpm = propagationModel("raytracing", ...
 "Method","sbr", ...
 "MaxNumReflections",0, ...
 "BuildingsMaterial","perfect-reflector", ...
 "TerrainMaterial","perfect-reflector");

View the corresponding coverage map for a maximum range of 250 meters from the base station. The
coverage map shows received power for a receiver at each ground location but is not computed for
building tops or sides.

 Urban Link and Coverage Analysis Using Ray Tracing

3-21

coverage(tx,rtpm, ...
 "SignalStrengths",-120:-5, ...
 "MaxRange",250, ...
 "Resolution",3, ...
 "Transparency",0.6)

Define Receiver Site in Non-Line-of-Sight Location

The coverage map for line-of-sight propagation shows shadowing due to obstructions. Define a
receiver site to model a mobile receiver in an obstructed location. Plot the line-of-sight path to show
the obstructed path from the transmitter to the receiver.

rx = rxsite("Name","Small cell receiver", ...
 "Latitude",51.50216, ...
 "Longitude",-0.01769, ...
 "AntennaHeight",1);

los(tx,rx)

3 Shared spc_channel Examples (comm/antenna/phased)

3-22

Plot Propagation Path Using Ray Tracing

Adjust the ray tracing propagation model to include single-reflection paths, then plot the rays. The
result shows signal propagation along a single-reflection path. View the corresponding propagation
characteristics, including the received power, phase change, distance, and angles of departure and
arrival, by clicking on the plotted path.

rtpm.MaxNumReflections = 1;
clearMap(viewer)
raytrace(tx,rx,rtpm)

 Urban Link and Coverage Analysis Using Ray Tracing

3-23

Analyze Signal Strength and Effect of Materials

Compute the received power.

ss = sigstrength(rx,tx,rtpm);
disp("Received power using perfect reflection: " + ss + " dBm")

Received power using perfect reflection: -70.392 dBm

Update the model to use concrete for the buildings and terrain materials. Then, update the rays
shown in Site Viewer.

rtpm.BuildingsMaterial = "concrete";
rtpm.TerrainMaterial = "concrete";
raytrace(tx,rx,rtpm)

Recalculate the received power. The use of realistic material reflection results in approximately 8 dB
of loss compared to perfect reflection.

ss = sigstrength(rx,tx,rtpm);
disp("Received power using concrete materials: " + ss + " dBm")

Received power using concrete materials: -78.4999 dBm

Include Weather Loss

Adding weather impairments to the propagation model and re-computing the received power results
in another 1.5 dB of loss.

rtPlusWeather = ...
 rtpm + propagationModel("gas") + propagationModel("rain");

3 Shared spc_channel Examples (comm/antenna/phased)

3-24

raytrace(tx,rx,rtPlusWeather)

ss = sigstrength(rx,tx,rtPlusWeather);
disp("Received power including weather loss: " + ss + " dBm")

Received power including weather loss: -80.0172 dBm

Plot Propagation Paths Including Two Reflections

Expand the point-to-point analysis to include two-reflection paths and choose a smaller angular
separation between launched rays for the SBR method. The visualization shows two clusters of
propagation paths. The total received power for two-reflection paths is similar to the total received
power for single-reflection paths.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 2;
rtPlusWeather.PropagationModels(1).AngularSeparation = "low";

ss = sigstrength(rx,tx,rtPlusWeather);
disp("Received power with two-reflection paths: " + ss + " dBm")

Received power with two-reflection paths: -79.6847 dBm

clearMap(viewer)
raytrace(tx,rx,rtPlusWeather)

Plot Propagation Paths Including Two Reflections and One Diffraction

Expand the point-to-point analysis to include paths with one edge diffraction. The visualization shows
the two stronger clusters of propagation paths due to reflections with no diffraction, plus weaker
clusters involving one diffraction. The total received power is not changed significantly by the
inclusion of one diffraction.

 Urban Link and Coverage Analysis Using Ray Tracing

3-25

rtPlusWeather.PropagationModels(1).MaxNumDiffractions = 1;

ss = sigstrength(rx,tx,rtPlusWeather);
disp("Received power with two-reflection and one-diffraction paths: " + ss + " dBm")

Received power with two-reflection and one-diffraction paths: -79.8526 dBm

raytrace(tx,rx,rtPlusWeather)

View Coverage Map with Single-Reflection Paths

Use the configured propagation model and generate a coverage map that includes single-reflection
paths and weather impairments.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 1;
rtPlusWeather.PropagationModels(1).MaxNumDiffractions = 0;
clearMap(viewer)
show(tx)

coverage(tx,rtPlusWeather, ...
 "SignalStrengths",-120:-5, ...
 "MaxRange", 250, ...
 "Resolution",2, ...
 "Transparency",0.6)

3 Shared spc_channel Examples (comm/antenna/phased)

3-26

View Coverage Map with Two Reflections and One Diffraction

Account for more propagation paths by increasing the maximum number of reflections and
diffractions for the ray tracing analysis to 2 and 1, respectively. Decrease the number of launched
rays as a trade-off.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 2;
rtPlusWeather.PropagationModels(1).MaxNumDiffractions = 1;
rtPlusWeather.PropagationModels(1).AngularSeparation = "high";
clearMap(viewer)

Plot the coverage map using precalculated results contained in a MAT-file. You can also generate the
coverage results using the commented code. Depending on the computer hardware, the commented
code can take several hours to run.

show(tx)

load("coverageResultsTwoRefOneDiff.mat");
contour(coverageResultsTwoRefOneDiff, ...
 "Type","power", ...
 "Transparency",0.6)

% coverage(tx,rtPlusWeather, ...
% "SignalStrengths",-120:-5, ...
% "MaxRange", 250, ...
% "Resolution",2, ...
% "Transparency",0.6)

 Urban Link and Coverage Analysis Using Ray Tracing

3-27

Use Beam Steering to Enhance Received Power

Many modern communications systems use techniques to steer the transmitter antenna to achieve
optimal link quality. This section uses Phased Array System Toolbox™ to optimally steer a beam to
maximize received power for a non-line-of-sight link.

Define a custom antenna from Report ITU-R M.2412 [1] on page 3-31 for evaluating 5G radio
technologies. Create an 8-by-8 uniform rectangular array with half-wavelength element spacing using
the pattern defined in Section 8.5 of the report.

azvec = -180:180; % Azimuth angles (deg)
elvec = -90:90; % Elevation angles (deg)
SLA = 30; % Maximum side-lobe level attenuation (dB)
tilt = 0; % Tilt angle (deg)
az3dB = 65; % 3 dB beamwidth in azimuth (deg)
el3dB = 65; % 3 dB beamwidth in elevation (deg)
lambda = physconst("lightspeed")/tx.TransmitterFrequency; % Wavelength (m)

[az,el] = meshgrid(azvec,elvec);
azMagPattern = -min(12*(az/az3dB).^2,SLA);
elMagPattern = -min(12*((el-tilt)/el3dB).^2,SLA);
combinedMagPattern = -min(-(azMagPattern + elMagPattern),SLA); % Relative antenna gain (dB)

antennaElement = phased.CustomAntennaElement("MagnitudePattern",combinedMagPattern);
tx.Antenna = phased.URA("Size",[8 8], ...
 "Element",antennaElement, ...
 "ElementSpacing",[lambda/2 lambda/2]);

Calculate the peak directivity of the array.

3 Shared spc_channel Examples (comm/antenna/phased)

3-28

antennaDirectivity = pattern(tx.Antenna, tx.TransmitterFrequency);
antennaDirectivityMax = max(antennaDirectivity(:));
disp("Peak antenna directivity: " + antennaDirectivityMax + " dBi")

Peak antenna directivity: 23.4449 dBi

Point the antenna south and view the radiation pattern.

tx.AntennaAngle = -90;

clearMap(viewer)
show(rx)
pattern(tx,"Transparency",0.6)
hide(tx)

Set the maximum number of reflections to 1 and maximum number of diffractions to 0 to perform
analysis on the dominant single-reflection path. Call raytrace with an output to access the rays that
were computed. The returned comm.Ray objects include both the geometric and propagation-related
characteristics of each ray.

rtPlusWeather.PropagationModels(1).MaxNumReflections = 1;
rtPlusWeather.PropagationModels(1).MaxNumDiffractions = 0;
ray = raytrace(tx,rx,rtPlusWeather);
disp(ray{1})

 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]

 Urban Link and Coverage Analysis Using Ray Tracing

3-29

 LineOfSight: 0
 Interactions: [1×1 struct]
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 117.0069
 PhaseShift: 4.0976

 Read-only properties:
 PropagationDelay: 6.6488e-07
 PropagationDistance: 199.3261
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumInteractions: 1

Get the angle-of-departure for the single-reflection path and apply this angle to steer the antenna in
the optimal direction to achieve higher received power. The angle-of-departure azimuth is offset by
the physical antenna angle azimuth to convert it to the steering vector azimuth defined in the local
coordinate system of the phased array antenna.

aod = ray{1}.AngleOfDeparture;
steeringaz = wrapTo180(aod(1)-tx.AntennaAngle(1));
steeringVector = phased.SteeringVector("SensorArray",tx.Antenna);
sv = steeringVector(tx.TransmitterFrequency,[steeringaz;aod(2)]);
tx.Antenna.Taper = conj(sv);

Show the antenna energy directed along the propagation path by plotting the radiation pattern. The
new received power increases by more than 20 dB. The increased received power corresponds to the
peak directivity of the antenna.

pattern(tx,"Transparency",0.6)
raytrace(tx,rx,rtPlusWeather);
hide(tx)

ss = sigstrength(rx,tx,rtPlusWeather);
disp("Received power with beam steering: " + ss + " dBm")

Received power with beam steering: -57.0575 dBm

3 Shared spc_channel Examples (comm/antenna/phased)

3-30

Conclusion

This example used ray tracing for link and coverage analysis in an urban environment. The analysis
shows:

• How to use ray tracing analysis to predict signal strength for non-line-of-sight links where
reflected and edge-diffracted propagation paths exist

• Analysis with realistic materials has a significant impact on the calculated path loss and received
power

• Analysis with higher number of reflections and diffractions results in increased computation time
but reveals additional areas of signal propagation

• Usage of a directional antenna with beam steering significantly increases the received power for
receivers, even if they are in non-line-of-sight locations

This example analyzed received power and path loss for links and coverage. To see how to use ray
tracing to configure a channel model for link-level simulation, see the “Indoor MIMO-OFDM
Communication Link using Ray Tracing” on page 1-39 example.

References

 Urban Link and Coverage Analysis Using Ray Tracing

3-31

[1] Report ITU-R M.2412, "Guidelines for evaluation of radio interface technologies for IMT-2020",
2017. https://www.itu.int/pub/R-REP-M.2412

See Also
Functions
propagationModel | raytrace | coverage | contour | pattern

Objects
siteviewer | txsite | rxsite

Related Examples
• “Ray Tracing for Wireless Communications” on page 29-12

3 Shared spc_channel Examples (comm/antenna/phased)

3-32

https://www.itu.int/pub/R-REP-M.2412

Shared deeplearning_shared Examples
(comm/deeplearning)

4

OFDM Autoencoder for Wireless Communications

This example shows how to model an end-to-end orthogonal frequency division modulation (OFDM)
communications system with an autoencoder to reliably transmit information bits over a wireless
channel.

Introduction

This example uses an autoencoder together with OFDM modulator and demodulator layers to design
and implement a multi-carrier communications system.

In this example, you will learn how to:

• Use the sequenceInputLayer (Deep Learning Toolbox) function to train the network with
multiple SNR values.

• Create OFDM modulation and demodulation layers using the ofdmmod and ofdmdemod functions.
• Train a fully connected neural network with embedded OFDM modulation and demodulation.
• Separate the neural network into encoder and decoder networks.
• Run BLER simulations to compare error rate performance of a conventional OFDM link to an AI-

based OFDM link.

For an equivelent single-carrier communications system, see the “Autoencoders for Wireless
Communications” on page 4-134 example.

OFDM-based Autoencoder System

This block diagram shows a wireless autoencoder communications system. The encoder (transmitter)
first maps each k set of information bits in a sequence into a message s such that s ∈ {0, …, M − 1},
where M = 2k to form T messages. Each of the T messages, s, is mapped to n real-valued channel
uses, x = f (s) ∈ ℝn, which results in an effective coding rate of R = k/n data bits per real channel use.
Then, two real channel uses are mapped into a complex symbol to create xc = g(s) ∈ ℂn/2. The
normalization layer of the encoder imposes constraints on x to further restrict the encoded symbols.
To illustrate possibilities, these constraints are implemented using the normalization layer:

• Energy constraint: ‖xi‖2
2 = 1, ∀i

• Average power constraint: E[|xi |2] = 1, ∀i

Normalized symbols are mapped onto the OFDM subcarriers and passed through an AWGN channel.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-2

The transmitter encodes s and outputs encoded symbols, x. The channel impairs the encoded symbols
to generate y ∈ ℝn/2. The receiver decodes y and outputs estimate, s, of the transmitted message s.

The input message is a one-hot vector 1s ∈ ℝM, whose elements are all zeros except the sth one. The
AWGN channel adds noise to achieve the specified signal to noise power ratio, SNR.

Generate and Preprocess Data

The input to the transmitter is a random sequence of k bits. k bits can create M = 2k distinct
messages or input symbols. The input symbol is a categorical feature from the set of

0, 1, . . . , M − 1 . As the number of possible input symbols increases, the number of training
symbols must increase to give the network a chance to experience a large number of possible input
combinations. The same is true for the number of validation symbols. Set number of input bits to 2.

k = ; % Information bits per symbol
M = 2^k; % Size of information symbols set
numTrainSymbols = 2560 * M;
numValidationSymbols = 128 * M;

The autoencoder neural network best works with one-hot inputs and classifies each input symbol as
one of the categorical values, 0, 1, . . . , M − 1 . Convert random input symbols into a one-hot array
using onehotencode (Deep Learning Toolbox) function and create labels of categorical values. Place
the one-hot value to the first dimension (rows) and input symbols to the second dimension (columns).

dTrain = randi([0 M-1],1,5)

dTrain = 1×5

 3 3 0 3 2

trainSymbolsTemp = onehotencode(dTrain,1,"ClassNames",0:M-1)

trainSymbolsTemp = 4×5

 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 1
 1 1 0 1 0

trainLabelsTemp = categorical(dTrain)

 OFDM Autoencoder for Wireless Communications

4-3

trainLabelsTemp = 1x5 categorical
 3 3 0 3 2

Training the neural network at several SNR levels ensures that the autoencoder can handle a range
of SNR values without retraining. Set training SNR values as an array between -1 dB and 9 dB.
Generate multiple batches of training sequences, where each batch (cell) experiences a different
SNR. Set random number generator state for repeatable results for demonstration purposes only.

trainSNRVec = -1:2:9; % Training SNR (dB)

rng(1234)
trainSymbols = cell(1,length(trainSNRVec));
trainLabels = cell(1,length(trainSNRVec));
validationSymbols = cell(1,length(trainSNRVec));
validationLabels = cell(1,length(trainSNRVec));
for p=1:length(trainSNRVec)
 dTrain = randi([0 M-1],1,numTrainSymbols);
 dValid = randi([0 M-1],1,numValidationSymbols);
 trainSymbols{p} = onehotencode(dTrain,1,"ClassNames",0:M-1);
 trainLabels{p} = categorical(dTrain);
 validationSymbols{p} = onehotencode(dValid,1,"ClassNames",0:M-1);
 validationLabels{p} = categorical(dValid);
end

Size of training symbols is M × NSym. Size of training labels is 1 × NSym.

numBatches = length(trainSymbols)

numBatches = 6

sizeTrainSymbols = size(trainSymbols{1})

sizeTrainSymbols = 1×2

 4 10240

sizeTrainLabels = size(trainLabels{1})

sizeTrainLabels = 1×2

 1 10240

Define and Train Neural Network Model

The second step of designing an AI-based system is to define and train the neural network model.

Define Neural Network

This example uses a modified version of the autoencoder neural network proposed in [2]. Set the
number of subcarriers, Nf f t, to 256. The two fully connected layers map k bits (in the form of length
M one-hot arrays) into n real numbers, resulting in a rate R = k/n communications system. After
normalization, the OFDM modulator layer maps these n real numbers into n/2 complex valued
symbols and assigns each symbol to a subcarrier. To ensure that OFDM modulator layer outputs full
OFDM symbols, set minimum input length, MinLength, of the sequence input layer in the third
dimension (T) to Nf f t. Therefore, the input to the neural network is a sequence of one-hot values with

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-4

size M × Nf f t. This network uses the sequenceInputLayer function with M number of features
and Nf f t sequence length.

The reliability of the communication link can be increased through multiple uses of the channel for
the same information symbol, which is also known as coding gain. An autoencoder can learn to
leverage this increased number of channel uses, n > k. The following trains an OFDM-based (6,2)
autoencoder, which is equivalent to having a coding rate, R, of 1/3. Set n to 6.

Nfft = ; % Number of OFDM subcarriers

n = ; % (n/2) is the number of complex channel uses

CPLength = ; % Samples

normalization = ; % Normalization "Energy" | "Average power"

ofdmAELayerGraph = [
 sequenceInputLayer(M,Name="One-hot input",MinLength=Nfft)

 fullyConnectedLayer(M,Name="fc_1")
 reluLayer(Name="relu_1")

 fullyConnectedLayer(n,Name="fc_2",BiasInitializer="narrow-normal")

 helperAEWOFDMNormalizationLayer(Method=normalization)

 helperAEWOFDMModLayer(Nfft,CPLength,Name="OFDM Mod");

 helperAEWOFDMAWGNLayer(SNR=trainSNRVec,SignalPower=1)

 helperAEWOFDMDemodLayer(Nfft,CPLength,Name="OFDM Demod");

 fullyConnectedLayer(M,Name="fc_3")
 reluLayer(Name="relu_2")

 fullyConnectedLayer(M,Name="fc_4")
 softmaxLayer(Name="softmax")

 classificationLayer(Name="classoutput")];

The following shows the output sizes for each layer in the autoencoder layer.

 OFDM Autoencoder for Wireless Communications

4-5

To see the full analysis of the network, check the box in the if statement.

if
 analyzeNetwork(ofdmAELayerGraph) %#ok<UNRCH>
end

Train Neural Network

Set the training options for the autoencoder neural network and train the network using the
trainNetwork (Deep Learning Toolbox) function. Training takes about 15 seconds on an AMD EPYC
7262 3.2 GHz 8C/16T.

% Set training options
options = trainingOptions('adam', ...
 InitialLearnRate=0.02, ...
 MaxEpochs=10, ...
 OutputNetwork="best-validation-loss", ...

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-6

 Shuffle='every-epoch', ...
 ValidationData={validationSymbols,validationLabels}, ...
 LearnRateSchedule="piecewise", ...
 LearnRateDropPeriod=5, ...
 LearnRateDropFactor=0.1, ...
 ExecutionEnvironment="cpu", ...
 Plots='none', ...
 SequenceLength=Nfft);

% Train the autoencoder network
[trainedNet,trainInfo] = trainNetwork(trainSymbols,trainLabels,ofdmAELayerGraph,options);

|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning |
| | | (hh:mm:ss) | Accuracy | Accuracy | Loss | Loss | Rate |
|==|
1	1	00:00:01	13.22%	24.67%	1.6775	1.4967	0.0200
2	50	00:00:05	74.15%	72.56%	0.4678	0.4751	0.0200
3	100	00:00:08	95.18%	95.67%	0.1513	0.1256	0.0200
4	150	00:00:12	97.14%	96.65%	0.0893	0.1177	0.0200
5	200	00:00:16	96.48%	96.29%	0.1010	0.1127	0.0200
7	250	00:00:20	96.29%	96.48%	0.0968	0.1106	0.0020
8	300	00:00:23	97.53%	96.26%	0.1039	0.1224	0.0020
9	350	00:00:27	96.61%	96.39%	0.1090	0.1210	0.0020
10	400	00:00:31	96.88%	96.06%	0.0999	0.1272	0.0020
==							
Training finished: Max epochs completed.

trainInfo.n = n;
trainInfo.k = k;
trainInfo.Normalization = normalization;

Plot the training progress. The validation accuracy quickly reaches more than 90% while the
validation loss keeps slowly decreasing. This behavior shows that the training SNR value was low
enough to cause some errors but not too low to avoid convergence. If SNR is too high that the
network does not experience any errors, then the autoencoder does not learn how to correct channel
impairments. A rule of thumb is to keep the validation accuracy between 85% and 95%. For
definitions of validation accuracy and validation loss, see “Monitor Deep Learning Training Progress”
(Deep Learning Toolbox) section.

figure
helperAEWPlotTrainingPerformance(trainInfo)

 OFDM Autoencoder for Wireless Communications

4-7

Separate the network into encoder and decoder parts. Encoder starts with the input layer and ends
after the OFDM modulator layer. Since the OFDM modulator changes the number of time samples
(adds cyclic-prefix), use dlnetwork for the encoder network.

for idxOFDMLayer = 1:length(trainedNet.Layers)
 if isa(trainedNet.Layers(idxOFDMLayer), 'helperAEWOFDMModLayer')
 break
 end
end
lgraph = layerGraph(trainedNet.Layers(1:idxOFDMLayer));
txNet = dlnetwork(lgraph);

Decoder starts with the OFDM demodulator layer and ends with the classification layer. Add a feature
input layer at the beginning. Since the OFDM demodulator changes the number of time samples
(removes cyclic-prefix), use dlnetwork for the decoder network.

for idxOFDMDemod = idxOFDMLayer+1:length(trainedNet.Layers)
 if isa(trainedNet.Layers(idxOFDMDemod), 'helperAEWOFDMDemodLayer')
 break
 end
end
firstLayerName = trainedNet.Layers(idxOFDMDemod).Name;
lgraph = addLayers(layerGraph(sequenceInputLayer(2,Name="rxin",MinLength=(Nfft+CPLength)*n/2)), ...
 trainedNet.Layers(idxOFDMDemod:end));
lgraph = connectLayers(lgraph,'rxin',firstLayerName);
lgraph = removeLayers(lgraph, 'classoutput');
rxNet = dlnetwork(lgraph);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-8

Use the plot object function of the trained network objects to show the layer graphs of the full
autoencoder, the encoder network, which is the transmitter, and the decoder network, which is the
receiver.

figure
tiledlayout(2,2)
nexttile([2 1])
plot(trainedNet)
title('Autoencoder')
nexttile
plot(txNet)
title('Encoder/Tx')
nexttile
plot(rxNet)
title('Decoder/Rx')

Compare BLER of OFDM-based Autoencoder and Conventional OFDM over AWGN Channel

Set up simulation parameters. The following parameters ensures the simulation runs in about one
minute while providing acceptable BLER results. Increase the SNR range and maximum number of
frames to get more reliable results for a wider range.

SNRVec = 0:2:8;
symbolsPerFrame = Nfft;
signalPower = 1;

Generate random integers in the [0 M-1] range that represents k random information bits. Encode
these information bits into complex symbols with helperAEWOFDMEncode function. The

 OFDM Autoencoder for Wireless Communications

4-9

helperAEWOFDMEncode function runs the encoder part of the autoencoder then maps the real
valued x vector into a complex valued xc vector such that the odd and even elements are mapped into
the in-phase and the quadrature component of a complex symbol, respectively, where
xc = x(1:2:end) + jx(2:2:end). In other words, treat the x array as an interleaved complex array.

Pass the complex symbols through an AWGN channel. Decode the channel impaired complex symbols
with the helperAEWOFDMDecode function. The following code runs the simulation for each SNR
point for at least 100 block errors or at most 2000 frames. If Parallel Computing Toolbox™ is installed
and a license is available, uncomment the parfor line to run the simulations on a parallel pool.

minNumErrors = 100;
maxNumFrames = 1000;
M = 2^k;
BLER = zeros(length(SNRVec),2);
t = tic;
%parfor snrIdx = 1:length(SNRVec)
for snrIdx = 1:length(SNRVec)
 SNR = SNRVec(snrIdx);
 disp("Simulating for SNR = " + SNR)

 numBlockErrors = 0;
 numConvSymbolErrors = 0;
 frameCnt = 0;
 while (numBlockErrors < minNumErrors) ...
 && (frameCnt < maxNumFrames)
 d = randi([0 M-1],symbolsPerFrame,1); % Random information symbols
 % Run AE Tx
 x = helperAEWOFDMEncode(d,txNet); % Encoder
 % Run Coded OFDM TX
 coded = repelem(d,round(n/k)); % Simple repetition code
 xqamCoded = qammod(coded,M,UnitAveragePower=true);
 xConvCoded = sqrt(Nfft) * ofdmmod(reshape(xqamCoded,round(n/k),[])',Nfft,CPLength);
 % Put both through the same channel
 y = awgn(x,SNR,signalPower);
 yConvCoded = awgn(xConvCoded,SNR,signalPower);
 % Run AE Rx
 dHat = helperAEWOFDMDecode(y,rxNet); % Decoder
 % Run Coded OFDM Rx
 xqamHatCoded = ofdmdemod(yConvCoded,Nfft,CPLength);
 dConvHatCoded = qamdemod(xqamHatCoded',M,UnitAveragePower=true);
 dConvDecoded = mode(dConvHatCoded,1)';
 % Compute and contrast error rate
 numBlockErrors = numBlockErrors + sum(d ~= dHat);
 numConvSymbolErrors = numConvSymbolErrors + sum(d ~= dConvDecoded);
 frameCnt = frameCnt + 1;
 end
 BLER(snrIdx,:) = [numBlockErrors numConvSymbolErrors] ...
 ./ (frameCnt*symbolsPerFrame);
end

Simulating for SNR = 0
Simulating for SNR = 2
Simulating for SNR = 4
Simulating for SNR = 6
Simulating for SNR = 8

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-10

https://www.mathworks.com/products/parallel-computing.html

et = seconds(toc(t));
et.Format = 'mm:ss.SSS';
disp("Total simulation time: " + string(et))

Total simulation time: 01:35.237

Compare the results with that of an uncoded QPSK system with block length n = 6. For this n value,
the autoencoder can get more coding gain than a simple repetition code. Also, it provides about 5.5
dB gain as compared to an uncoded QPSK system with block length 6.

figure
EbNoVec = convertSNR([SNRVec 10],"snr","ebno",BitsPerSymbol=k);
semilogy(SNRVec,BLER,'-o')
hold on
% Calculate uncoded block error rate
pskBLER = 1-(1-berawgn(EbNoVec,'psk',2^k,'nondiff')).^n;
semilogy([SNRVec 10],pskBLER,'--x')
hold off
ylim([1e-4 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend(sprintf('AE-OFDM (%d,%d)',n,k),sprintf('Conv-OFDM (%d,%d)',n,k),sprintf('QPSK (%d,%d)',n,k))

Conclusions and Further Exploration

The BLER results show that by inserting the expert knowledge in the form of OFDM modulation and
demodulation to the neural network, an OFDM-based autoencoder can be trained. By allowing for

 OFDM Autoencoder for Wireless Communications

4-11

multiple channel uses per input symbol (n > k), the autoencoder can learn to obtain coding gain
better than the simple repetition codes.

Change n, k, Nf f t, CPLength, and normalization to train different autoencoders. Try different training
SNR values to optimize the training performance. See the help for the
helperAEWTrainOFDMAutoencoder function and the helperAEWOFDMAutoencoderBLER function.

The results are obtained using the following default settings for training and BLER simulations:

trainParams.Plots = 'none';
trainParams.Verbose = true;
trainParams.MaxEpochs = 10;
trainParams.InitialLearnRate = 0.08;
trainParams.LearnRateSchedule = 'piecewise';
trainParams.LearnRateDropPeriod = 5;
trainParams.LearnRateDropFactor = 0.1;
trainParams.SequenceLength = Nfft;

simParams.SNRVec = 0:2:12;
simParams.MinNumErrors = 100;
simParams.MaxNumFrames = 3000;
simParams.NumSymbolsPerFrame = Nfft;
simParams.SignalPower = 1;

Vary these parameters to train different autoencoders and test their BLER performance. Experiment
with different n, k, normalization, Nf f t and SNR values.

List of Helper Functions

• helperAEWOFDMAWGNLayer.m
• helperAEWOFDMNormalizationLayer.m
• helperAEWOFDMEncode.m
• helperAEWOFDMDecode.m
• helperAEWTrainOFDMAutoencoder.m
• helperAEWOFDMAutoencoderBLER.m

References

[1] T. O’Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," in IEEE
Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, Dec. 2017,
doi: 10.1109/TCCN.2017.2758370.

[2] A. Felix, S. Cammerer, S. Dörner, J. Hoydis and S. Ten Brink, "OFDM-Autoencoder for End-to-End
Learning of Communications Systems," 2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2018, pp. 1-5, doi: 10.1109/SPAWC.2018.8445920.

See Also
ofdmmod | ofdmdemod | classificationLayer | sequenceInputLayer |
fullyConnectedLayer | reluLayer | softmaxLayer

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-12

More About
• “Autoencoders for Wireless Communications” on page 4-134
• “CSI Feedback with Autoencoders” on page 4-21
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 OFDM Autoencoder for Wireless Communications

4-13

Train DQN Agent for Beam Selection

This example shows how to train a deep Q-network (DQN) reinforcement learning agent to
accomplish the beam selection task in a 5G New Radio (NR) communications system. Instead of an
exhaustive beam search over all the beam pairs, the trained agent increases beam selection accuracy
by selecting the beam with highest signal strength while reducing the beam transition cost. When you
use an access network node (gNB) with four beams, simulation results in this example show the
trained agent selects beams with greater than 90% maximum possible signal strengths.

Introduction

To enable millimeter wave (mmWave) communications, beam management techniques must be used
due to the high pathloss and blockage experienced at high frequencies. Beam management is a set of
Layer 1 (physical layer) and Layer 2 (medium access control) procedures to establish and retain an
optimal beam pair (transmit beam and a corresponding receive beam) for good connectivity [1 on
page 4-19]. For examples of NR beam management procedures, see “NR SSB Beam Sweeping” (5G
Toolbox) and “NR Downlink Transmit-End Beam Refinement Using CSI-RS” (5G Toolbox).

This example considers beam selection procedures when a connection is established between the
user equipment (UE) and gNB. In 5G NR, the beam selection procedure for initial access consists of
beam sweeping, which requires exhaustive searches over all the beams on the transmitter and the
receiver sides, and then selection of the beam pair offering the strongest reference signal received
power (RSRP). Since mmWave communications require many antenna elements, implying many
beams, an exhaustive search over all beams becomes computationally expensive and increases the
initial access time.

To avoid repeatedly performing an exhaustive search and to reduce the communication overhead, this
example uses a reinforcement learning (RL) agent to perform beam selection using the GPS
coordinates of the receiver and the current beam angle while the UE moves around a track.

In this figure, the square represents the track that the UE (green circle) moves around, the red
triangle represents the location of the base station (gNB), the yellow squares represent the channel
scatterers, and the blue line represents the selected beam.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-14

For more information on DQN reinforcement learning agents, see “Deep Q-Network (DQN) Agents”
(Reinforcement Learning Toolbox).

Define Environment

To train a reinforcement learning agent, you must define the environment with which it will interact.
The reinforcement learning agent selects actions given observations. The goal of the reinforcement
learning algorithm is to find optimal actions that maximize the expected cumulative long-term reward
received from the environment during the task. For more information about reinforcement learning
agents, see “Reinforcement Learning Agents” (Reinforcement Learning Toolbox).

For the beam selection environment:

• The observations are represented by UE position information and the current beam selection.
• The actions are a selected beam out of four total beam angles from the gNB.
• The reward rt at time step t is given by:

rt = rrsrp + rθ
rrsrp = 0 . 9 × rsrp
rθ = − 0 . 1 × |θt− θt − 1 | .

rrsrp is a reward for the signal strength measured from the UE (rsrp) and rθ is a penalty for control
effort. θ is the beam angle in degrees.

 Train DQN Agent for Beam Selection

4-15

The environment is created from the RSRP data generated from in “Neural Network for Beam
Selection” (5G Toolbox). In the prerecorded data, receivers are randomly distributed on the perimeter
of a 6-meter square and configured with 16 beam pairs (four beams on each end, analog beamformed
with one RF chain). Using a MIMO scattering channel, the example considers 200 receiver locations
in the training set (nnBS_TrainingData.mat) and 100 receiver locations in the test sets
(nnBS_TestData.mat). The prerecorded data uses 2-D location coordinates.

The nnBS_TrainingData.mat file contains a matrix of receiver locations, locationMatTrain, and
an RSRP measurements of 16 beam pairs, rsrpMatTrain. Since receiver beam selection does not
significantly affect signal strength, you compute the mean RSRP for each base station antenna beam
for each UE location. Thus, the action space is four beam angles. You reorder the recorded data to
imitate the receiver moving clockwise around the base station.

To generate new training and test sets, set useSavedData to false. Be aware that regenerating
data can take up to a few hours.

% Set the random generator seed for reproducibility
rng(0)

useSavedData = true;
if useSavedData
 % Load data generated from Neural Network for Beam Selection example
 load nnBS_TrainingData
 load nnBS_TestData
 load nnBS_position
else
 % Generate data
 helperNNBSGenerateData(); %#ok
 position.posTX = prm.posTx;
 position.ScatPos = prm.ScatPos;
end
locationMat = locationMatTrain(1:4:end,:);

% Sort location in clockwise order
secLen = size(locationMat,1)/4;
[~,b1] = sort(locationMat(1:secLen,2));
[~,b2] = sort(locationMat(secLen+1:2*secLen,1));
[~,b3] = sort(locationMat(2*secLen+1:3*secLen,2),"descend");
[~,b4] = sort(locationMat(3*secLen+1:4*secLen,1),"descend");
idx = [b1;secLen+b2;2*secLen+b3;3*secLen+b4];

locationMat = locationMat(idx,:);

% Compute average RSRP for each gNB beam and sort in clockwise order
avgRsrpMatTrain = rsrpMatTrain/4; % prm.NRepeatSameLoc=4;
avgRsrpMatTrain = 100*avgRsrpMatTrain./max(avgRsrpMatTrain, [],"all");
avgRsrpMatTrain = avgRsrpMatTrain(:,:,idx);
avgRsrpMatTrain = mean(avgRsrpMatTrain,1);

% Angle rotation matrix: update for nBeams>4
txBeamAng = [-78,7,92,177];
rotAngleMat = [
 0 85 170 105
 85 0 85 170
 170 85 0 85
 105 170 85 0];
rotAngleMat = 100*rotAngleMat./max(rotAngleMat,[],"all");

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-16

% Create training environment using generated data
envTrain = BeamSelectEnv(locationMat,avgRsrpMatTrain,rotAngleMat,position);

The environment is defined in the BeamSelectEnv supporting class, which is created using the
rlCreateEnvTemplate class. BeamSelectEnv.m is located in this example folder. The reward and
penalty functions are defined within and are updated as the agent interacts with the environment.

Create Agent

A DQN agent approximates the long-term reward for the given observations and actions by using a
rlVectorQValueFunction (Reinforcement Learning Toolbox) critic. Vector Q-value function
approximators have observations as inputs and state-action values as outputs. Each output element
represents the expected cumulative long-term reward for taking the corresponding discrete action
from the state indicated by the observation inputs.

The example uses the default critic network structures for the given observation and action
specification.

obsInfo = getObservationInfo(envTrain);
actInfo = getActionInfo(envTrain);
agent = rlDQNAgent(obsInfo,actInfo);

View the critic neural network.

criticNetwork = getModel(getCritic(agent));
analyzeNetwork(criticNetwork)

To foster expoloration, the DQN agent in this example optimizes with a learning rate of 0.001 and an
epsilon decay factor of 0.0001. For a full list of DQN hyperparameters and their descriptions, see
rlDQNAgentOptions (Reinforcement Learning Toolbox).

Specify the agent hyperparameters for training.

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-3;
agent.AgentOptions.EpsilonGreedyExploration.EpsilonDecay = 1e-4;

Train Agent

To train the agent, first specify the training options using rlTrainingOptions (Reinforcement
Learning Toolbox). For this example, run each training session for at most 500 episodes, with each
episode lasting at most 200 time steps, corresponding to one full loop of the track.

trainOpts = rlTrainingOptions(...
 MaxEpisodes=500, ...
 MaxStepsPerEpisode=200, ... % training data size = 200
 StopTrainingCriteria="AverageSteps", ...
 StopTrainingValue=500, ...
 Plots="training-progress");

Train the agent using the train (Reinforcement Learning Toolbox) function. Training this agent is a
computationally intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;
if doTraining

 Train DQN Agent for Beam Selection

4-17

 trainingStats = train(agent,envTrain,trainOpts); %#ok
else
 load("nnBS_RLAgent.mat")
end

This figure shows the progression of the training. You can expect different results due to randomness
inherent to the training process.

Simulate Trained Agent

To validate the trained agent, rfirst set up a test environment with UE locations that the agent has not
seen in the training process.

locationMat = locationMatTest(1:4:end,:);

% Sort location in clockwise order
secLen = size(locationMat,1)/4;
[~,b1] = sort(locationMat(1:secLen,2));
[~,b2] = sort(locationMat(secLen+1:2*secLen,1));
[~,b3] = sort(locationMat(2*secLen+1:3*secLen,2),"descend");
[~,b4] = sort(locationMat(3*secLen+1:4*secLen,1),"descend");
idx = [b1;secLen+b2;2*secLen+b3;3*secLen+b4];

locationMat = locationMat(idx,:);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-18

% Compute average RSRP
avgRsrpMatTest = rsrpMatTest/4; % 4 = prm.NRepeatSameLoc;
avgRsrpMatTest = 100*avgRsrpMatTest./max(avgRsrpMatTest, [],"all");
avgRsrpMatTest = avgRsrpMatTest(:,:,idx);
avgRsrpMatTest = mean(avgRsrpMatTest,1);

% Create test environment
envTest = BeamSelectEnv(locationMat,avgRsrpMatTest,rotAngleMat,position);

Simulate the environment with the trained agent. For more information on agent simulation, see
rlSimulationOptions (Reinforcement Learning Toolbox) and sim (Reinforcement Learning
Toolbox).

plot(envTest)
sim(envTest,agent,rlSimulationOptions("MaxSteps",100))

maxPosibleRsrp = sum(max(squeeze(avgRsrpMatTest)));
rsrpSim = envTest.EpisodeRsrp;
disp("Agent RSRP/Maximum RSRP = " + rsrpSim/maxPosibleRsrp*100 +"%")

Agent RSRP/Maximum RSRP = 94.9399%

References

[1] 3GPP TR 38.802. "Study on New Radio Access Technology Physical Layer Aspects." 3rd
Generation Partnership Project; Technical Specification Group Radio Access Network.

 Train DQN Agent for Beam Selection

4-19

[2] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second
edition. Cambridge, MA: MIT Press, 2020.

See Also

More About
• “Neural Network for Beam Selection” (5G Toolbox)
• “What Is Reinforcement Learning?” (Reinforcement Learning Toolbox)
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-20

CSI Feedback with Autoencoders

This example shows how to use an autoencoder neural network to compress downlink channel state
information (CSI) over a clustered delay line (CDL) channel. CSI feedback is in the form of a raw
channel estimate array.

Introduction

In conventional 5G radio networks, CSI parameters are quantities related to the state of a channel
that are extracted from the channel estimate array. The CSI feedback includes several parameters,
such as the Channel Quality Indication (CQI), the precoding matrix indices (PMI) with different
codebook sets, and the rank indicator (RI). The UE uses the CSI reference signal (CSI-RS) to measure
and compute the CSI parameters. The user equipment (UE) reports CSI parameters to the access
network node (gNB) as feedback. Upon receiving the CSI parameters, the gNB schedules downlink
data transmissions with attributes such as modulation scheme, code rate, number of transmission
layers, and MIMO precoding. This figure shows an overview of a CSI-RS transmission, CSI feedback,
and the transmission of downlink data that is scheduled based on the CSI parameters.

The UE processes the channel estimate to reduce the amount of CSI feedback data. As an alternative
approach, the UE compresses and feeds back the channel estimate array. After receipt, the gNB
decompresses and processes the channel estimate to determine downlink data link parameters. The
compression and decompression can be achieved using an autoencoder neural network [1 on page 4-
48, 2 on page 4-48]. This approach eliminates the use of existing quantized codebook and can
improve overall system performance.

This example uses a 5G downlink channel with these system parameters.

txAntennaSize = [2 2 2 1 1]; % rows, columns, polarizations, panels
rxAntennaSize = [2 1 1 1 1]; % rows, columns, polarizations, panels

 CSI Feedback with Autoencoders

4-21

rmsDelaySpread = 300e-9; % s
maxDoppler = 5; % Hz
nSizeGrid = 52; % Number resource blocks (RB)
 % 12 subcarriers per RB
subcarrierSpacing = 15; % 15, 30, 60, 120 kHz
numTrainingChEst = 15000;

% Carrier definition
carrier = nrCarrierConfig;
carrier.NSizeGrid = nSizeGrid;
carrier.SubcarrierSpacing = subcarrierSpacing

carrier =
 nrCarrierConfig with properties:

 NCellID: 1
 SubcarrierSpacing: 15
 CyclicPrefix: 'normal'
 NSizeGrid: 52
 NStartGrid: 0
 NSlot: 0
 NFrame: 0

 Read-only properties:
 SymbolsPerSlot: 14
 SlotsPerSubframe: 1
 SlotsPerFrame: 10

autoEncOpt.NumSubcarriers = carrier.NSizeGrid*12;
autoEncOpt.NumSymbols = carrier.SymbolsPerSlot;
autoEncOpt.NumTxAntennas = prod(txAntennaSize);
autoEncOpt.NumRxAntennas = prod(rxAntennaSize);

Generate and Preprocess Data

The first step of designing an AI-based system is to prepare training and testing data. For this
example, generate simulated channel estimates and preprocess the data. Use 5G Toolbox™ functions
to configure a CDL-C channel.

waveInfo = nrOFDMInfo(carrier);
samplesPerSlot = ...
 sum(waveInfo.SymbolLengths(1:waveInfo.SymbolsPerSlot));

channel = nrCDLChannel;
channel.DelayProfile = 'CDL-C';
channel.DelaySpread = rmsDelaySpread; % s
channel.MaximumDopplerShift = maxDoppler; % Hz
channel.RandomStream = "Global stream";
channel.TransmitAntennaArray.Size = txAntennaSize;
channel.ReceiveAntennaArray.Size = rxAntennaSize;
channel.ChannelFiltering = false; % No filtering for
 % perfect estimate
channel.NumTimeSamples = samplesPerSlot; % 1 slot worth of samples
channel.SampleRate = waveInfo.SampleRate;

Simulate Channel

Run the channel and get the perfect channel estimate, Hest.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-22

https://www.mathworks.com/products/5g.html

[pathGains,sampleTimes] = channel();
pathFilters = getPathFilters(channel);
offset = nrPerfectTimingEstimate(pathGains,pathFilters);
Hest = nrPerfectChannelEstimate(carrier,pathGains,pathFilters, ...
 offset,sampleTimes);

The channel estimate matrix is an Nsubcarriers Nsymbols Nrx Ntx array for each slot.

[nSub,nSym,nRx,nTx] = size(Hest)

nSub = 624

nSym = 14

nRx = 2

nTx = 8

Plot the channel response. The upper left plot shows the channel frequency response as a function of
time (symbols) for receive antenna 1 and transmit antenna 1. The lower left plot shows the channel
frequency response as a function of transmit antennas for symbol 1 and receive antenna 1. The upper
right plot shows the channel frequency response for all receive antennas for symbol 1 and transmit
antenna 1. The lower right plot shows the change in channel magnitude response as a function of
transmit antennas for all receive antennas for subcarrier 400 and symbol 1.

plotChannelResponse(Hest)

 CSI Feedback with Autoencoders

4-23

Preprocess Channel Estimate

Preprocess the channel estimate to reduce the size and convert it to a real-valued array. This figure
shows the channel estimate reduction preprocess.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-24

Assume that the channel coherence time is much larger than the slot time. Average the channel
estimate over a slot and obtain a Nsubcarriers 1 Nrx Ntx array.

Hmean = mean(Hest,2);

To enable operation on subcarriers and Tx antennas, move the Tx and Rx antenna dimensions to the
second and third dimensions, respectively.

Hmean = permute(Hmean,[1 4 3 2]);

To obtain the delay-angle representation of the channel, apply a 2-D discrete Fourier transform (DFT)
over subcarriers and Tx antennas for each Rx antenna and slot. To demonstrate the workflow and
reduce runtime, this subsection processes Rx channel 1 only.

Hdft2 = fft2(Hmean(:,:,1));

Since the multipath delay in the channel is limited, truncate the delay dimension to remove values
that do not carry information. The sampling period on the delay dimension is
Tdelay = 1/(Nsubcarriers * Fss), where Fss is subcarrier spacing. The expected RMS delay spread in
delay samples is τRMS/Tdelay, where τRMS is the RMS delay spread of the channel in seconds.

Tdelay = 1/(autoEncOpt.NumSubcarriers*carrier.SubcarrierSpacing*1e3);
rmsTauSamples = channel.DelaySpread / Tdelay;
maxTruncationFactor = floor(autoEncOpt.NumSubcarriers / rmsTauSamples);

Truncate the channel estimate to an even number of samples that is 10 times the expected RMS delay
spread. Increasing the truncationFactor value can decrease the performance loss due to
preprocessing. But, doing so increases the neural network complexity, number of required training

 CSI Feedback with Autoencoders

4-25

data points, and training time. A neural network with more learnable parameters might not converge
to a better solution.

truncationFactor = ;
maxDelay = round((channel.DelaySpread/Tdelay)*truncationFactor/2)*2

maxDelay = 28

autoEncOpt.MaxDelay = maxDelay;

Calculate the truncation indices and truncate the channel estimate.

midPoint = floor(nSub/2);
lowerEdge = midPoint - (nSub-maxDelay)/2 + 1;
upperEdge = midPoint + (nSub-maxDelay)/2;
Htemp = Hdft2([1:lowerEdge-1 upperEdge+1:end],:);

To get back to the subcarriers-Tx antennas domain, apply a 2-D inverse discrete Fourier transform
(IDFT) to the truncated array [2 on page 4-48]. This process effectively decimates the channel
estimate in the subcarrier axis.

Htrunc = ifft2(Htemp);

Separate the real and imaginary parts of the channel estimate to obtain a Ndelay Ntx 2 array.

HtruncReal = zeros(maxDelay,nTx,2);
HtruncReal(:,:,1) = real(Htrunc);
HtruncReal(:,:,2) = imag(Htrunc); %#ok<NASGU>

Plot the channel estimate signal through the preprocessing steps. Images are scaled to help
visualization.

plotPreprocessingSteps(Hmean(:,:,1),Hdft2,Htemp,Htrunc,nSub,nTx, ...
 maxDelay)

Prepare Data in Bulk

The helperCSINetTrainingData helper function generates numTrainingChEst of preprocessed
Ndelay Ntx 2 channel estimates by using the process described in this section. The function saves

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-26

each Ndelay Ntx 2 channel estimate as an individual file in the dataDir with the prefix of
trainingDataFilePrefix. If Parallel Computing Toolbox™ is available,
helperCSINetTrainingData function uses parfor to parallelize data generation. Data generation
takes less than three minutes on a PC with Intel® Xeon® W-2133 CPU @ 3.60GHz and running in
parallel on six workers.

dataDir = fullfile(exRoot(),"Data");
trainingDataFilePrefix = "nr_channel_est";
if validateTrainingFiles(dataDir,trainingDataFilePrefix, ...
 numTrainingChEst,autoEncOpt,channel,carrier) == false
 disp("Starting training data generation")
 tic
 autoEncOpt.Normalization = false; % Do not normalize data yet

 helperCSINetTrainingData(dataDir,trainingDataFilePrefix, ...
 numTrainingChEst,carrier,channel,autoEncOpt);
 t = seconds(toc);
 t.Format = "hh:mm:ss";
 disp(string(t) + " - Finished training data generation")
end

Starting training data generation

6 workers running
00:00:12 - 8% Completed
00:00:23 - 16% Completed
00:00:35 - 24% Completed
00:00:46 - 32% Completed
00:00:58 - 40% Completed
00:01:09 - 48% Completed
00:01:21 - 56% Completed
00:01:32 - 64% Completed
00:01:44 - 72% Completed
00:01:56 - 80% Completed
00:02:07 - 88% Completed
00:02:19 - 96% Completed

00:02:26 - Finished training data generation

Create a signalDatastore object to access the data. The signal datastore uses individual files for
each data point.

sds = signalDatastore(...
 fullfile(dataDir,"processed",trainingDataFilePrefix+"_*"));

Load data into memory, calculate the mean value and standard deviation, and then use the mean and
standard deviation values to normalize the data.

HtruncRealCell = readall(sds);
HtruncReal = cat(4,HtruncRealCell{:});
meanVal = mean(HtruncReal,'all')

meanVal = single
 -0.0236

stdVal = std(HtruncReal,[],'all')

stdVal = single
 16.0657

 CSI Feedback with Autoencoders

4-27

https://www.mathworks.com/products/parallel-computing.html

Separate the data into training, validation, and test sets. Also, normalize the data to achieve zero
mean and a target standard deviation of 0.0212, which restricts most of the data to the range of [-0.5
0.5].

N = size(HtruncReal, 4);
numTrain = floor(N*10/15)

numTrain = 10000

numVal = floor(N*3/15)

numVal = 3000

numTest = floor(N*2/15)

numTest = 2000

targetStd = 0.0212;
HTReal = (HtruncReal(:,:,:,1:numTrain)-meanVal) ...
 /stdVal*targetStd+0.5;
HVReal = (HtruncReal(:,:,:,numTrain+(1:numVal))-meanVal) ...
 /stdVal*targetStd+0.5;
HTestReal = (HtruncReal(:,:,:,numTrain+numVal+(1:numTest))-meanVal) ...
 /stdVal*targetStd+0.5;
autoEncOpt.MeanVal = meanVal;
autoEncOpt.StdValue = stdVal;
autoEncOpt.TargetSTDValue = targetStd; %#ok<STRNU>

Define and Train Neural Network Model

The second step of designing an AI-based system is to define and train the neural network model.

Define Neural Network

This example uses a modified version of the autoencoder neural network proposed in [1 on page 4-
48].

inputSize = [maxDelay nTx 2]; % Third dimension is real and imaginary parts
nLinear = prod(inputSize);
nEncoded = 64;

autoencoderLGraph = layerGraph([...
 % Encoder
 imageInputLayer(inputSize,"Name","Htrunc", ...
 "Normalization","none","Name","Enc_Input")

 convolution2dLayer([3 3],2,"Padding","same","Name","Enc_Conv")
 batchNormalizationLayer("Epsilon",0.001,"MeanDecay",0.99, ...
 "VarianceDecay",0.99,"Name","Enc_BN")
 leakyReluLayer(0.3,"Name","Enc_leakyRelu")

 flattenLayer("Name","Enc_flatten")

 fullyConnectedLayer(nEncoded,"Name","Enc_FC")

 sigmoidLayer("Name","Enc_Sigmoid")

 % Decoder
 fullyConnectedLayer(nLinear,"Name","Dec_FC")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-28

 functionLayer(@(x)dlarray(reshape(x,maxDelay,nTx,2,[]),'SSCB'), ...
 "Formattable",true,"Acceleratable",true,"Name","Dec_Reshape")
]);

autoencoderLGraph = ...
 helperCSINetAddResidualLayers(autoencoderLGraph, "Dec_Reshape");

autoencoderLGraph = addLayers(autoencoderLGraph, ...
 [convolution2dLayer([3 3],2,"Padding","same","Name","Dec_Conv") ...
 sigmoidLayer("Name","Dec_Sigmoid") ...
 regressionLayer("Name","Dec_Output")]);
autoencoderLGraph = ...
 connectLayers(autoencoderLGraph,"leakyRelu_2_3","Dec_Conv");

figure
plot(autoencoderLGraph)
title('CSI Compression Autoencoder')

 CSI Feedback with Autoencoders

4-29

Train Neural Network

Set the training options for the autoencoder neural network and train the network using the
trainNetwork (Deep Learning Toolbox) function. Training takes less than 15 minutes on an AMD
EPYC 7262 3.2 GHz 8C/16T with 8 NVIDIA RTX A5000 GPUs with ExecutionEnvironment set to
'multi-gpu'. Set trainNow to false to load the pretrained network. Note that the saved network
works for the following settings. If you change any of these settings, set trainNow to true.

txAntennaSize = [2 2 2 1 1]; % rows, columns, polarizations, panels
rxAntennaSize = [2 1 1 1 1]; % rows, columns, polarizations, panels
rmsDelaySpread = 300e-9; % s
maxDoppler = 5; % Hz
nSizeGrid = 52; % Number resource blocks (RB)
 % 12 subcarriers per RB
subcarrierSpacing = 15;

trainNow = ;

miniBatchSize = 1000;
options = trainingOptions("adam", ...
 InitialLearnRate=0.0074, ...
 LearnRateSchedule="piecewise", ...
 LearnRateDropPeriod=112, ...
 LearnRateDropFactor=0.6085, ...
 Epsilon=1e-7, ...
 MaxEpochs=1000, ...
 MiniBatchSize=miniBatchSize, ...
 Shuffle="every-epoch", ...
 ValidationData={HVReal,HVReal}, ...
 ValidationFrequency=20, ...
 Verbose=false, ...
 ValidationPatience=20, ...
 OutputNetwork="best-validation-loss", ...
 ExecutionEnvironment="auto", ...
 Plots='training-progress') %#ok<NASGU>

options =
 TrainingOptionsADAM with properties:

 GradientDecayFactor: 0.9000
 SquaredGradientDecayFactor: 0.9990
 Epsilon: 1.0000e-07
 InitialLearnRate: 0.0074
 LearnRateSchedule: 'piecewise'
 LearnRateDropFactor: 0.6085
 LearnRateDropPeriod: 112
 L2Regularization: 1.0000e-04
 GradientThresholdMethod: 'l2norm'
 GradientThreshold: Inf
 MaxEpochs: 1000
 MiniBatchSize: 1000
 Verbose: 0
 VerboseFrequency: 50
 ValidationData: {[28×8×2×3000 single] [28×8×2×3000 single]}
 ValidationFrequency: 20
 ValidationPatience: 20
 Shuffle: 'every-epoch'

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-30

 CheckpointPath: ''
 CheckpointFrequency: 1
 CheckpointFrequencyUnit: 'epoch'
 ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFcn: []
 Plots: 'training-progress'
 SequenceLength: 'longest'
 SequencePaddingValue: 0
 SequencePaddingDirection: 'right'
 DispatchInBackground: 0
 ResetInputNormalization: 1
 BatchNormalizationStatistics: 'population'
 OutputNetwork: 'best-validation-loss'

if trainNow
 [net,trainInfo] = ...
 trainNetwork(HTReal,HTReal,autoencoderLGraph,options); %#ok<UNRCH>
 save("csiTrainedNetwork_" ...
 + string(datetime("now","Format","dd_MM_HH_mm")), ...
 'net','trainInfo','options','autoEncOpt')
else
 helperCSINetDownloadData()
 autoEncOptCached = autoEncOpt;
 load("csiTrainedNetwork",'net','trainInfo','options','autoEncOpt')
 if autoEncOpt.NumSubcarriers ~= autoEncOptCached.NumSubcarriers ...
 || autoEncOpt.NumSymbols ~= autoEncOptCached.NumSymbols ...
 || autoEncOpt.NumTxAntennas ~= autoEncOptCached.NumTxAntennas ...
 || autoEncOpt.NumRxAntennas ~= autoEncOptCached.NumRxAntennas ...
 || autoEncOpt.MaxDelay ~= autoEncOptCached.MaxDelay
 error("CSIExample:Missmatch", ...
 "Saved network does not match settings. Set trainNow to true.")
 end
end

Files already exist. Skipping download and extract.

Test Trained Network

Use the predict (Deep Learning Toolbox) function to process the test data.

HTestRealHat = predict(net,HTestReal);

Calculate the correlation and normalized mean squared error (NMSE) between the input and output
of the autoencoder network. The correlation is defined as

ρ = E 1
N ∑

n = 1

N |hn
Hhn|

‖hn‖2‖hn‖2

where hn is the channel estimate at the input of the autoencoder and hn is the channel estimate at the
output of the autoencoder. NMSE is defined as

NMSE = E
‖H − H‖2

2

‖H‖2
2

 CSI Feedback with Autoencoders

4-31

where H is the channel estimate at the input of the autoencoder and H is the channel estimate at the
output of the autoencoder.

rho = zeros(numTest,1);
nmse = zeros(numTest,1);
for n=1:numTest
 in = HTestReal(:,:,1,n) + 1i*(HTestReal(:,:,2,n));
 out = HTestRealHat(:,:,1,n) + 1i*(HTestRealHat(:,:,2,n));

 % Calculate correlation
 n1 = sqrt(sum(conj(in).*in,'all'));
 n2 = sqrt(sum(conj(out).*out,'all'));
 aa = abs(sum(conj(in).*out,'all'));
 rho(n) = aa / (n1*n2);

 % Calculate NMSE
 mse = mean(abs(in-out).^2,'all');
 nmse(n) = 10*log10(mse / mean(abs(in).^2,'all'));
end

figure
tiledlayout(2,1)
nexttile
histogram(rho,"Normalization","probability")
grid on
title(sprintf("Autoencoder Correlation (Mean \\rho = %1.5f)", ...
 mean(rho)))
xlabel("\rho"); ylabel("PDF")
nexttile
histogram(nmse,"Normalization","probability")
grid on
title(sprintf("Autoencoder NMSE (Mean NMSE = %1.2f dB)",mean(nmse)))
xlabel("NMSE (dB)"); ylabel("PDF")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-32

End-to-End CSI Feedback System

This figure shows the end-to-end processing of channel estimates for CSI feedback. The UE uses the
CSI-RS signal to estimate the channel response for one slot, Hest. The preprocessed channel estimate,
Htr, is encoded by using the encoder portion of the autoencoder to produce a 1-by-Nenc compressed
array. The compressed array is decompressed by the decoder portion of the autoencoder to obtain
Htr. Postprocessing Htr produces Hest.

 CSI Feedback with Autoencoders

4-33

To obtain the encoded array, split the autoencoder into two parts: the encoder network and the
decoder network.

[encNet,decNet] = helperCSINetSplitEncoderDecoder(net,"Enc_Sigmoid");
plotNetwork(net,encNet,decNet)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-34

Generate channel estimates.

nSlots = 100;
Hest = helperCSINetChannelEstimate(nSlots,carrier,channel);

Encode and decode the channel estimates with Normalization set to true.

autoEncOpt.Normalization = true;
codeword = helperCSINetEncode(encNet, Hest, autoEncOpt);
Hhat = helperCSINetDecode(decNet, codeword, autoEncOpt);

Calculate the correlation and NMSE for the end-to-end CSI feedback system.

 CSI Feedback with Autoencoders

4-35

H = squeeze(mean(Hest,2));
rhoE2E = zeros(nRx,nSlots);
nmseE2E = zeros(nRx,nSlots);
for rx=1:nRx
 for n=1:nSlots
 out = Hhat(:,rx,:,n);
 in = H(:,rx,:,n);
 rhoE2E(rx,n) = helperCSINetCorrelation(in,out);
 nmseE2E(rx,n) = helperNMSE(in,out);
 end
end
figure
tiledlayout(2,1)
nexttile
histogram(rhoE2E,"Normalization","probability")
grid on
title(sprintf("End-to-End Correlation (Mean \\rho = %1.5f)", ...
 mean(rhoE2E,'all')))
xlabel("\rho"); ylabel("PDF")
nexttile
histogram(nmseE2E,"Normalization","probability")
grid on
title(sprintf("End-to-End NMSE (Mean NMSE = %1.2f dB)", ...
 mean(nmseE2E,'all')))
xlabel("NMSE (dB)"); ylabel("PDF")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-36

Effect of Quantized Codewords

Practical systems require quantizing the encoded codeword by using a small number of bits. Simulate
the effect of quantization across the range of [2, 10] bits. The results show that 6-bits is enough to
closely approximate the single-precision performance.

 CSI Feedback with Autoencoders

4-37

maxVal = 1;
minVal = -1;
idxBits = 1;
nBitsVec = 2:10;
rhoQ = zeros(nRx,nSlots,length(nBitsVec));
nmseQ = zeros(nRx,nSlots,length(nBitsVec));
for numBits = nBitsVec
 disp("Running for " + numBits + " bit quantization")

 % Quantize between 0:2^n-1 to get bits
 qCodeword = uencode(double(codeword*2-1), numBits);

 % Get back the floating point, quantized numbers
 codewordRx = (single(udecode(qCodeword,numBits))+1)/2;
 Hhat = helperCSINetDecode(decNet, codewordRx, autoEncOpt);
 H = squeeze(mean(Hest,2));
 for rx=1:nRx
 for n=1:nSlots
 out = Hhat(:,rx,:,n);
 in = H(:,rx,:,n);
 rhoQ(rx,n,idxBits) = helperCSINetCorrelation(in,out);
 nmseQ(rx,n,idxBits) = helperNMSE(in,out);
 end
 end
 idxBits = idxBits + 1;
end

Running for 2 bit quantization
Running for 3 bit quantization
Running for 4 bit quantization
Running for 5 bit quantization
Running for 6 bit quantization
Running for 7 bit quantization
Running for 8 bit quantization

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-38

Running for 9 bit quantization
Running for 10 bit quantization

figure
tiledlayout(2,1)
nexttile
plot(nBitsVec,squeeze(mean(rhoQ,[1 2])),'*-')
title("Correlation (Codeword-" + size(codeword,3) + ")")
xlabel("Number of Quantization Bits"); ylabel("\rho")
grid on
nexttile
plot(nBitsVec,squeeze(mean(nmseQ,[1 2])),'*-')
title("NMSE (Codeword-" + size(codeword,3) + ")")
xlabel("Number of Quantization Bits"); ylabel("NMSE (dB)")
grid on

Further Exploration

The autoencoder is able to compress a [624 8] single-precision complex channel estimate array into a
[64 1] single-precision array with a mean correlation factor of 0.99 and an NMSE of –16 dB. Using 6-

 CSI Feedback with Autoencoders

4-39

bit quantization requires only 384 bits of CSI feedback data, which equates to a compression ratio of
approximately 800:1.

display("Compression ratio is " + (624*8*32*2)/(64*6) + ":" + 1)

 "Compression ratio is 832:1"

Investigate the effect of truncationFactor on the system performance. Vary the 5G system
parameters, channel parameters, and number of encoded symbols and then find the optimum values
for the defined channel.

The “NR PDSCH Throughput Using Channel State Information Feedback” (5G Toolbox) example
shows how to use channel state information (CSI) feedback to adjust the physical downlink shared
channel (PDSCH) parameters and measure throughput. Replace the CSI feedback algorithm with the
CSI compression autoencoder and compare performance.

Helper Functions

Explore the helper functions to see the detailed implementation of the system.

Training Data Generation

helperCSINetChannelEstimate

helperCSINetTrainingData

Network Definition and Manipulation

helperCSINetLayerGraph

helperCSINetAddResidualLayers

helperCSINetSplitEncoderDecoder

CSI Processing

helperCSINetPreprocessChannelEstimate

helperCSINetPostprocessChannelEstimate

helperCSINetEncode

helperCSINetDecode

Performance Measurement

helperCSINetCorrelation

helperNMSE

Appendix: Optimize Hyperparameters with Experiment Manager

Use the Experiment Manager app to find the optimal parameters. CSITrainingProject.mlproj is
a preconfigured project. Extract the project.

if ~exist("CSITrainingProject","dir")
 projRoot = helperCSINetExtractProject();

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-40

else
 projRoot = fullfile(exRoot(),"CSITrainingProject");
end

To open the project, start the Experiment Manager app and open the following file.

disp(fullfile(".","CSITrainingProject","CSITrainingProject.prj"))

.\CSITrainingProject\CSITrainingProject.prj

The Optimize Hyperparameters experiment uses Bayesian optimization with hyperparameter search
ranges specified as in the following figure. The experiment setup function is CSIAutoEncNN_setup.
The custom metric function is NMSE.

 CSI Feedback with Autoencoders

4-41

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-42

The optimal parameters are 0.0074 for initial learning rate, 112 iterations for the learning rate drop
period, and 0.6085 for learning rate drop factor. After finding the optimal hyperparameters, train the
network with same parameters multiple times to find the best trained network. Increase the
maximum iterations by a factor of two.

 CSI Feedback with Autoencoders

4-43

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-44

The sixth trial produced the best NMSE. This example uses this trained network as the saved
network.

Configuring Batch Mode

When execution Mode is set to Batch Sequential or Batch Simultaneous, training data must
be accessible to the workers in a location defined by the dataDir variable in the Prepare Data in
Bulk section. Set dataDir to a network location that is accessible by the workers. For more
information, see “Offload Experiments as Batch Jobs to Cluster” (Deep Learning Toolbox).

Local Functions
function plotChannelResponse(Hest)
%plotChannelResponse Plot channel response

figure
tiledlayout(2,2)
nexttile
waterfall(abs(Hest(:,:,1,1))')
xlabel("Subcarriers");
ylabel("Symbols");
zlabel("Channel Magnitude")
view(15,30)
colormap("cool")
title("Rx=1, Tx=1")
nexttile
plot(squeeze(abs(Hest(:,1,:,1))))
grid on
xlabel("Subcarriers");
ylabel("Channel Magnitude")
legend("Rx 1", "Rx 2")
title("Symbol=1, Tx=1")
nexttile
waterfall(squeeze(abs(Hest(:,1,1,:)))')
view(-45,75)
grid on
xlabel("Subcarriers");
ylabel("Tx");
zlabel("Channel Magnitude")
title("Symbol=1, Rx=1")
nexttile
nSubCarriers = size(Hest,1);
subCarrier = randi(nSubCarriers);
plot(squeeze(abs(Hest(subCarrier,1,:,:)))')
grid on
xlabel("Tx");
ylabel("Channel Magnitude")
legend("Rx 1", "Rx 2")
title("Subcarrier=" + subCarrier + ", Symbol=1")

 CSI Feedback with Autoencoders

4-45

end

function valid = validateTrainingFiles(dataDir,filePrefix,expN, ...
 opt,channel,carrier)
%validateTrainingFiles Validate training data files
% V = validateTrainingFiles(DIR,PRE,N,OPT,CH,CR) checks the DIR directory
% for training data files with a prefix of PRE. It checks if there are
% N*OPT.NumRxAntennas files, channel configuration is same as CH, and
% carrier configuration is same as CR.

valid = true;
files = dir(fullfile(dataDir,filePrefix+"*"));
if isempty(files)
 valid = false;
 return
end
if exist(fullfile(dataDir,"info.mat"),"file")
 infoStr = load(fullfile(dataDir,"info.mat"));
 if ~isequal(get(infoStr.channel),get(channel)) ...
 || ~isequal(infoStr.carrier,carrier)
 valid = false;
 end
else
 valid = false;
end
if valid
 valid = (expN == (length(files)*opt.NumRxAntennas));
 % Check size of Hest in the files
 load(fullfile(files(1).folder,files(1).name),'H')
 if ~isequal(size(H),[opt.NumSubcarriers opt.NumSymbols ...
 opt.NumRxAntennas opt.NumTxAntennas])
 valid = false;
 end
end
if ~valid
 disp("Removing invalid data directory: " + files(1).folder)
 rmdir(files(1).folder,'s')
end
end

function plotNetwork(net,encNet,decNet)
%plotNetwork Plot autoencoder network
% plotNetwork(NET,ENC,DEC) plots the full autoencoder network together
% with encoder and decoder networks.
fig = figure;
t1 = tiledlayout(1,2,'TileSpacing','Compact');
t2 = tiledlayout(t1,1,1,'TileSpacing','Tight');
t3 = tiledlayout(t1,2,1,'TileSpacing','Tight');
t3.Layout.Tile = 2;
nexttile(t2)
plot(net)
title("Autoencoder")
nexttile(t3)
plot(encNet)
title("Encoder")
nexttile(t3)
plot(decNet)
title("Decoder")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-46

pos = fig.Position;
pos(3) = pos(3) + 200;
pos(4) = pos(4) + 300;
pos(2) = pos(2) - 300;
fig.Position = pos;
end

function plotPreprocessingSteps(Hmean,Hdft2,Htemp,Htrunc, ...
 nSub,nTx,maxDelay)
%plotPreprocessingSteps Plot preprocessing workflow

hfig = figure;
hfig.Position(3) = hfig.Position(3)*2;
subplot(2,5,[1 6])
himg = imagesc(abs(Hmean));
himg.Parent.YDir = "normal";
himg.Parent.Position(3) = 0.05;
himg.Parent.XTick=''; himg.Parent.YTick='';
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx));
ylabel(sprintf('Subcarriers\n(%d)',nSub'));
title("Measured")
subplot(2,5,[2 7])
himg = image(abs(Hdft2));
himg.Parent.YDir = "normal";
himg.Parent.Position(3) = 0.05;
himg.Parent.XTick=''; himg.Parent.YTick='';
title("2-D DFT")
xlabel(sprintf('Tx\nAngle\n(%d)',nTx));
ylabel(sprintf('Delay Samples\n(%d)',nSub'));
subplot(2,5,[3 8])
himg = image(abs(Htemp));
himg.Parent.YDir = "normal";
himg.Parent.Position(3) = 0.05;
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub;
himg.Parent.Position(2) = (1 - himg.Parent.Position(4)) / 2;
himg.Parent.XTick=''; himg.Parent.YTick='';
xlabel(sprintf('Tx\nAngle\n(%d)',nTx));
ylabel(sprintf('Delay Samples\n(%d)',maxDelay'));
title("Truncated")
subplot(2,5,[4 9])
himg = imagesc(abs(Htrunc));
himg.Parent.YDir = "normal";
himg.Parent.Position(3) = 0.05;
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub;
himg.Parent.Position(2) = (1 - himg.Parent.Position(4)) / 2;
himg.Parent.XTick=''; himg.Parent.YTick='';
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx));
ylabel(sprintf('Subcarriers\n(%d)',maxDelay'));
title("2-D IDFT")
subplot(2,5,5)
himg = imagesc(real(Htrunc));
himg.Parent.YDir = "normal";
himg.Parent.Position(3) = 0.05;
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub;
himg.Parent.Position(2) = himg.Parent.Position(2) + 0.18;
himg.Parent.XTick=''; himg.Parent.YTick='';
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx));
ylabel(sprintf('Subcarriers\n(%d)',maxDelay'));

 CSI Feedback with Autoencoders

4-47

title("Real")
subplot(2,5,10)
himg = imagesc(imag(Htrunc));
himg.Parent.YDir = "normal";
himg.Parent.Position(3) = 0.05;
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub;
himg.Parent.Position(2) = himg.Parent.Position(2) + 0.18;
himg.Parent.XTick=''; himg.Parent.YTick='';
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx));
ylabel(sprintf('Subcarriers\n(%d)',maxDelay'));
title("Imaginary")
end

function rootDir = exRoot()
%exRoot Example root directory
rootDir = fileparts(which("helperCSINetLayerGraph"));
end

References

[1] Wen, Chao-Kai, Wan-Ting Shih, and Shi Jin. “Deep Learning for Massive MIMO CSI Feedback.”
IEEE Wireless Communications Letters 7, no. 5 (October 2018): 748–51. https://doi.org/10.1109/
LWC.2018.2818160.

[2] Zimaglia, Elisa, Daniel G. Riviello, Roberto Garello, and Roberto Fantini. “A Novel Deep Learning
Approach to CSI Feedback Reporting for NR 5G Cellular Systems.” In 2020 IEEE Microwave Theory
and Techniques in Wireless Communications (MTTW), 47–52. Riga, Latvia: IEEE, 2020. https://
doi.org/10.1109/MTTW51045.2020.9245055.

See Also

More About
• “Neural Network for Beam Selection” on page 4-96
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-48

Modulation Classification by Using FPGA

This example shows how to deploy a pretrained convolutional neural network (CNN) for modulation
classification to the Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit. The pretrained
network is trained by using generated synthetic, channel-impaired waveforms. To train the
trainedNet network, see “Modulation Classification with Deep Learning” (Deep Learning Toolbox).

Prerequisites

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Communications Toolbox™
• Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit

Predict Modulation Type by Using CNN

The trained CNN in this example recognizes these eight digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• Quadrature phase shift keying (QPSK)
• 8-ary phase shift keying (8-PSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 64-ary quadrature amplitude modulation (64-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modulationTypes = categorical(["BPSK", "QPSK", "8PSK", ...
 "16QAM", "64QAM", "PAM4", "GFSK", "CPFSK", ...
 "B-FM", "DSB-AM", "SSB-AM"]);

Load the trained network.

load trainedModulationClassificationNetwork
trainedNet

trainedNet =
 SeriesNetwork with properties:

 Layers: [28×1 nnet.cnn.layer.Layer]
 InputNames: {'Input Layer'}
 OutputNames: {'Output'}

The trained CNN takes 1024 channel-impaired samples and predicts the modulation type of each
frame. Generate several PAM4 frames that have Rician multipath fading, center frequency and

 Modulation Classification by Using FPGA

4-49

sampling time drift, and AWGN. To generate synthetic signals to test the CNN, use the following
functions. Then use the CNN to predict the modulation type of the frames.

• randi: Generate random bits
• pammod (Communications Toolbox) PAM4-modulate the bits
• rcosdesign (Signal Processing Toolbox): Design a square-root raised cosine pulse shaping filter
• filter: Pulse shape the symbols
• comm.RicianChannel (Communications Toolbox): Apply Rician multipath channel
• comm.PhaseFrequencyOffset (Communications Toolbox): Apply phase and frequency shift due

to clock offset
• interp1: Apply timing drift due to clock offset
• awgn (Communications Toolbox): Add AWGN

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(123456)
% Random bits
d = randi([0 3], 1024, 1);
% PAM4 modulation
syms = pammod(d,4);
% Square-root raised cosine filter
filterCoeffs = rcosdesign(0.35,4,8);
tx = filter(filterCoeffs,1,upsample(syms,8));

% Channel
SNR = 30;
maxOffset = 5;
fc = 902e6;
fs = 200e3;
multipathChannel = comm.RicianChannel(...
 'SampleRate', fs, ...
 'PathDelays', [0 1.8 3.4] / 200e3, ...
 'AveragePathGains', [0 -2 -10], ...
 'KFactor', 4, ...
 'MaximumDopplerShift', 4);

frequencyShifter = comm.PhaseFrequencyOffset(...
 'SampleRate', fs);

% Apply an independent multipath channel
reset(multipathChannel)
outMultipathChan = multipathChannel(tx);

% Determine clock offset factor
clockOffset = (rand() * 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1e6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift
t = (0:length(tx)-1)' / fs;
newFs = fs * C;
tp = (0:length(tx)-1)' / newFs;

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-50

outTimeDrift = interp1(t, outFreqShifter, tp);

% Add noise
rx = awgn(outTimeDrift,SNR,0);

% Frame generation for classification
unknownFrames = helperModClassGetNNFrames(rx);

% Classification
[prediction1,score1] = classify(trainedNet,unknownFrames);

Return the classifier predictions, which are analogous to hard decisions. The network correctly
identifies the frames as PAM4 frames. For details on the generation of the modulated signals, see the
helperModClassGetModulator function.

The classifier also returns a vector of scores for each frame. The score corresponds to the probability
that each frame has the predicted modulation type. Plot the scores.

helperModClassPlotScores(score1,modulationTypes)

Waveform Generation for Training

Generate 10,000 frames for each modulation type, where 80% of the frames are used for training,
10% are used for validation and 10% are used for testing. Use the training and validation frames
during the network training phase. You obtain the final classification accuracy by using test frames.
Each frame is 1024 samples long and has a sample rate of 200 kHz. For digital modulation types,
eight samples represent a symbol. The network makes each decision based on single frames rather

 Modulation Classification by Using FPGA

4-51

than on multiple consecutive frames (as in video). Assume a center frequency of 902 MHz and 100
MHz for the digital and analog modulation types, respectively.

numFramesPerModType = 10000;
percentTrainingSamples = 80;
percentValidationSamples = 10;
percentTestSamples = 10;

sps = 8; % Samples per symbol
spf = 1024; % Samples per frame
symbolsPerFrame = spf / sps;
fs = 200e3; % Sample rate
fc = [902e6 100e6]; % Center frequencies

Create Channel Impairments

Pass each frame through a channel by using:

• AWGN
• Rician multipath fading
• Clock offset, resulting in center frequency offset and sampling time drift

Because the network in this example makes decisions based on single frames, each frame must pass
through an independent channel AWGN.

The channel adds AWGN by using an SNR of 30 dB. Implement the channel by using the awgn
(Communications Toolbox) function.

Rician Multipath

The channel passes the signals through a Rician multipath fading channel by using the
comm.RicianChannel (Communications Toolbox) System object. Assume a delay profile of [0 1.8
3.4] samples that have corresponding average path gains of [0 -2 -10] dB. The K-factor is 4 and the
maximum Doppler shift is 4 Hz, which is equivalent to a walking speed at 902 MHz. Implement the
channel by using the following settings.

Clock Offset

Clock offset occurs because of the inaccuracies of internal clock sources of transmitters and
receivers. Clock offset causes the center frequency, which is used to downconvert the signal to
baseband, and the digital-to-analog converter sampling rate to differ from theoretical values. The
channel simulator uses the clock offset factor C, expressed as C=1+Δclock106, where Δclock is the
clock offset. For each frame, the channel generates a random Δclock value from a uniformly
distributed set of values in the range [−maxΔclock maxΔclock], where maxΔclock is the maximum
clock offset. Clock offset is measured in parts per million (ppm). For this example, assume a maximum
clock offset of 5 ppm.

maxDeltaOff = 5;
deltaOff = (rand()*2*maxDeltaOff) - maxDeltaOff;
C = 1 + (deltaOff/1e6);

Frequency Offset

Subject each frame to a frequency offset based on clock offset factor C and the center frequency.
Implement the channel by using the comm.PhaseFrequencyOffset (Communications Toolbox).

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-52

Sampling Rate Offset

Subject each frame to a sampling rate offset based on clock offset factor C. Implement the channel by
using the interp1 function to resample the frame at the new rate of C×fs.

Combined Channel

To apply all three channel impairments to the frames, use the helperModClassTestChannel object.

channel = helperModClassTestChannel(...
 'SampleRate', fs, ...
 'SNR', SNR, ...
 'PathDelays', [0 1.8 3.4] / fs, ...
 'AveragePathGains', [0 -2 -10], ...
 'KFactor', 4, ...
 'MaximumDopplerShift', 4, ...
 'MaximumClockOffset', 5, ...
 'CenterFrequency', 902e6)

channel =
 helperModClassTestChannel with properties:

 SNR: 30
 CenterFrequency: 902000000
 SampleRate: 200000
 PathDelays: [0 9.0000e-06 1.7000e-05]
 AveragePathGains: [0 -2 -10]
 KFactor: 4
 MaximumDopplerShift: 4
 MaximumClockOffset: 5

You can view basic information about the channel by using the info object function.

chInfo = info(channel)

chInfo = struct with fields:
 ChannelDelay: 6
 MaximumFrequencyOffset: 4510
 MaximumSampleRateOffset: 1

Waveform Generation

Create a loop that generates channel-impaired frames for each modulation type and stores the frames
with their corresponding labels in MAT files. By saving the data into files, you do not have to
eliminate the need to generate the data every time you run this example. You can also share the data
more effectively.

Remove a random number of samples from the beginning of each frame to remove transients and to
make sure that the frames have a random starting point with respect to the symbol boundaries.

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(1235)
tic

numModulationTypes = length(modulationTypes);

 Modulation Classification by Using FPGA

4-53

channelInfo = info(channel);
transDelay = 50;
dataDirectory = fullfile(tempdir,"ModClassDataFiles");
disp("Data file directory is " + dataDirectory);

fileNameRoot = "frame";

% Check if data files exist
dataFilesExist = false;
if exist(dataDirectory,'dir')
 files = dir(fullfile(dataDirectory,sprintf("%s*",fileNameRoot)));
 if length(files) == numModulationTypes*numFramesPerModType
 dataFilesExist = true;
 end
end

if ~dataFilesExist
 disp("Generating data and saving in data files...")
 [success,msg,msgID] = mkdir(dataDirectory);
 if ~success
 error(msgID,msg)
 end
 for modType = 1:numModulationTypes
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Generating %s frames\n', ...
 elapsedTime, modulationTypes(modType))

 label = modulationTypes(modType);
 numSymbols = (numFramesPerModType / sps);
 dataSrc = helperModClassGetSource(modulationTypes(modType), sps, 2*spf, fs);
 modulator = helperModClassGetModulator(modulationTypes(modType), sps, fs);
 if contains(char(modulationTypes(modType)), {'B-FM','DSB-AM','SSB-AM'})
 % Analog modulation types use a center frequency of 100 MHz
 channel.CenterFrequency = 100e6;
 else
 % Digital modulation types use a center frequency of 902 MHz
 channel.CenterFrequency = 902e6;
 end

 for p=1:numFramesPerModType
 % Generate random data
 x = dataSrc();

 % Modulate
 y = modulator(x);

 % Pass through independent channels
 rxSamples = channel(y);

 % Remove transients from the beginning, trim to size, and normalize
 frame = helperModClassFrameGenerator(rxSamples, spf, spf, transDelay, sps);

 % Save data file
 fileName = fullfile(dataDirectory,...
 sprintf("%s%s%03d",fileNameRoot,modulationTypes(modType),p));
 save(fileName,"frame","label")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-54

 end
 end
else
 disp("Data files exist. Skip data generation.")
end

Data files exist. Skip data generation.

% Plot the amplitude of the real and imaginary parts of the example frames
% against the sample number
helperModClassPlotTimeDomain(dataDirectory,modulationTypes,fs)

% Plot the spectrogram of the example frames
helperModClassPlotSpectrogram(dataDirectory,modulationTypes,fs,sps)

 Modulation Classification by Using FPGA

4-55

Create a Datastore

To manage the files that contain the generated complex waveforms, use a signalDatastore object.
Datastores are especially useful when each individual file fits in memory, but the entire collection
does not necessarily fit.

frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"]);

Transform Complex Signals to Real Arrays

The deep learning network in this example looks for real inputs while the received signal has complex
baseband samples. Transform the complex signals into real-valued 4-D arrays. The output frames
have size 1-by-spf-by-2-by-N, where the first page (3rd dimension) is in-phase samples and the second
page is quadrature samples. When the convolutional filters are of size 1-by-spf, this approach ensures
that the information in the I and Q is mixed even in the convolutional layers and makes better use of
the phase information. See helperModClassIQAsPages.

frameDSTrans = transform(frameDS,@helperModClassIQAsPages);

Split into Training, Validation, and Test

Divide the frames into training, validation, and test data. See helperModClassSplitData.

splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);

Import Data Into Memory

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-56

Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. If the data fits into the memory of your
computer, importing the data from the files into the memory enables faster training by eliminating
this repeated read from file and transform process. Instead, the data is read from the files and
transformed once. Training this network using data files on disk takes about 110 minutes while
training using in-memory data takes about 50 minutes.

Import the data in the files into memory. The files have two variables: frame and label. Each read
call to the datastore returns a cell array, where the first element is the frame and the second element
is the label. To read frames and labels, use the transform functions helperModClassReadFrame
and helperModClassReadLabel. Use readall with the "UseParallel" option set to true to enable
parallel processing of the transform functions, if you have Parallel Computing Toolbox license.
Because the readall function, by default, concatenates the output of the read function over the first
dimension, return the frames in a cell array and manually concatenate over the fourth dimension.

% Read the training and validation frames into the memory
pctExists = parallelComputingLicenseExists();
trainFrames = transform(trainDSTrans, @helperModClassReadFrame);
rxTrainFrames = readall(trainFrames,"UseParallel",pctExists);
rxTrainFrames = cat(4, rxTrainFrames{:});
validFrames = transform(validDSTrans, @helperModClassReadFrame);
rxValidFrames = readall(validFrames,"UseParallel",pctExists);
rxValidFrames = cat(4, rxValidFrames{:});

% Read the training and validation labels into the memory
trainLabels = transform(trainDSTrans, @helperModClassReadLabel);
rxTrainLabels = readall(trainLabels,"UseParallel",pctExists);
validLabels = transform(validDSTrans, @helperModClassReadLabel);
rxValidLabels = readall(validLabels,"UseParallel",pctExists);
testFrames = transform(testDSTrans, @helperModClassReadFrame);
rxTestFrames = readall(testFrames,"UseParallel",pctExists);
rxTestFrames = cat(4, rxTestFrames{:});

% Read the test labels into the memory
YPred = transform(testDSTrans, @helperModClassReadLabel);
rxTestLabels = readall(YPred,"UseParallel",pctExists);

Create Target Object

Create a target object for your target device that has a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. To program the device, use the installed Xilinx Vivado Design Suite over an
Ethernet connection.

hT = dlhdl.Target('Xilinx', Interface = 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained series network trainedAudioNet as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type.

hW = dlhdl.Workflow(Network = trainedNet, Bitstream = 'zcu102_single', Target = hT);

 Modulation Classification by Using FPGA

4-57

https://www.mathworks.com/products/parallel-computing.html

Compile trainedModulationClassification Network

To compile the trainedNet series network, run the compile function of the dlhdl.Workflow
object.

compile(hW)

Compiling network for Deep Learning FPGA prototyping ...
Targeting FPGA bitstream zcu102_single.
The network includes the following layers:
 1 'Input Layer' Image Input 1×1024×2 images (SW Layer)
 2 'CNN1' Convolution 16 1×8×2 convolutions with stride [1 1] and padding 'same' (HW Layer)
 3 'BN1' Batch Normalization Batch normalization with 16 channels (HW Layer)
 4 'ReLU1' ReLU ReLU (HW Layer)
 5 'MaxPool1' Max Pooling 1×2 max pooling with stride [1 2] and padding [0 0 0 0] (HW Layer)
 6 'CNN2' Convolution 24 1×8×16 convolutions with stride [1 1] and padding 'same' (HW Layer)
 7 'BN2' Batch Normalization Batch normalization with 24 channels (HW Layer)
 8 'ReLU2' ReLU ReLU (HW Layer)
 9 'MaxPool2' Max Pooling 1×2 max pooling with stride [1 2] and padding [0 0 0 0] (HW Layer)
 10 'CNN3' Convolution 32 1×8×24 convolutions with stride [1 1] and padding 'same' (HW Layer)
 11 'BN3' Batch Normalization Batch normalization with 32 channels (HW Layer)
 12 'ReLU3' ReLU ReLU (HW Layer)
 13 'MaxPool3' Max Pooling 1×2 max pooling with stride [1 2] and padding [0 0 0 0] (HW Layer)
 14 'CNN4' Convolution 48 1×8×32 convolutions with stride [1 1] and padding 'same' (HW Layer)
 15 'BN4' Batch Normalization Batch normalization with 48 channels (HW Layer)
 16 'ReLU4' ReLU ReLU (HW Layer)
 17 'MaxPool4' Max Pooling 1×2 max pooling with stride [1 2] and padding [0 0 0 0] (HW Layer)
 18 'CNN5' Convolution 64 1×8×48 convolutions with stride [1 1] and padding 'same' (HW Layer)
 19 'BN5' Batch Normalization Batch normalization with 64 channels (HW Layer)
 20 'ReLU5' ReLU ReLU (HW Layer)
 21 'MaxPool5' Max Pooling 1×2 max pooling with stride [1 2] and padding [0 0 0 0] (HW Layer)
 22 'CNN6' Convolution 96 1×8×64 convolutions with stride [1 1] and padding 'same' (HW Layer)
 23 'BN6' Batch Normalization Batch normalization with 96 channels (HW Layer)
 24 'ReLU6' ReLU ReLU (HW Layer)
 25 'AP1' Average Pooling 1×32 average pooling with stride [1 1] and padding [0 0 0 0] (HW Layer)
 26 'FC1' Fully Connected 11 fully connected layer (HW Layer)
 27 'SoftMax' Softmax softmax (HW Layer)
 28 'Output' Classification Output crossentropyex with '16QAM' and 10 other classes (SW Layer)

Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
Optimizing network: Non-symmetric stride of layer with name 'MaxPool1' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
Optimizing network: Non-symmetric stride of layer with name 'MaxPool2' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
Optimizing network: Non-symmetric stride of layer with name 'MaxPool3' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
Optimizing network: Non-symmetric stride of layer with name 'MaxPool4' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
Optimizing network: Non-symmetric stride of layer with name 'MaxPool5' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
Notice: The layer 'Input Layer' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
Notice: The layer 'SoftMax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
Notice: The layer 'Output' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
Compiling layer group: CNN1>>ReLU6 ...
Compiling layer group: CNN1>>ReLU6 ... complete.
Compiling layer group: AP1 ...
Compiling layer group: AP1 ... complete.
Compiling layer group: FC1 ...
Compiling layer group: FC1 ... complete.

Allocating external memory buffers:

 offset_name offset_address allocated_space

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-58

 _______________________ ______________ ________________

 "InputDataOffset" "0x00000000" "4.0 MB"
 "OutputResultOffset" "0x00400000" "4.0 MB"
 "SchedulerDataOffset" "0x00800000" "4.0 MB"
 "SystemBufferOffset" "0x00c00000" "28.0 MB"
 "InstructionDataOffset" "0x02800000" "4.0 MB"
 "ConvWeightDataOffset" "0x02c00000" "4.0 MB"
 "FCWeightDataOffset" "0x03000000" "4.0 MB"
 "EndOffset" "0x03400000" "Total: 52.0 MB"

Network compilation complete.

ans = struct with fields:
 weights: [1×1 struct]
 instructions: [1×1 struct]
 registers: [1×1 struct]
 syncInstructions: [1×1 struct]
 constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object. This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function verifies the Xilinx Vivado tool and the supported tool version.
It then starts programming the FPGA device by using the bitstream, displays progress messages, and
the time it takes to deploy the network.

deploy(hW)

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
Loading weights to Conv Processor.
Conv Weights loaded. Current time is 11-Nov-2021 15:39:14
Loading weights to FC Processor.
FC Weights loaded. Current time is 11-Nov-2021 15:39:14

Results

Classify five inputs from the test data set and compare the prediction results to the classification
results from the Deep Learning Toolbox™. The YPred variable is the classification results from the
Deep learning Toolbox™. The fpga_prediction variable is the classification result from the FPGA.

numtestFrames = size(rxTestFrames,4);
numView = 5;
listIndex = randperm(numtestFrames,numView);
testDataBatch = rxTestFrames(:,:,:,listIndex);
YPred = classify(trainedNet,testDataBatch);
[scores,speed] = predict(hW,testDataBatch, Profile ='on');

Finished writing input activations.
Running in multi-frame mode with 5 inputs.

 Deep Learning Processor Profiler Performance Results

 LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s

 Modulation Classification by Using FPGA

4-59

 ------------- ------------- --------- --------- ---------
Network 656546 0.00298 5 3248357 338.6
 CNN1 11922 0.00005
 MaxPool1 33524 0.00015
 CNN2 16136 0.00007
 MaxPool2 74772 0.00034
 CNN3 11929 0.00005
 MaxPool3 79074 0.00036
 CNN4 8185 0.00004
 MaxPool4 112135 0.00051
 CNN5 6866 0.00003
 MaxPool5 145626 0.00066
 CNN6 5077 0.00002
 AP1 144501 0.00066
 FC1 6763 0.00003
 * The clock frequency of the DL processor is: 220MHz

[~,idx] = max(scores, [],2);
fpga_prediction = trainedNet.Layers(end).Classes(idx);

Compare the prediction results from Deep Learning Toolbox™ and the FPGA side by side. The
prediction results from the FPGA match the prediction results from Deep Learning Toolbox™. In this
table, the ground truth prediction is the Deep Learning Toolbox™ prediction.

fprintf('%12s %24s\n','Ground Truth','FPGA Prediction');for i= 1:size(fpga_prediction,1)
fprintf('%s %24s\n',YPred(i),fpga_prediction(i)); end

Ground Truth FPGA Prediction

PAM4 PAM4
BPSK BPSK
DSB-AM DSB-AM
SSB-AM SSB-AM
8PSK 8PSK

References

1 O'Shea, T. J., J. Corgan, and T. C. Clancy. "Convolutional Radio Modulation Recognition
Networks." Preprint, submitted June 10, 2016. https://arxiv.org/abs/1602.04105

2 O'Shea, T. J., T. Roy, and T. C. Clancy. "Over-the-Air Deep Learning Based Radio Signal
Classification." IEEE Journal of Selected Topics in Signal Processing. Vol. 12, Number 1, 2018,
pp. 168–179.

3 Liu, X., D. Yang, and A. E. Gamal. "Deep Neural Network Architectures for Modulation
Classification." Preprint, submitted January 5, 2018. https://arxiv.org/abs/1712.00443v3

See Also

More About
• “Modulation Classification with Deep Learning” on page 4-187
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-60

https://arxiv.org/abs/1602.04105
https://arxiv.org/abs/1712.00443v3

Neural Network for Digital Predistortion Design - Online
Training

This example shows how to create an online training neural network digital predistortion (DPD)
system to offset the effects of nonlinearities in a power amplifier (PA) using a custom training loop.
The custom training loop contains

• OFDM signal generation,
• NN-DPD processing,
• PA measurements using a VST,
• Performance metric calculation, and
• Weight update control logic.

Introduction

Nonlinear behavior in PAs result in severe signal distortions and cause challenges for error-free
reception of the high-frequency and high-bandwidth signals commonly transmitted in 5G NR [1] on
page 4-78. DPD of the transmitted signal is a technique used to compensate for PA nonlinearities
that distort the signal. The “Neural Network for Digital Predistortion Design - Offline Training” on
page 4-81 example focuses on the offline training of a neural network DPD. In the offline training
system, once the training is done, the NN-DPD weights are kept constant. If the PA characteristics
change, the system performance may suffer.

In an online training system, the NN-DPD weights can be updated based on predetermined
performance metrics. This diagram shows the online training system. There are two NN-DPDs in this
system. The NN-DPD-Forward is used in the signal path to apply digital predistortion to the signals.
The input of this NN-DPD is the oversampled communication signal and its output is connected to the
PA. The NN-DPD-Train is used to update the NN-DPD weights and biases. Its input signal is the PA
output and the training target is the PA input. As a result, the NN-DPD is trained as the inverse of the
PA.

 Neural Network for Digital Predistortion Design - Online Training

4-61

The following is the flow diagram of the online training system. When the system first starts running,
NN-DPD weights are initialized randomly. As a result, the output of the NN-DPD is not a valid signal.
Bypass the NN-DPD-Forward until the NN-DPD-Train trains to an initial valid state. Once the
initialization is done, pass the signals through the NN-DPD-Forward. Calculate normalized mean
square error (NMSE) using the signal at the input of the NN-DPD-Forward and at the output of the
PA. If the NMSE is higher than a threshold, then update the NN-DPD-Train weights and biases using
the current frame's I/Q samples. Once the update finishes, copy the weights and biases to the NN-
DPD-Forward. If the NMSE is lower than the threshold, then do not update the NN-DPD-Train. The
NN-DPD updates are done asynchronously.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-62

Generate Oversampled OFDM Signals

Generate OFDM-based signals to excite the PA. This example uses a 5G-like OFDM waveform. Set the
bandwidth of the signal to 100 MHz. Choosing a larger bandwidth signal causes the PA to introduce
more nonlinear distortion and yields greater benefit from the addition of the DPD. Generate six
OFDM symbols, where each subcarrier carries a 16-QAM symbol, using the ofdmmod and qammod
function. Save the 16-QAM symbols as a reference to calculate the EVM performance. To capture
effects of higher order nonlinearities, the example oversamples the PA input by a factor of 5.

bw = 100e6; % Hz
symPerFrame = 6; % OFDM symbols per frame
M = 16; % Each OFDM subcarrier contains a 16-QAM symbol
osf = 5; % oversampling factor for PA input

% OFDM parameters
ofdmParams = helperOFDMParameters(bw,osf);
numDataCarriers = (ofdmParams.fftLength - ofdmParams.NumGuardBandCarrier - 1);

 Neural Network for Digital Predistortion Design - Online Training

4-63

nullIdx = [1:ofdmParams.NumGuardBandCarrier/2+1 ...
 ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]';
Fs = ofdmParams.SampleRate;

% Random data
x = randi([0 M-1],numDataCarriers,symPerFrame);

% OFDM with 16-QAM in data subcarriers
qamRefSym = qammod(x, M);
dpdInput = single(ofdmmod(qamRefSym/osf,ofdmParams.fftLength,ofdmParams.cpLength,...
 nullIdx,OversamplingFactor=osf));

NN-DPD

NN-DPD has three fully connected hidden layers followed by a fully connected output layer. Memory
length and degree of nonlinearity determine the input length, as described in the “Power Amplifier
Characterization” on page 2-4 example. Set the memory depth to 5 and degree of nonlinearity to 5.
Custom training loops require dlnetwork (Deep Learning Toolbox) objects. Create a dlnetwork for
the NN-DPD-Forward and another for the NN-DPD-Train.

memDepth = 5; % Memory depth of the DPD (or PA model)
nonlinearDegree = 5; % Nonlinear polynomial degree
inputLayerDim = 2*memDepth+(nonlinearDegree-1)*memDepth;
numNeuronsPerLayer = 40;

layers = [...
 featureInputLayer(inputLayerDim,'Name','input')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1')
 leakyReluLayer(0.01,'Name','leakyRelu1')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2')
 leakyReluLayer(0.01,'Name','leakyRelu2')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3')
 leakyReluLayer(0.01,'Name','leakyRelu3')

 fullyConnectedLayer(2,'Name','linearOutput')];

netTrain = dlnetwork(layers);
netForward = dlnetwork(layers);

The input to the NN-DPD is preprocessed as described in “Neural Network for Digital Predistortion
Design - Offline Training” on page 4-81 example. Create input preprocessing objects for both NN-
DPDs.

inputProcTrain = helperNNDPDInputLayer(memDepth,nonlinearDegree);
inputProcForward = helperNNDPDInputLayer(memDepth,nonlinearDegree);

Since the dlnetTrain and dlnetForward are not trained yet, bypass the NN-DPD.

dpdOutput = dpdInput;

Power Amplifier

Choose the data source for the system. This example uses an NXP Airfast LDMOS Doherty PA, which
is connected to a local NI VST, as described in the “Power Amplifier Characterization” on page 2-4
example. If you do not have access to a PA, run the example with saved data or simulated PA.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-64

Simulated PA uses a neural network PA model, which is trained using data captured from the PA
using an NI VST.

dataSource = ;

Pass the signal through the PA and measure the output signal using an NI VST. Lower target input
power values may cause less distortion.

if strcmp(dataSource,"NI VST")

 targetInputPower = ; % dBm
 VST = helperVSTDriver('VST_01');
 VST.DUTExpectedGain = 29; % dB
 VST.ExternalAttenuation = 30; % dB
 VST.DUTTargetInputPower = targetInputPower; % dBm
 VST.CenterFrequency = 3.7e9; % Hz

 % Send the signals to the PA and collect the outputs
 paOutput = helperNNDPDPAMeasure(dpdOutput,Fs,VST);
elseif strcmp(dataSource,"Simulated PA")
 load paModelNN.mat netPA memDepthPA nonlinearDegreePA scalingFactorPA
 inputProcPA = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA);
 inputProcPAMP = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA);

 X = process(inputProcPA,dpdOutput*scalingFactorPA);
 Y = predict(netPA,X);
 paOutput = complex(Y(:,1), Y(:,2));
 paOutput = paOutput / scalingFactorPA;
else
 load nndpdInitTrainingData paOutput dpdInput
 dpdOutput = dpdInput;
end

Custom Training Loop

Create a custom training loop to train the NN-DPD-Train to an initial valid state. Custom training loop
has these parts:

• for-loop over epochs
• mini-batch queue to handle mini-batch selection
• while-loop over mini-batches
• model gradients, state, and loss evaluation
• network parameter update
• learning rate control
• training information logging

Run the epoch loop for maxNumEpochs. Set minibatch size to miniBatchSize. Larger values of
mini-batch size yields to faster training but may require larger learning rate. Set the initial learning
rate to initLearnRate and update the learning rate each learnRateDropPeriod number of epochs by a
factor of learnRateDropFactor. Also, set a minimum learning rate value to avoid training to practically
stop.

% Training options
maxNumEpochs = 40;

 Neural Network for Digital Predistortion Design - Online Training

4-65

miniBatchSize = 4096; % I/Q samples
initLearnRate = 2e-2;
minLearnRate = 1e-5;
learnRateDropPeriod = 20; % Epochs
learnRateDropFactor = 0.2;

iterationsPerBatch = floor(length(dpdOutput)/miniBatchSize);

References [2] on page 4-78 and [3] on page 4-78 describe the benefit of normalizing the input
signal to avoid the gradient explosion problem and ensure that the neural network converges to a
better solution. Normalization requires obtaining a unity standard deviation and zero mean. For this
example, the communication signals already have zero mean, so normalize only the standard
deviation. Later, you need to denormalize the NN-DPD output values by using the same scaling factor.

scalingFactor = 1/std(dpdOutput);

Preprocess input and ouput signals.

trainInputMtx = process(inputProcTrain, ...
 paOutput*scalingFactor);

trainOutputBatchC = dpdOutput*scalingFactor;
trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];

Create two arrayDatastore objects and combine them to represent the input and target
relationship. The dsInput stores the input signal, X, and the dsOutput stores the target signals, T,
for the NN-DPD-Train.

dsInput = arrayDatastore(trainInputMtx, ...
 IterationDimension=1,ReadSize=miniBatchSize);
dsOutput = arrayDatastore(trainOutputBatchR, ...
 IterationDimension=1,ReadSize=miniBatchSize);
cds = combine(dsInput,dsOutput);

Create a minibatchqueue (Deep Learning Toolbox) object to automate the mini batch fetching. First
dimension is time dimension and is labeled as batch, B, to instruct the network to interpret every
individual timestep as an independent observation. Second dimension is the features dimension and
is labeled as C. Since the data size is small, the training loop runs faster on CPU. Set
OutputEnvironment for both input and target data as 'cpu'.

mbq = minibatchqueue(cds,...
 MiniBatchSize=miniBatchSize,...
 PartialMiniBatch="discard",...
 MiniBatchFormat=["BC","BC"],...
 OutputEnvironment={'cpu','cpu'});

For each iteration, fetch input and target data from the mini-batch queue. Evaluate the model
gradients, state, and loss using dlfeval (Deep Learning Toolbox) function with custom modelLoss
on page 4-79 function. Then update the network parameters using the Adam optimizer function,
adamupdate (Deep Learning Toolbox). For more information on custom training loops, see “Define
Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox).

When running the example, you have the option of using a pretrained network by setting the
trainNow variable to false. Training is desirable to match the network to your simulation
configuration. If using a different PA, signal bandwidth, or target input power level, retrain the
network. Training the neural network on an Intel® Xeon® W-2133 CPU @ 3.60GHz takes less than 3
minutes.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-66

trainNow = ;
if trainNow
 % Initialize training progress monitor
 monitor = trainingProgressMonitor;
 monitor.Info = ["LearningRate","Epoch","Iteration"];
 monitor.Metrics = "TrainingLoss";
 monitor.XLabel = "Iteration";
 groupSubPlot(monitor,"Loss","TrainingLoss");
 monitor.Status = "Running";
 plotUpdateFrequency = 10;

 % Initialize training loop
 averageGrad = [];
 averageSqGrad = [];
 learnRate = initLearnRate;
 iteration = 1;

 for epoch = 1:maxNumEpochs
 shuffle(mbq)

 % Update learning rate
 if mod(epoch,learnRateDropPeriod) == 0
 learnRate = learnRate * learnRateDropFactor;
 end

 % Loop over mini-batches
 while hasdata(mbq) && ~monitor.Stop
 % Process one mini-batch of data
 [X,T] = next(mbq);

 % Evaluate model gradients and loss
 [lossTrain,gradients] = dlfeval(@modelLoss,netTrain,X,T);

 % Update network parameters
 [netTrain,averageGrad,averageSqGrad] = ...
 adamupdate(netTrain,gradients,averageGrad,averageSqGrad, ...
 iteration,learnRate);

 if mod(iteration,plotUpdateFrequency) == 0
 updateInfo(monitor, ...
 LearningRate=learnRate, ...
 Epoch=string(epoch) + " of " + string(maxNumEpochs), ...
 Iteration=string(iteration));
 recordMetrics(monitor,iteration, ...
 TrainingLoss=10*log10(lossTrain));
 end

 iteration = iteration + 1;
 end
 if monitor.Stop
 break
 end
 monitor.Progress = 100*epoch/maxNumEpochs;
 end
 if monitor.Stop
 monitor.Status = "User terminated";
 else

 Neural Network for Digital Predistortion Design - Online Training

4-67

 monitor.Status = "Done";
 end
else
 load offlineTrainedNNDPDR2023a netTrain learnRate learnRateDropFactor ...
 learnRateDropPeriod maxNumEpochs miniBatchSize scalingFactor ...
 symPerFrame monitor averageGrad averageSqGrad
end

Online Training with HIL

Convert the previous custom training loop to an online training loop with hardware-in-the-loop
processing, where the hardware is the PA. Perform following modifications:

• Add OFDM signal generation,
• Copy NN-DPD-Train learnables to NN-DPD-Forward and apply predistortion using the forward

function,
• Send the predistorted signal to PA and measure the output,
• Compute performance metric, which is NMSE,

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-68

• If the performance metric is out of spec, then update the NN-DPD-Train learnables with the
custom loop shown in the Custom Training Loop on page 4-65 section without epoch processing,

• Add memory polynomial based DPD for comparison using comm.DPDCoefficientEstimator
and comm.DPD System objects.

Run the online training loop for maxNumFrames frames. Set the target NMSE to targetNMSE dB
with a margin of targetNMSEMargin dB. The margin creates a hysteresis where the training is
stopped if NMSE is less than targetNMSE-targetNMSEMargin and started if NMSE is greater than
targetNMSE+targetNMSEMargin.

maxNumFrames = 200; % Frames
if strcmp(dataSource,"NI VST") || strcmp(dataSource,"Saved data")
 targetNMSE = -33.5; % dB
else
 targetNMSE = -30.0; % dB
end
targetNMSEMargin = 0.5; % dB

Initialize NN-DPD-Forward.

netForward.Learnables = netTrain.Learnables;

Configure the learning rate schedule. Start with learnRate and drop by a factor of
learnRateDropFactor every learnRateDropPeriod frames.

learnRateDropPeriod = 100;
learnRateDropFactor = 0.5;
learnRate = 0.0001;

Initialize memory polynomial based DPD.

polynomialType = ;
estimator = comm.DPDCoefficientEstimator(...
 DesiredAmplitudeGaindB=0, ...
 PolynomialType=polynomialType, ...
 Degree=nonlinearDegree, ...
 MemoryDepth=memDepth, ...
 Algorithm='Least squares');
coef = estimator(dpdOutput,paOutput);

Warning: Rank deficient, rank = 9, tol = 1.112653e-03.

dpdMem = comm.DPD(PolynomialType=polynomialType, ...
 Coefficients=coef);

If trainNow is true and dataSource is not "Saved data", run the online training loop.

trainNow = ;
if trainNow && ~strcmp(dataSource,"Saved data")
 % Turn off warning for the loop
 warnState = warning('off','MATLAB:rankDeficientMatrix');
 clup = onCleanup(@()warning(warnState));

 % Initialize training progress monitor
 monitor = trainingProgressMonitor;
 monitor.Info = ["LearningRate","Frames","Iteration"];

 Neural Network for Digital Predistortion Design - Online Training

4-69

 monitor.Metrics = ["TrainingLoss","NMSE","NMSE_MP"];
 monitor.XLabel = "Iteration";
 groupSubPlot(monitor,"Loss","TrainingLoss");
 groupSubPlot(monitor,"System Metric",{"NMSE","NMSE_MP"});
 monitor.Status = "Running";
 plotUpdateFrequency = 10;

 % Reset input preprocessing objects
 reset(inputProcTrain);
 reset(inputProcForward);

 numFrames = 1;
 iteration = 1;
 maxNumIterations = maxNumFrames*iterationsPerBatch;
 updateFrameCounter = 1;
 while numFrames < maxNumFrames && ~monitor.Stop
 % Generate OFDM I/Q samples
 x = randi([0 M-1], numDataCarriers, symPerFrame);
 qamRefSym = qammod(x, M);
 dpdInput = single(ofdmmod(qamRefSym/osf,ofdmParams.fftLength,ofdmParams.cpLength,...
 nullIdx,OversamplingFactor=osf));

 dpdInputMtx = process(inputProcForward,dpdInput*scalingFactor);

 % Send one frame of data to NN-DPD
 X = dlarray(dpdInputMtx, "BC"); % B: batch size; C: number of features (dimension in input layer of the neural network)
 [Y,~] = forward(netForward,X);
 dpdOutput = (extractdata(Y))';
 dpdOutput = complex(dpdOutput(:,1), dpdOutput(:,2));
 % Normalize output signal
 dpdOutput = dpdOutput / scalingFactor;

 % Send one frame of data to memory polynomial DPD
 dpdOutputMP = dpdMem(dpdInput);

 % Send DPD outputs through PA
 if strcmp(dataSource,"NI VST")
 paOutput = helperNNDPDPAMeasure(dpdOutput,Fs,VST);
 paOutputMP = helperNNDPDPAMeasure(dpdOutputMP,Fs,VST);
 else % "Simulated PA"
 paInputMtx = process(inputProcPA,dpdOutput*scalingFactorPA);
 paOutput = predict(netPA,paInputMtx);
 paOutput = complex(paOutput(:,1), paOutput(:,2));
 paOutput = paOutput / scalingFactorPA;

 paInputMtxMP = process(inputProcPAMP,dpdOutputMP*scalingFactorPA);
 paOutputMP = predict(netPA,paInputMtxMP);
 paOutputMP = complex(paOutputMP(:,1), paOutputMP(:,2));
 paOutputMP = paOutputMP / scalingFactorPA;
 end

 % Compute NMSE
 nmseNN = localNMSE(dpdInput, paOutput);
 nmseMP = localNMSE(dpdInput, paOutputMP);

 % Check if NMSE is too large
 if updateNNDPDWeights(nmseNN,targetNMSE,targetNMSEMargin)
 % Need to update the weights/biases of the neural network DPD

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-70

 % Preprocess input and output of the NN
 trainInputMtx = process(inputProcForward, ...
 paOutput*scalingFactor);
 trainOutputBatchC = dpdOutput*scalingFactor;
 trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];

 % Create combined data store
 dsInput = arrayDatastore(trainInputMtx, ...
 IterationDimension=1,ReadSize=miniBatchSize);
 dsOutput = arrayDatastore(trainOutputBatchR, ...
 IterationDimension=1,ReadSize=miniBatchSize);
 cds = combine(dsInput,dsOutput);

 % Create mini-batch queue for the combined data store
 mbq = minibatchqueue(cds,...
 MiniBatchSize=miniBatchSize,...
 PartialMiniBatch="discard",...
 MiniBatchFormat=["BC","BC"],...
 OutputEnvironment={'cpu','cpu'});

 % Update learning rate based on the schedule
 if mod(updateFrameCounter, learnRateDropPeriod) == 0 ...
 && learnRate > minLearnRate
 learnRate = learnRate*learnRateDropFactor;
 end

 % Loop over mini-batches
 while hasdata(mbq) && ~monitor.Stop
 % Process one mini-batch of data
 [X,T] = next(mbq);

 % Evaluate the model gradients, state, and loss
 [lossTrain,gradients] = dlfeval(@modelLoss,netTrain,X,T);

 % Update the network parameters
 [netTrain,averageGrad,averageSqGrad] = ...
 adamupdate(netTrain,gradients,averageGrad,averageSqGrad, ...
 iteration,learnRate);

 iteration = iteration + 1;
 if mod(iteration,plotUpdateFrequency) == 0 && hasdata(mbq)
 % Every plotUpdateFrequency iterations, update training monitor
 updateInfo(monitor, ...
 LearningRate=learnRate, ...
 Frames=string(numFrames) + " of " + string(maxNumFrames), ...
 Iteration=string(iteration) + " of " + string(maxNumIterations));

 recordMetrics(monitor,iteration, ...
 TrainingLoss=10*log10(lossTrain));

 monitor.Progress = 100*iteration/maxNumIterations;
 end
 end

 netForward.Learnables = netTrain.Learnables;

 % Update memory polynomial DPD

 Neural Network for Digital Predistortion Design - Online Training

4-71

 coef = estimator(dpdOutputMP,paOutputMP);
 dpdMem.Coefficients = coef;

 updateFrameCounter = updateFrameCounter + 1;
 else
 iteration = iteration + iterationsPerBatch;
 end

 updateInfo(monitor, ...
 LearningRate=learnRate, ...
 Frames=string(numFrames)+" of "+string(maxNumFrames), ...
 Iteration=string(iteration)+" of "+string(maxNumIterations));

 recordMetrics(monitor, iteration, ...
 TrainingLoss=10*log10(lossTrain), ...
 NMSE=nmseNN, ...
 NMSE_MP=nmseMP);

 monitor.Progress = 100*numFrames/maxNumFrames;
 numFrames = numFrames + 1;
 end
 if monitor.Stop
 monitor.Status = "User terminated";
 else
 monitor.Status = "Done";
 end
 if strcmp(dataSource,"NI VST")
 release(VST)
 end
 clear clup
else
 % Load saved results
 load onlineTrainedNNDPDR2023a netTrain learnRate learnRateDropFactor ...
 learnRateDropPeriod maxNumEpochs miniBatchSize scalingFactor ...
 symPerFrame monitor averageGrad averageSqGrad
 load onlineStartNNDPDPAData dpdOutput dpdOutputMP paOutput paOutputMP qamRefSym nmseNN nmseMP
end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-72

The online training progress shows that the NN-DPD can achieve about 7 dB better average NMSE as
compared to the memory polynomial DPD. Horizontal regions in the Loss plot show the regions where
the NN-DPD weights were kept constant.

Compare Neural Network and Memory Polynomial DPDs

Compare the PA output spectrums for the NN-DPD and memory polynomial DPD. Plot the power
spectrum for PA output with NN-DPD and memory polynomial DPD. The NN-DPD achieves more
sideband suppression as compared to the memory polynomial DPD.

pspectrum(paOutput,Fs,'MinThreshold',-120)
hold on
pspectrum(paOutputMP,Fs,'MinThreshold',-120)
hold off
legend("NN-DPD","Memory Polynomial")
title("Power Spectrum of PA Output")

 Neural Network for Digital Predistortion Design - Online Training

4-73

Calculate ACPR and EVM values and show the results. The NN-DPD achieves about 6 dB better ACPR
and NMSE as compared to the memory polynomial DPD. The percent EVM for the NN-DPD is about
half of the memory polynomial DPD.

acprNNDPD = localACPR(paOutput,Fs,bw);
acprMPDPD = localACPR(paOutputMP,Fs,bw);
evmNNDPD = localEVM(paOutput,qamRefSym(:),ofdmParams);
evmMPDPD = localEVM(paOutputMP,qamRefSym(:),ofdmParams);

% Create a table to display results
evm = [evmMPDPD;evmNNDPD];
acpr = [acprMPDPD;acprNNDPD];
nmse = [nmseMP; nmseNN];
disp(table(acpr,nmse,evm, ...
 'VariableNames', ...
 {'ACPR_dB','NMSE_dB','EVM_percent'}, ...
 'RowNames', ...
 {'Memory Polynomial DPD','Neural Network DPD'}))

 ACPR_dB NMSE_dB EVM_percent
 _______ _______ ___________

 Memory Polynomial DPD -33.695 -27.373 3.07
 Neural Network DPD -39.237 -33.276 1.5996

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-74

Appendix: Neural Network Model of PA

Train a neural network PA model (NN-PA) to use for online simulations. NN-PA has three fully
connected hidden layers followed by a fully connected output layer. Set the memory depth to 5 and
degree of nonlinearity to 5.

memDepthPA = 5; % Memory depth of the DPD (or PA model)
nonlinearDegreePA = 5; % Nonlinear polynomial degree
inputLayerDim = 2*memDepthPA+(nonlinearDegreePA-1)*memDepthPA;
numNeuronsPerLayer = 40;

layers = [...
 featureInputLayer(inputLayerDim,'Name','input')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1')
 leakyReluLayer(0.01,'Name','leakyRelu1')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2')
 leakyReluLayer(0.01,'Name','leakyRelu2')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3')
 leakyReluLayer(0.01,'Name','leakyRelu3')

 fullyConnectedLayer(2,'Name','linearOutput')

 regressionLayer("Name","regressionoutput")
];

Create input preprocessing objects for both NN-DPDs.

inputProcPA = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA);

Load the training data collected at the input and output of the PA.

load nndpdInitTrainingData paOutput dpdInput Fs
paInput = dpdInput;

Preprocess the input and output signals.

scalingFactorPA = 1/std(paInput);

trainInputMtx = process(inputProcPA, ...
 paInput*scalingFactorPA);

trainOutputBatchC = paOutput*scalingFactorPA;
trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];

Train the NN-PA

options = trainingOptions('adam', ...
 MaxEpochs=1000, ...
 MiniBatchSize=4096*2, ...
 InitialLearnRate=2e-2, ...
 LearnRateDropFactor=0.5, ...
 LearnRateDropPeriod=50, ...
 LearnRateSchedule='piecewise', ...
 Shuffle='every-epoch', ...
 ExecutionEnvironment='cpu', ...

 Neural Network for Digital Predistortion Design - Online Training

4-75

 Plots='training-progress', ...
 Verbose=false);

When running the example, you have the option of using a pretrained network by setting the
trainNow variable to false. Training is desirable to match the network to your simulation
configuration. If using a different PA, signal bandwidth, or target input power level, retrain the
network. Training the neural network on an Intel® Xeon® W-2133 CPU @ 3.60GHz takes about 30
minutes.

trainNow = ;
if trainNow
 [netPA,trainInfo] = trainNetwork(trainInputMtx,trainOutputBatchR,layers,options); %#ok<UNRCH>
 lg = layerGraph(netPA);
 lg = lg.removeLayers('regressionoutput');
 dlnetPA = dlnetwork(lg);
else
 load paModelNN netPA dlnetPA memDepthPA nonlinearDegreePA
end

Compare Neural Network and Memory Polynomial PAs

Compare the PA output spectrums for the NN-PA and memory polynomial PA. Since a DPD tries to
model the inverse of a PA, use comm.DPD and comm.DPDCoefficientEstimator to model a
memory polynomial PA by reversing the paOutput and paInput inputs to the estimator.

estimator = comm.DPDCoefficientEstimator(...
 DesiredAmplitudeGaindB=0, ...
 PolynomialType=polynomialType, ...
 Degree=nonlinearDegreePA, ...
 MemoryDepth=memDepthPA, ...
 Algorithm='Least squares');
coef = estimator(paOutput,paInput);

Warning: Rank deficient, rank = 9, tol = 1.107855e-03.

paMem = comm.DPD(PolynomialType=polynomialType, ...
 Coefficients=coef);
paOutputMP = paMem(paInput);

paInputMtx = process(inputProcPA,dpdInput*scalingFactorPA);
X = dlarray(paInputMtx, "BC");
[Y,~] = forward(dlnetPA,X);
paOutputNN = (extractdata(Y))';
paOutputNN = double(complex(paOutputNN(:,1), paOutputNN(:,2)));
% Normalize output signal
paOutputNN = paOutputNN / scalingFactorPA;

pspectrum(paOutput,Fs,'MinThreshold',-120)
hold on
pspectrum(paOutputMP,Fs,'MinThreshold',-120)
pspectrum(paOutputNN,Fs,'MinThreshold',-120)
hold off
legend("Original","Memory Polynomial","NN-PA")
title("Power Spectrum of PA Output")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-76

Calculate ACPR, NMSE and EVM values and show the results. The NN-PA model better approximates
the PA as compared to the memory polynomial model.

acprPA = localACPR(paOutput,Fs,bw);
acprMPPA = localACPR(paOutputMP,Fs,bw);
acprNNPA = localACPR(paOutputNN,Fs,bw);

[evmPA,rxQAMSymPA] = localEVM(paOutput,[],ofdmParams);
[evmMPPA,rxQAMSymMP] = localEVM(paOutputMP,[],ofdmParams);
[evmNNPA,rxQAMSymNN] = localEVM(paOutputNN,[],ofdmParams);

nmsePA = localNMSE(paOutput,paOutput);
nmseMPPA = localNMSE(paOutputMP,paOutput);
nmseNNPA = localNMSE(paOutputNN,paOutput);

% Create a table to display results
evm = [evmPA;evmMPPA;evmNNPA];
acpr = [acprPA;acprMPPA;acprNNPA];
nmse = [nmsePA;nmseMPPA;nmseNNPA];
disp(table(acpr,nmse,evm, ...
 'VariableNames', ...
 {'ACPR_dB','NMSE_dB','EVM_percent'}, ...
 'RowNames', ...
 {'Original','Memory Polynomial PA','Neural Network PA'}))

 ACPR_dB NMSE_dB EVM_percent
 _______ _______ ___________

 Neural Network for Digital Predistortion Design - Online Training

4-77

 Original -28.736 -Inf 6.7036
 Memory Polynomial PA -30.14 -27.182 5.8891
 Neural Network PA -28.874 -34.643 6.5409

References

[1] C. Tarver, L. Jiang, A. Sefidi and J. R. Cavallaro, "Neural Network DPD via Backpropagation
through a Neural Network Model of the PA," 2019 53rd Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, USA, 2019, pp. 358-362, doi: 10.1109/
IEEECONF44664.2019.9048910.

[2] J. Sun, J. Wang, L. Guo, J. Yang and G. Gui, "Adaptive Deep Learning Aided Digital Predistorter
Considering Dynamic Envelope," IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp.
4487-4491, April 2020, doi: 10.1109/TVT.2020.2974506.

[3] J. Sun, W. Shi, Z. Yang, J. Yang and G. Gui, "Behavioral Modeling and Linearization of Wideband RF
Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems," in IEEE Transactions on
Vehicular Technology, vol. 68, no. 11, pp. 10348-10356, Nov. 2019, doi: 10.1109/TVT.2019.2925562.

Appendix: Helper Functions

Signal Measurement and Input Processing

• helperNNDPDPAMeasure
• helperNNDPDInputLayer

Performance Evaluation and Comparison

• localNMSE on page 4-78
• localACPR on page 4-79
• localEVM on page 4-78

Local Functions

Normalized mean squared error (NMSE)

function nmseIndB = localNMSE(input,output)
%localNMSE Normalized mean squared error (NMSE)
% E = localNMSE(X,Y) calculates the NMSE between X and Y.

nmse = sum(abs(input-output).^2) / sum(abs(input).^2);
nmseIndB = 10*log10(nmse);
end

Error vector magnitude (EVM)

function [rmsEVM,rxQAMSym] = localEVM(paOutput,qamRefSym,ofdmParams)
%localEVM Error vector magnitude (EVM)
% [E,Y] = localEVM(X,REF,PARAMS) calculates EVM for signal, X, given the
% reference signal, REF. X is OFDM modulated based on PARAMS.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-78

% Downsample and demodulate
waveform = ofdmdemod(paOutput,ofdmParams.fftLength,ofdmParams.cpLength,...
 ofdmParams.cpLength,[1:ofdmParams.NumGuardBandCarrier/2+1 ...
 ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]',...
 OversamplingFactor=ofdmParams.OversamplingFactor);
rxQAMSym = waveform(:)*ofdmParams.OversamplingFactor;

if isempty(qamRefSym)
 M = 16;
 qamRefSym = qammod(qamdemod(rxQAMSym,M),M);
end

% Compute EVM
evm = comm.EVM;
rmsEVM = evm(qamRefSym,rxQAMSym);
end

Adjacent channel power ratio (ACPR)

function acpr = localACPR(paOutput,sr,bw)
%localACPR Adjacent channel power ratio (ACPR)
% A = localACPR(X,R,BW) calculates the ACPR value for the input signal X,
% for an assumed signal bandwidth of BW. The sampling rate of X is R.

acprModel = comm.ACPR(...
 'SampleRate',sr, ...
 'MainChannelFrequency',0, ...
 'MainMeasurementBandwidth',bw, ...
 'AdjacentChannelOffset',[-bw bw], ...
 'AdjacentMeasurementBandwidth',bw);
acpr = acprModel(double(paOutput));
acpr = mean(acpr);
end

Model gradients and loss

function [loss,gradients,state] = modelLoss(net,X,T)
%modelLoss Mean square error (MSE) loss
% [L,S,G] = modelLoss(NET,X,Y) calculates loss, L, state, S, and
% gradient, G, for dlnetwork NET for input X and target output T.

% Output of dlnet using forward function
[Y,state] = forward(net,X);

loss = mse(Y,T);
gradients = dlgradient(loss,net.Learnables);

loss = extractdata(loss);
end

Check if NN-DPD weights needs to be updated

function flag = updateNNDPDWeights(nmse,targetNMSE,targetNMSEMargin)
%updateNNDPDWeights Check if weights need to be updated
% U = updateNNDPDWeights(NMSE,TARGET,MARGIN) checks if the NN-DPD weights

 Neural Network for Digital Predistortion Design - Online Training

4-79

% need to be updated based on the measured NMSE value using the target
% NMSE, TARGET, and target NMSE margin, MARGIN. MARGIN ensures that the
% update flag does not change due to measurement noise.

persistent updateFlag
if isempty(updateFlag)
 updateFlag = true;
end

if updateFlag && (nmse < targetNMSE - targetNMSEMargin)
 updateFlag = false;
elseif ~updateFlag && (nmse > targetNMSE + targetNMSEMargin)
 updateFlag = true;
end

flag = updateFlag;
end

See Also
Functions
adamupdate | dlfeval | featureInputLayer | fullyConnectedLayer | reluLayer |
trainNetwork | trainingOptions | ofdmmod | ofdmdemod | qammod | qamdemod

Objects
arrayDatastore | dlnetwork | minibatchqueue | comm.DPD |
comm.DPDCoefficientEstimator | comm.EVM | comm.ACPR

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Neural Network for Digital Predistortion Design - Offline Training” on page 4-81
• “Digital Predistortion to Compensate for Power Amplifier Nonlinearities” on page 2-28

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-80

Neural Network for Digital Predistortion Design - Offline
Training

This example shows how to use a neural network to apply digital predistortion (DPD) to offset the
effects of nonlinearities in a power amplifier (PA). The example focuses on offline training of the
neural network-based DPD (NN-DPD). In this example, you

• Generate OFDM signals.
• Send these signals through an actual PA and measure the output.
• Train an NN-DPD.
• Predistort the OFDM signal with the NN-DPD, send this distorted signal through the actual PA,

and measure the output to evaluate the effectiveness of the NN-DPD.
• Compare the results to memory polynomial DPD.

Introduction

Nonlinear behavior in PAs result in severe signal distortions and cause challenges for error-free
reception of the high-frequency and high-bandwidth signals commonly transmitted in 5G NR [1 on
page 4-94]. DPD of the transmitted signal is a technique used to compensate for PA nonlinearities
that distort the signal. Typically, the PA nonlinear behavior is characterized in advance and DPD
applies an inverse predistortion using some form of memory polynomials [2 on page 4-94]. For
instance, see the “Digital Predistortion to Compensate for Power Amplifier Nonlinearities” on page 2-
28 example. Experimentation with neural network-based DPD techniques shows promising results
that offer better performance than the traditional memory polynomial DPD [1 on page 4-94] [3 on
page 4-94] [4 on page 4-94].

This diagram shows the offline training workflow. First, train an NN-DPD by using the input and
output signals of the PA. Then, use the trained NN-DPD.

The upper path shows the neural network training workflow. During training, measure the input to
the PA, u, and the output of the PA, x. To train the neural network as the inverse of the PA and use it
for DPD, use x as the input signal and u as the target signal. This architecture is also called indirect
learning [7 on page 4-95].

The lower path shows the deployed workflow with the trained NN-DPD inserted before the PA. In this
configuration, the NN-DPD inputs the oversampled signal u and output, y, as the input to the PA. The
PA output z is the linearized signal.

 Neural Network for Digital Predistortion Design - Offline Training

4-81

NN-DPD Structure

Design an augmented real-valued time-delay neural network (ARVTDNN) as described in [4 on page
4-94]. ARVTDNN has multiple fully connected layers and an augmented input.

The memory polynomial model has been commonly applied in the behavioral modeling and
predistortion of PAs with memory effects. This equation shows the PA memory polynomial.

x n = f u n = ∑m = 0
M − 1∑k = 0

K − 1cmu n−m u n−m k

The output is a function of the delayed versions of the input signal, u(n), and also powers of the
amplitudes of u(n) and its delayed versions.

Since a neural network can approximate any function provided that it has enough layers and neurons
per layer, you can input u(n) to the neural network and approximate f (u(n)). The neural network can
input u(n−m) and |u(n−m)|k to decrease the required complexity.

The NN-DPD has multiple fully connected layers. The input layer inputs the in-phase and quadrature
components (Iin/Qin) of the complex baseband samples. The Iin/Qin samples and m delayed versions
are used as part of the input to account for the memory in the PA model. Also, the amplitudes of the
Iin/Qin samples up to the kth power are fed as input to account for the nonlinearity of the PA.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-82

During training,

Iin(n) = ℜ (x(n))
Qin(n) = ℑ (x(n))
Iout(n) = ℜ (u(n))
Qout(n) = ℑ (u(n)),

while during deployment (inference),

Iin(n) = ℜ (u(n))
Qin(n) = ℑ (u(n))
Iout(n) = ℜ (y(n))
Qout(n) = ℑ (y(n)),

where ℜ and ℑ are the real and imaginary part operators, respectively.

 Neural Network for Digital Predistortion Design - Offline Training

4-83

Generate Training Data

Generate training, validation, and test data. Use the training and validation data to train the NN-DPD.
Use the test data to evaluate the NN-DPD performance.

Choose Data Source and Bandwidth

Choose the data source for the system. This example uses an NXP Airfast LDMOS Doherty PA, which
is connected to a local NI VST, as described in the “Power Amplifier Characterization” on page 2-4
example. If you do not have access to a PA, run the example with saved data.

dataSource = ;

Generate Oversampled OFDM Signals

Generate OFDM-based signals to excite the PA. This example uses a 5G-like OFDM waveform. Choose
the bandwidth of the signal. Choosing a larger bandwidth signal causes the PA to introduce more
nonlinear distortion and yields greater benefit from the addition of DPD. Generate six OFDM symbols,
where each subcarrier carries a 16-QAM symbol, using the ofdmmod and qammod function. Save the
16-QAM symbols as a reference to calculate the EVM performance. To capture effects of higher order
nonlinearities, the example oversamples the PA input by a factor of 7.

if strcmp(dataSource,"NI VST")

 bw = ; % Hz
 numOFDMSym = 6; % 6 OFDM symbols per frame
 M = 16; % Each OFDM subcarrier contains a 16-QAM symbol
 osf = 7; % oversampling factor for PA input
 ofdmParams = helperOFDMParameters(bw,osf);
 Fs = ofdmParams.SampleRate;
 [paInputTrain,qamRefSymTrain] = ...
 helperNNDPDGenerateOFDM(ofdmParams,numOFDMSym,M);

Pass the signal through the PA and measure the output signal. Lower target input power values may
cause less distortion. For this setup, when the signal is predistorted, 5 dBm is the maximum value the
NI PXIe-4139 SMU described in the “Power Amplifier Characterization” on page 2-4 example can
support without saturation.

 targetInputPower = ; % dBm
 VST = helperVSTDriver('VST_01');
 VST.DUTExpectedGain = 29; % dB
 VST.ExternalAttenuation = 30; % dB
 VST.DUTTargetInputPower = targetInputPower; % dBm
 VST.CenterFrequency = 3.7e9; % Hz

 % Send the signals to the PA and collect the outputs
 paOutputTrain = helperNNDPDPAMeasure(paInputTrain,Fs,VST);

Repeat the same procedure to generate validation and test data.

 % Generate validation data
 [paInputVal,qamRefSymVal] = ...
 helperNNDPDGenerateOFDM(ofdmParams,numOFDMSym,M);
 paOutputVal = helperNNDPDPAMeasure(paInputVal,Fs,VST);
 % Generate test data
 [paInputTest,qamRefSymTest] = ...

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-84

 helperNNDPDGenerateOFDM(ofdmParams,numOFDMSym,M);
 paOutputTest = helperNNDPDPAMeasure(paInputTest,Fs,VST);

 if
 % Select true to save data for saved data workflow
 save savedData bw numOFDMSym M ofdmParams sr targetInputPower ...
 qamRefSymTrain paInputTrain paOutputTrain qamRefSymVal ...
 paInputVal paOutputVal qamRefSymTest paInputTest paOutputTest %#ok<UNRCH>
 end
elseif strcmp(dataSource,"Saved Data")
 helperNNDPDDownloadData()
 load("savedDataNIVST100MHz");
 % Backwards compatibility updates
 ofdmParams.OversamplingFactor = ofdmParams.osr;
 ofdmParams.SampleRate = ofdmParams.SampleRate*ofdmParams.osr;
 Fs = ofdmParams.SampleRate;
end

Starting download of data files from:
 https://www.mathworks.com/supportfiles/spc/NNDPD/NNDPD_deeplearning_uploads_R2023a.zip
Download complete. Extracting files.
Extract complete.

[5 on page 4-95] and [6 on page 4-95] describe the benefit of normalizing the input signal to avoid
the gradient explosion problem and ensure that the neural network converges to a better solution.
Normalization requires obtaining a unity standard deviation and zero mean. For this example, the
communication signals already have zero mean, so normalize only the standard deviation. Later, you
need to denormalize the NN-DPD output values by using the same scaling factor.

scalingFactor = 1/std(paInputTrain);

paInputTrainNorm = paInputTrain*scalingFactor;
paOutputTrainNorm = paOutputTrain*scalingFactor;
paInputValNorm = paInputVal*scalingFactor;
paOutputValNorm = paOutputVal*scalingFactor;
paInputTestNorm = paInputTest*scalingFactor;
paOutputTestNorm = paOutputTest*scalingFactor;

Implement and Train NN-DPD

Before training the neural network DPD, select the memory depth and degree of nonlinearity. For
purposes of comparison, specify a memory depth of 5 and a nonlinear polynomial degree of 5, as in
the “Power Amplifier Characterization” on page 2-4 example, and will be used to compare
performance. Then implement the network described in Neural Network DPD Structure on page 4-82
section.

memDepth = 5; % Memory depth of the DPD (or PA model)
nonlinearDegree = 5; % Nonlinear polynomial degree
inputLayerDim = 2*memDepth+(nonlinearDegree-1)*memDepth;
numNeuronsPerLayer = 40;

lgraph = [...
 featureInputLayer(inputLayerDim,'Name','input')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1')
 leakyReluLayer(0.01,'Name','leakyRelu1')

 Neural Network for Digital Predistortion Design - Offline Training

4-85

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2')
 leakyReluLayer(0.01,'Name','leakyRelu2')

 fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3')
 leakyReluLayer(0.01,'Name','leakyRelu3')

 fullyConnectedLayer(2,'Name','linearOutput')
 regressionLayer('Name','output')];

Prepare Input Data Vector

Create the input vector. During training and validation, use the PA output as NN-DPD input and the
PA input as the NN-DPD output.

% Create input layer arrays for each time step as a matrix for training,
% validation and test signals.
inputProc = helperNNDPDInputLayer(memDepth,nonlinearDegree);
inputTrainMtx = process(inputProc,paOutputTrainNorm);
inputTrainMtx = inputTrainMtx(memDepth+1:end,:);
reset(inputProc)
inputValMtx = process(inputProc,paOutputValNorm);
inputValMtx = inputValMtx(memDepth+1:end,:);
reset(inputProc)
inputTestMtx = process(inputProc,paInputTestNorm);
inputTestMtx = inputTestMtx(memDepth+1:end,:);

% Create outputs as two element [I Q] vectors for each time step
outputTrainMtx = [real(paInputTrainNorm(memDepth+1:end,:)), ...
 imag(paInputTrainNorm(memDepth+1:end,:))];
outputValMtx = [real(paInputValNorm(memDepth+1:end,:)), ...
 imag(paInputValNorm(memDepth+1:end,:))];
outputTestMtx = [real(paOutputTestNorm(memDepth+1:end,:)), ...
 imag(paOutputTestNorm(memDepth+1:end,:))];

Train Neural Network

Train the neural network offline using the trainNetwork (Deep Learning Toolbox) function. First,
define the training options using the trainingOptions (Deep Learning Toolbox) function and set
hyperparameters. Use the Adam optimizer with a mini-batch size of 1024. The initial learning rate is
4e-4 and decreases by a factor of 0.95 every five epochs. Evaluate the training performance using
validation every two epochs. If the validation accuracy does not increase for five validations, stop
training. Use Experiment Manager (Deep Learning Toolbox) to optimize hyperparameters.

maxEpochs = 200;
miniBatchSize = 1024;
iterPerEpoch = floor(size(inputTrainMtx, 1)/miniBatchSize);

options = trainingOptions('adam', ...
 MaxEpochs=maxEpochs, ...
 MiniBatchSize=miniBatchSize, ...
 InitialLearnRate=4e-4, ...
 LearnRateDropFactor=0.95, ...
 LearnRateDropPeriod=5, ...
 LearnRateSchedule='piecewise', ...
 Shuffle='every-epoch', ...
 OutputNetwork='best-validation-loss', ...
 ValidationData={inputValMtx,outputValMtx}, ...
 ValidationFrequency=2*iterPerEpoch, ...

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-86

 ValidationPatience=5, ...
 ExecutionEnvironment='cpu', ...
 Plots='training-progress', ...
 Verbose=false);

When running the example, you have the option of using a pretrained network by setting the
trainNow variable to false. Training is desirable to match the network to your simulation
configuration. If using a different PA, signal bandwidth, or target input power level, retrain the
network. Training the neural network on an Intel® Xeon(R) W-2133 CPU takes about 6 minutes to
satisfy the early stopping criteria specified above.

trainNow = ;
if trainNow
 netDPD = trainNetwork(inputTrainMtx,outputTrainMtx,lgraph,options); %#ok<UNRCH>

 if
 % Select true to save data for saved data workflow
 save savedNet netDPD
 end
else
 load('savedNetNIVST100MHz');
end

The following shows the training process with the given options. Random initialization of the weights
for different layers affects the training process. To obtain the best root mean squared error (RMSE)
for the final validation, train the same network a few times.

 Neural Network for Digital Predistortion Design - Offline Training

4-87

Test NN-DPD

This figure shows how to check the performance of the NN-DPD. To test the NN-DPD, pass the test
signal through the NN-DPD and the PA and examine these performance metrics:

• Normalized mean square error (NMSE), measured between the input to the NN-DPD and output
of the PA

• Adjacent channel power ratio (ACPR), measured at the output of the PA by using the comm.ACPR
System object

• Percent RMS error vector magnitude (EVM), measured by comparing the OFDM demodulation
output to the 16-QAM modulated symbols by using the comm.EVM System object

Perform these tests for both the NN-DPD and also the memory polynomial DPD described in the
“Digital Predistortion to Compensate for Power Amplifier Nonlinearities” on page 2-28 example.

if strcmp(dataSource,"NI VST")
 % Pass signal through NN-DPD
 dpdOutNN = predict(netDPD,inputTestMtx,ExecutionEnvironment="cpu");
 dpdOutNN = [zeros(memDepth,1);...
 double(complex(dpdOutNN(:,1),dpdOutNN(:,2)))];
 dpdOutNN = dpdOutNN/scalingFactor;
 paOutputNN = helperNNDPDPAMeasure(dpdOutNN,Fs,VST);

 % Pass signal through memory polynomial DPD
 dpdOutMP = helperNNDPDMemoryPolynomial(paInputTest,paInputTrain, ...
 paOutputTrain,nonlinearDegree,memDepth);
 paOutputMP = helperNNDPDPAMeasure(dpdOutMP,Fs,VST);

 if
 % Select true to save data for saved data workflow
 save savedTestResults paOutputNN dpdOutNN dpdOutMP paOutputMP %#ok<UNRCH>
 end
elseif strcmp(dataSource,"Saved Data")
 load('savedTestResultsNIVST100MHz_R2023a');
end

% Evaluate performance with NN-DPD
acprNNDPD = localACPR(paOutputNN,Fs,bw);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-88

nmseNNDPD = localNMSE(paInputTest,paOutputNN);
evmNNDPD = localEVM(paOutputNN,qamRefSymTest,ofdmParams);
% Evaluate the performance without DPD
acprNoDPD = localACPR(paOutputTest,Fs,bw);
nmseNoDPD = localNMSE(paInputTest,paOutputTest);
evmNoDPD = localEVM(paOutputTest,qamRefSymTest,ofdmParams);
% Evaluate the performance with memory polynomial DPD
acprMPDPD = localACPR(paOutputMP,Fs,bw);
nmseMPDPD = localNMSE(paInputTest,paOutputMP);
evmMPDPD = localEVM(paOutputMP,qamRefSymTest,ofdmParams);
% Create a table to display results
evm = [evmNoDPD;evmMPDPD;evmNNDPD];
acpr = [acprNoDPD;acprMPDPD;acprNNDPD];
nmse = [nmseNoDPD;nmseMPDPD;nmseNNDPD];
disp(table(acpr,nmse,evm, ...
 'VariableNames', ...
 {'ACPR_dB','NMSE_dB','EVM_percent'}, ...
 'RowNames', ...
 {'No DPD','Memory Polynomial DPD','Neural Network DPD'}))

 ACPR_dB NMSE_dB EVM_percent
 _______ _______ ___________

 No DPD -28.837 -22.063 5.859
 Memory Polynomial DPD -34.707 -28.507 2.5138
 Neural Network DPD -38.866 -31.708 1.9311

sa = helperPACharPlotSpectrum(...
 [paOutputTest paOutputMP paOutputNN], ...
 {'No DPD','Memory Polynomial DPD', ...
 'Neural Network DPD'}, ...
 ofdmParams.OversamplingFactor,"Modulated",[-130 -50]);

 Neural Network for Digital Predistortion Design - Offline Training

4-89

As the PA heats, the performance characteristics change. Send bursty signals through the PA
repeatedly and plot system performance as a function of time. Each measurement takes about 6 s.
Every 600 s, stop for 300 s to allow the PA to cool down. The plot shows that the system performance
degrades with repeated use and recovers after the cooldown period. This behavior shows that after
some time, the PA characteristics might change and the DPD might not provide the required system
performance, such as a maximum EVM value. If the EVM value exceeds the allowed maximum value,
the neural network needs to be retrained to adapt to the changing PA characteristics.

runRepeatedBurstTest = ;
if strcmp(dataSource,"NI VST") && runRepeatedBurstTest
 numMeas = 500;
 measTime = 6;
 acprNNDPD = zeros(numMeas,1);
 nmseNNDPD = zeros(numMeas,1);
 evmNNDPD = zeros(numMeas,1);
 [acprLine,nmseLine,evmLine] = initFigure();
 tStart = tic;
 cnt = 1;
 for p=1:numMeas
 % Pass signal through NN-DPD
 dpdOutNN = predict(netDPD,inputTestMtx,ExecutionEnvironment="cpu");
 dpdOutNN = [zeros(memDepth,1);...
 double(complex(dpdOutNN(:,1), dpdOutNN(:,2)))];
 paInput = dpdOutNN/scalingFactor;

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-90

 % Pass signals through PA
 paOutputNN = helperNNDPDPAMeasure(paInput,Fs,VST);

 % Evaluate performance with NN-DPD
 acprNNDPD(cnt) = localACPR(paOutputNN,Fs,bw);
 nmseNNDPD(cnt) = localNMSE(paInputTest,paOutputNN);
 evmNNDPD(cnt) = localEVM(paOutputNN,qamRefSymTest,ofdmParams);
 updateFigure(acprLine,nmseLine,evmLine, ...
 acprNNDPD(cnt),nmseNNDPD(cnt),evmNNDPD(cnt),tStart);
 cnt = cnt +1;

 if mod(p,100) == 0
 for q=1:50
 pause(measTime)
 acprNNDPD(cnt) = NaN;
 nmseNNDPD(cnt) = NaN;
 evmNNDPD(cnt) = NaN;
 updateFigure(acprLine,nmseLine,evmLine, ...
 acprNNDPD(cnt),nmseNNDPD(cnt),evmNNDPD(cnt),tStart);
 cnt = cnt +1;
 end
 end
 end
else
 load('savedRepeatTestResultsNIVST100MHz');
 figure
 numMeas = length(acprNNDPD);
 t = (0:numMeas-1)*6;
 subplot(3,1,1)
 plot(t,acprNNDPD)
 grid on
 title("NN-DPD Performance over Many Bursts")
 ylabel("ACPR")
 subplot(3,1,2)
 plot(t,nmseNNDPD)
 grid on
 ylabel("NMSE")
 subplot(3,1,3)
 plot(t,evmNNDPD)
 grid on
 ylabel("EVM")
 xlabel('t (s)')
end

 Neural Network for Digital Predistortion Design - Offline Training

4-91

if strcmp(dataSource,"NI VST")
 release(VST)
end

Further Exploration

This example demonstrates how to train a NN-DPD by using measured data from a PA. For the given
PA, target input power level, and driving signal, the NN-DPD is able to provide better performance
than memory polynomial DPD.

You can try changing the number of neurons per layer, number of hidden layers and target input
power level and see the effect of these parameters on the NN-DPD performance. You can also try
different input signals, such as OFDM signals with different bandwidth. You can also generate
standard-specific signals using the Wireless Waveform Generator app.

Helper Functions

OFDM Signal Generation

• helperNNDPDGenerateOFDM

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-92

Signal Measurement and Input Processing

• helperNNDPDPAMeasure
• helperNNDPDInputLayer

Performance Evaluation and Comparison

• localNMSE on page 4-93
• localACPR on page 4-93
• localEVM on page 4-93
• helperNNDPDMemoryPolynomial

Local Functions

function acpr = localACPR(paOutput,sr,bw)
%localACPR Adjacent channel power ratio (ACPR)
% A = localACPR(X,R,BW) calculates the ACPR value for the input signal X,
% for an assumed signal bandwidth of BW. The sampling rate of X is R.

acprModel = comm.ACPR(...
 'SampleRate',sr, ...
 'MainChannelFrequency',0, ...
 'MainMeasurementBandwidth',bw, ...
 'AdjacentChannelOffset',[-bw bw], ...
 'AdjacentMeasurementBandwidth',bw);
acpr = acprModel(paOutput);
acpr = mean(acpr);
end

function nmseIndB = localNMSE(input,output)
%localNMSE Normalized mean squared error (NMSE)
% E = localNMSE(X,Y) calculates the NMSE between X and Y.

nmse = sum(abs(input-output).^2) / sum(abs(input).^2);
nmseIndB = 10*log10(nmse);
end

function [rmsEVM,rxQAMSym] = localEVM(paOutput,qamRefSym,ofdmParams)
%localEVM Error vector magnitude (EVM)
% [E,Y] = localEVM(X,REF,PARAMS) calculates EVM for signal, X, given the
% reference signal, REF. X is OFDM modulated based on PARAMS.

% Downsample and demodulate
waveform = ofdmdemod(paOutput,ofdmParams.fftLength,ofdmParams.cpLength,...
 ofdmParams.cpLength,[1:ofdmParams.NumGuardBandCarrier/2+1 ...
 ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]',...
 OversamplingFactor=ofdmParams.OversamplingFactor);
rxQAMSym = waveform(:)*ofdmParams.OversamplingFactor;

% Compute EVM
evm = comm.EVM;

 Neural Network for Digital Predistortion Design - Offline Training

4-93

rmsEVM = evm(qamRefSym,rxQAMSym);
end

function [acprLine,nmseLine,evmLine] = initFigure()
%initFigure Initialize repeat runs figure

 figure
 subplot(3,1,1)
 acprLine = animatedline;
 grid on
 ylabel("ACPR (dB)")
 title("NN-DPD Performance Over Many Bursts")
 subplot(3,1,2)
 nmseLine = animatedline;
 grid on
 ylabel("NMSE (dB)")
 subplot(3,1,3)
 evmLine = animatedline;
 grid on
 ylabel("EVM (%)")
 xlabel("t (s)")
end

function updateFigure(acprLine,nmseLine,evmLine,acprNNDPD,nmseNNDPD,evmNNDPD,tStart)
%updateFigure Update repeat runs figure

 addpoints(acprLine,toc(tStart),acprNNDPD)
 addpoints(nmseLine,toc(tStart),nmseNNDPD)
 addpoints(evmLine,toc(tStart),evmNNDPD)
 drawnow limitrate
end

References

[1] Tarver, Chance, Liwen Jiang, Aryan Sefidi, and Joseph R. Cavallaro. “Neural Network DPD via
Backpropagation through a Neural Network Model of the PA.” In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers, 358–62. Pacific Grove, CA, USA: IEEE, 2019. https://doi.org/
10.1109/IEEECONF44664.2019.9048910.

[2] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. “A
Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers.” IEEE
Transactions on Signal Processing 54, no. 10 (October 2006): 3852–60. https://doi.org/10.1109/
TSP.2006.879264.

[3] Wu, Yibo, Ulf Gustavsson, Alexandre Graell i Amat, and Henk Wymeersch. “Residual Neural
Networks for Digital Predistortion.” In GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, 01–06. Taipei, Taiwan: IEEE, 2020. https://doi.org/10.1109/
GLOBECOM42002.2020.9322327.

[4] Wang, Dongming, Mohsin Aziz, Mohamed Helaoui, and Fadhel M. Ghannouchi. “Augmented Real-
Valued Time-Delay Neural Network for Compensation of Distortions and Impairments in Wireless

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-94

Transmitters.” IEEE Transactions on Neural Networks and Learning Systems 30, no. 1 (January
2019): 242–54. https://doi.org/10.1109/TNNLS.2018.2838039.

[5] Sun, Jinlong, Juan Wang, Liang Guo, Jie Yang, and Guan Gui. “Adaptive Deep Learning Aided
Digital Predistorter Considering Dynamic Envelope.” IEEE Transactions on Vehicular Technology 69,
no. 4 (April 2020): 4487–91. https://doi.org/10.1109/TVT.2020.2974506.

[6] Sun, Jinlong, Wenjuan Shi, Zhutian Yang, Jie Yang, and Guan Gui. “Behavioral Modeling and
Linearization of Wideband RF Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems.”
IEEE Transactions on Vehicular Technology 68, no. 11 (November 2019): 10348–56. https://doi.org/
10.1109/TVT.2019.2925562.

[7] Paaso, Henna, and Aarne Mammela. “Comparison of Direct Learning and Indirect Learning
Predistortion Architectures.” In 2008 IEEE International Symposium on Wireless Communication
Systems, 309–13. Reykjavik: IEEE, 2008. https://doi.org/10.1109/ISWCS.2008.4726067.

See Also
Functions
featureInputLayer | fullyConnectedLayer | reluLayer | trainNetwork |
trainingOptions

Objects
comm.DPD | comm.DPDCoefficientEstimator | comm.OFDMModulator |
comm.OFDMDemodulator | comm.EVM | comm.ACPR

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Neural Network for Digital Predistortion Design - Online Training” on page 4-61
• “Digital Predistortion to Compensate for Power Amplifier Nonlinearities” on page 2-28

 Neural Network for Digital Predistortion Design - Offline Training

4-95

Neural Network for Beam Selection

This example shows how to use a neural network to reduce the overhead in the beam selection task.
In the example, you use only the location of the receiver rather than knowledge of the communication
channels. Instead of an exhaustive beam search over all the beam pairs, you can reduce beam
sweeping overhead by searching among the selected K beam pairs. Considering a system with a total
of 16 beam pairs, simulation results in this example show the designed machine learning algorithm
can achieve an accuracy of 90% by performing an exhaustive search over only half of the beam pairs.

Introduction

To enable millimeter wave (mmWave) communications, beam management techniques must be used
due to the high pathloss and blockage experienced at high frequencies. Beam management is a set of
Layer 1 (physical layer) and Layer 2 (medium access control) procedures to establish and retain an
optimal beam pair (transmit beam and a corresponding receive beam) for good connectivity [1 on
page 4-115]. For simulations of 5G New Radio (NR) beam management procedures, see the “NR SSB
Beam Sweeping” (5G Toolbox) and “NR Downlink Transmit-End Beam Refinement Using CSI-RS” (5G
Toolbox) examples.

This example considers beam selection procedures when a connection is established between the
user equipment (UE) and access network node (gNB). In 5G NR, the beam selection procedure for
initial access consists of beam sweeping, which requires exhaustive searches over all the beams on
the transmitter and the receiver sides, and then selection of the beam pair offering the strongest
reference signal received power (RSRP). Since mmWave communications require many antenna
elements, implying many beams, an exhaustive search over all beams becomes computationally
expensive and increases the initial access time.

To avoid repeatedly performing an exhaustive search and to reduce the communication overhead,
machine learning has been applied to the beam selection problem. Typically, the beam selection
problem is posed as a classification task, where the target output is the best beam pair index. The
extrinsic information, including lidar, GPS signals, and roadside camera images, is used as input to
the machine learning algorithms [2 on page 4-115]-[6 on page 4-115]. Specifically, given this out-of-
band information, a trained machine learning model recommends a set of K good beam pairs. Instead
of an exhaustive search over all the beam pairs, the simulation reduces beam sweeping overhead by
searching only among the selected K beam pairs.

This example uses a neural network to perform beam selection using only the GPS coordinates of the
receiver. Fixing the locations of the transmitter and the scatterers, the example generates a set of
training samples: Each sample consists of a receiver location (GPS data) and the true optimal beam
pair index (found by performing exhaustive search over all the beam pairs at transmit and receive
ends). The example designs and trains a neural network that uses the location of the receiver as the
input and the true optimal beam pair index as the correct label. During the testing phase, the neural
network first outputs K good beam pairs. An exhaustive search over these K beam pairs is followed,
and the beam pair with the highest average RSRP is selected as the final predicted beam pair by the
neural network.

The example measures the effectiveness of the proposed method using two metrics: average RSRP
and top-K accuracy [2 on page 4-115]-[6 on page 4-115]. This figure shows the main processing steps.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-96

rng(211); % Set RNG state for repeatability

Generate Training Data

In the prerecorded data, receivers are randomly distributed on the perimeter of a 6-meter square and
configured with 16 beam pairs (four beams on each end, analog beamformed with 1 RF chain). After
setting up a MIMO scattering channel, the example considers 200 different receiver locations in the
training set and 100 different receiver locations in the test sets. The prerecorded data uses 2-D
location coordinates. Specifically, the third GPS coordinate of each sample is always zero. As in the NR
SSB Beam Sweeping example, for each location, SSB-based beam sweeping is performed for an
exhaustive search over all 16 beam pairs. Since AWGN is added during the exhaustive search, for
each location, the example runs four different trials and determines the true optimal beam pair by
picking the beam pair with the highest average RSRP.

To generate new training and test sets, you can adjust the useSavedData and SaveData logicals. Be
aware that regenerating data takes a significant amount of time.

useSavedData = true;
saveData = false;

if useSavedData
 load nnBS_prm.mat; % Load beam selection system parameters
 load nnBS_TrainingData.mat; % Load prerecorded training samples
 % (input: receiver's location; output: optimal beam pair indices)
 load nnBS_TestData.mat; % Load prerecorded test samples
else

 Neural Network for Beam Selection

4-97

Configure Frequency and Beam Sweeping Angles

 prm.NCellID = 1; % Cell ID
 prm.FreqRange = 'FR1'; % Frequency range: 'FR1' or 'FR2'

 prm.CenterFreq = 2.5e9; % Hz
 prm.SSBlockPattern = 'Case B'; % Case A/B/C/D/E
 prm.SSBTransmitted = [ones(1,4) zeros(1,0)]; % 4/8 or 64 in length

 prm.TxArraySize = [8 8]; % Transmit array size, [rows cols]
 prm.TxAZlim = [-163 177]; % Transmit azimuthal sweep limits
 prm.TxELlim = [-90 0]; % Transmit elevation sweep limits

 prm.RxArraySize = [2 2]; % Receive array size, [rows cols]
 prm.RxAZlim = [-177 157]; % Receive azimuthal sweep limits
 prm.RxELlim = [0 90]; % Receive elevation sweep limits

 prm.ElevationSweep = false; % Enable/disable elevation sweep
 prm.SNRdB = 30; % SNR, dB
 prm.RSRPMode = 'SSSwDMRS'; % {'SSSwDMRS', 'SSSonly'}

 prm = validateParams(prm);

Synchronization Signal Burst Configuration

 txBurst = nrWavegenSSBurstConfig;
 txBurst.BlockPattern = prm.SSBlockPattern;
 txBurst.TransmittedBlocks = prm.SSBTransmitted;
 txBurst.Period = 20;
 txBurst.SubcarrierSpacingCommon = prm.SubcarrierSpacingCommon;

Scatterer Configuration

 c = physconst('LightSpeed'); % Propagation speed
 prm.lambda = c/prm.CenterFreq; % Wavelength

 prm.rightCoorMax = 10; % Maximum x-coordinate
 prm.topCoorMax = 10; % Maximum y-coordinate
 prm.posTx = [3.5;4.2;0]; % Transmit array position, [x;y;z], meters

 % Scatterer locations
 % Generate scatterers at random positions
 Nscat = 10; % Number of scatterers
 azRange = prm.TxAZlim(1):prm.TxAZlim(2);
 elRange = -90:90;

 % More evenly spaced scatterers
 randAzOrder = round(linspace(1, length(azRange), Nscat));
 azAngInSph = azRange(randAzOrder(1:Nscat));

 % Consider a 2-D area, i.e., the elevation angle is zero
 elAngInSph = zeros(size(azAngInSph));
 r = 2; % radius
 [x,y,z] = sph2cart(deg2rad(azAngInSph),deg2rad(elAngInSph),r);
 prm.ScatPos = [x;y;z] + [prm.rightCoorMax/2;prm.topCoorMax/2;0];

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-98

Antenna Array Configuration

 % Transmit array
 if prm.IsTxURA
 % Uniform rectangular array
 arrayTx = phased.URA(prm.TxArraySize,0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
 else
 % Uniform linear array
 arrayTx = phased.ULA(prm.NumTx, ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
 end

 % Receive array
 if prm.IsRxURA
 % Uniform rectangular array
 arrayRx = phased.URA(prm.RxArraySize,0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
 else
 % Uniform linear array
 arrayRx = phased.ULA(prm.NumRx, ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
 end

Determine Tx/Rx Positions

 % Receiver locations
 % Training data: X points around a rectangle: each side has X/4 random points
 % X: X/4 for around square, X/10 for validation => lcm(4,10) = 20 smallest
 NDiffLocTrain = 200;
 pointsEachSideTrain = NDiffLocTrain/4;
 prm.NDiffLocTrain = NDiffLocTrain;

 locationX = 2*ones(pointsEachSideTrain, 1);
 locationY = 2 + (8-2)*rand(pointsEachSideTrain, 1);

 locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTrain, 1)];
 locationY = [locationY; 8*ones(pointsEachSideTrain, 1)];

 locationX = [locationX; 8*ones(pointsEachSideTrain, 1)];
 locationY = [locationY; 2 + (8-2)*rand(pointsEachSideTrain, 1)];

 locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTrain, 1)];
 locationY = [locationY; 2*ones(pointsEachSideTrain, 1)];

 locationZ = zeros(size(locationX));
 locationMat = [locationX locationY locationZ];

 % Fixing receiver's location, run repeated simulations to consider
 % different realizations of AWGN
 prm.NRepeatSameLoc = 4;

 locationMatTrain = repelem(locationMat,prm.NRepeatSameLoc, 1);

 % Test data: Y points around a rectangle: each side has Y/4 random points
 % Different data than test, but a smaller number

 Neural Network for Beam Selection

4-99

 NDiffLocTest = 100;
 pointsEachSideTest = NDiffLocTest/4;
 prm.NDiffLocTest = NDiffLocTest;

 locationX = 2*ones(pointsEachSideTest, 1);
 locationY = 2 + (8-2)*rand(pointsEachSideTest, 1);

 locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTest, 1)];
 locationY = [locationY; 8*ones(pointsEachSideTest, 1)];

 locationX = [locationX; 8*ones(pointsEachSideTest, 1)];
 locationY = [locationY; 2 + (8-2)*rand(pointsEachSideTest, 1)];

 locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTest, 1)];
 locationY = [locationY; 2*ones(pointsEachSideTest, 1)];

 locationZ = zeros(size(locationX));
 locationMat = [locationX locationY locationZ];

 locationMatTest = repelem(locationMat,prm.NRepeatSameLoc,1);

 [optBeamPairIdxMatTrain,rsrpMatTrain] = hGenDataMIMOScatterChan('training',locationMatTrain,prm,txBurst,arrayTx,arrayRx,311);
 [optBeamPairIdxMatTest,rsrpMatTest] = hGenDataMIMOScatterChan('test',locationMatTest,prm,txBurst,arrayTx,arrayRx,411);

 % Save generated data
 if saveData
 save('nnBS_prm.mat','prm');
 save('nnBS_TrainingData.mat','optBeamPairIdxMatTrain','rsrpMatTrain','locationMatTrain');
 save('nnBS_TestData.mat','optBeamPairIdxMatTest','rsrpMatTest','locationMatTest');
 end
end

Plot Transmitter and Scatterer Locations

figure
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
hold on;
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
xlim([0 10])
ylim([0 10])
title('Transmitter and Scatterers Positions')
legend('Transmitter','Scatterers')
xlabel('x (m)')
ylabel('y (m)')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-100

Data Processing and Visualization

Next, label the beam pair with the highest average RSRP as the true optimal beam pair. Convert one-
hot encoding labels to categorical data to use for classification. Finally, augment the categorical data
so that it has 16 classes total to match the possible number of beam pairs (although classes may have
unequal number of elements). The augmentation is to ensure that the output of the neural network
has the desired dimension 16.

Process Training Data

% Choose the best beam pair by picking the one with the highest average RSRP
% (taking average over NRepeatSameLoc different trials at each location)
avgOptBeamPairIdxCellTrain = cell(size(optBeamPairIdxMatTrain, 1)/prm.NRepeatSameLoc, 1);
avgOptBeamPairIdxScalarTrain = zeros(size(optBeamPairIdxMatTrain, 1)/prm.NRepeatSameLoc, 1);
for locIdx = 1:size(optBeamPairIdxMatTrain, 1)/prm.NRepeatSameLoc
 avgRsrp = squeeze(rsrpMatTrain(:,:,locIdx));
 [~, targetBeamIdx] = max(avgRsrp(:));
 avgOptBeamPairIdxScalarTrain(locIdx) = targetBeamIdx;
 avgOptBeamPairIdxCellTrain{locIdx} = num2str(targetBeamIdx);
end

% Even though there are a total of 16 beam pairs, due to the fixed topology
% (transmitter/scatterers/receiver locations), it is possible
% that some beam pairs are never selected as an optimal beam pair
%
% Therefore, we augment the categories so 16 classes total are in the data
% (although some classes may have zero elements)

 Neural Network for Beam Selection

4-101

allBeamPairIdxCell = cellstr(string((1:prm.numBeams^2)'));
avgOptBeamPairIdxCellTrain = categorical(avgOptBeamPairIdxCellTrain, allBeamPairIdxCell);
NBeamPairInTrainData = numel(categories(avgOptBeamPairIdxCellTrain)); % Should be 16

Process Testing Data

% Decide the best beam pair by picking the one with the highest avg. RSRP
avgOptBeamPairIdxCellTest = cell(size(optBeamPairIdxMatTest, 1)/prm.NRepeatSameLoc, 1);
avgOptBeamPairIdxScalarTest = zeros(size(optBeamPairIdxMatTest, 1)/prm.NRepeatSameLoc, 1);
for locIdx = 1:size(optBeamPairIdxMatTest, 1)/prm.NRepeatSameLoc
 avgRsrp = squeeze(rsrpMatTest(:,:,locIdx));
 [~, targetBeamIdx] = max(avgRsrp(:));
 avgOptBeamPairIdxScalarTest(locIdx) = targetBeamIdx;
 avgOptBeamPairIdxCellTest{locIdx} = num2str(targetBeamIdx);
end
% Augment the categories such that the data has 16 classes total
avgOptBeamPairIdxCellTest = categorical(avgOptBeamPairIdxCellTest, allBeamPairIdxCell);
NBeamPairInTestData = numel(categories(avgOptBeamPairIdxCellTest)); % Should be 16

Create Input/Output Data for Neural Network

trainDataLen = size(locationMatTrain, 1)/prm.NRepeatSameLoc;
trainOut = avgOptBeamPairIdxCellTrain;
sampledLocMatTrain = locationMatTrain(1:prm.NRepeatSameLoc:end, :);
trainInput = sampledLocMatTrain(1:trainDataLen, :);

% Take 10% data out of test data as validation data
valTestDataLen = size(locationMatTest, 1)/prm.NRepeatSameLoc;
valDataLen = round(0.1*size(locationMatTest, 1))/prm.NRepeatSameLoc;
testDataLen = valTestDataLen-valDataLen;

% Randomly shuffle the test data such that the distribution of the
% extracted validation data is closer to test data
rng(111)
shuffledIdx = randperm(prm.NDiffLocTest);
avgOptBeamPairIdxCellTest = avgOptBeamPairIdxCellTest(shuffledIdx);
avgOptBeamPairIdxScalarTest = avgOptBeamPairIdxScalarTest(shuffledIdx);
rsrpMatTest = rsrpMatTest(:,:,shuffledIdx);

valOut = avgOptBeamPairIdxCellTest(1:valDataLen, :);
testOutCat = avgOptBeamPairIdxCellTest(1+valDataLen:end, :);

sampledLocMatTest = locationMatTest(1:prm.NRepeatSameLoc:end, :);
sampledLocMatTest = sampledLocMatTest(shuffledIdx, :);

valInput = sampledLocMatTest(1:valDataLen, :);
testInput = sampledLocMatTest(valDataLen+1:end, :);

Plot Optimal Beam Pair Distribution for Training Data

Plot the location and the optimal beam pair for each training sample (200 in total). Each color
represents one beam pair index. In other words, the data points with the same color belong to the
same class. Increase the training data set to possibly include each beam pair value, though the actual
distribution of the beam pairs would depend on the scatterer and transmitter locations.

figure
rng(111) % for colors in plot
color = rand(NBeamPairInTrainData, 3);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-102

uniqueOptBeamPairIdx = unique(avgOptBeamPairIdxScalarTrain);
for n = 1:length(uniqueOptBeamPairIdx)
 beamPairIdx = find(avgOptBeamPairIdxScalarTrain == uniqueOptBeamPairIdx(n));
 locX = sampledLocMatTrain(beamPairIdx, 1);
 locY = sampledLocMatTrain(beamPairIdx, 2);
 scatter(locX, locY, [], color(n, :));
 hold on;
end
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
hold off
xlabel('x (m)')
ylabel('y (m)')
xlim([0 10])
ylim([0 10])
title('Optimal Beam Pair Indices (Training Data)')

figure
histogram(trainOut)
title('Histogram of Optimal Beam Pair Indices (Training Data)')
xlabel('Beam Pair Index')
ylabel('Number of Occurrences')

 Neural Network for Beam Selection

4-103

Plot Optimal Beam Pair Distribution for Validation Data

figure
rng(111) % for colors in plot
color = rand(NBeamPairInTestData, 3);
uniqueOptBeamPairIdx = unique(avgOptBeamPairIdxScalarTest(1:valDataLen));
for n = 1:length(uniqueOptBeamPairIdx)
 beamPairIdx = find(avgOptBeamPairIdxScalarTest(1:valDataLen) == uniqueOptBeamPairIdx(n));
 locX = sampledLocMatTest(beamPairIdx, 1);
 locY = sampledLocMatTest(beamPairIdx, 2);
 scatter(locX, locY, [], color(n, :));
 hold on;
end
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
hold off
xlabel('x (m)')
ylabel('y (m)')
xlim([0 10])
ylim([0 10])
title('Optimal Beam Pair Indices (Validation Data)')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-104

figure
histogram(valOut)
title('Histogram of Optimal Beam Pair Indices (Validation Data)')
xlabel('Beam Pair Index')
ylabel('Number of Occurrences')

 Neural Network for Beam Selection

4-105

Plot Optimal Beam Pair Distribution for Test Data

figure
rng(111) % for colors in plots
color = rand(NBeamPairInTestData, 3);
uniqueOptBeamPairIdx = unique(avgOptBeamPairIdxScalarTest(1+valDataLen:end));
for n = 1:length(uniqueOptBeamPairIdx)
 beamPairIdx = find(avgOptBeamPairIdxScalarTest(1+valDataLen:end) == uniqueOptBeamPairIdx(n));
 locX = sampledLocMatTest(beamPairIdx, 1);
 locY = sampledLocMatTest(beamPairIdx, 2);
 scatter(locX, locY, [], color(n, :));
 hold on;
end
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
hold off
xlabel('x (m)')
ylabel('y (m)')
xlim([0 10])
ylim([0 10])
title('Optimal Beam Pair Indices (Test Data)')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-106

figure
histogram(testOutCat)
title('Histogram of Optimal Beam Pair Indices (Test Data)')
xlabel('Beam Pair Index')
ylabel('Number of Occurrences')

 Neural Network for Beam Selection

4-107

Design and Train Neural Network

Train a neural network with four hidden layers. The design is motivated by [3 on page 4-115] (four
hidden layers) and [5 on page 4-115] (two hidden layers with 128 neurons in each layer) in which the
receiver locations are also considered as the input to the neural network. To enable training, adjust
the doTraining logical.

This example also provides an option to weight the classes. Classes that occur more frequently have
smaller weights and classes that occur less frequently have larger weights. To use class weighting,
adjust the useDiffClassWeights logical.

Modify the network to experiment with different designs. If you modify one of the provided data sets,
you must retrain the network with the modified data sets. Retraining the network can take a
significant amount of time. Adjust the saveNet logical to use the trained network in subsequent runs.

doTraining = false;
useDiffClassWeights = false;
saveNet = false;

if doTraining
 if useDiffClassWeights
 catCount = countcats(trainOut);
 catFreq = catCount/length(trainOut);
 nnzIdx = (catFreq ~= 0);
 medianCount = median(catFreq(nnzIdx));
 classWeights = 10*ones(size(catFreq));
 classWeights(nnzIdx) = medianCount./catFreq(nnzIdx);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-108

 filename = 'nnBS_trainedNetwWeighting.mat';
 else
 classWeights = ones(1,NBeamPairInTestData);
 filename = 'nnBS_trainedNet.mat';
 end

 % Neural network design
 layers = [...
 featureInputLayer(3,'Name','input','Normalization','rescale-zero-one')

 fullyConnectedLayer(96,'Name','linear1')
 leakyReluLayer(0.01,'Name','leakyRelu1')

 fullyConnectedLayer(96,'Name','linear2')
 leakyReluLayer(0.01,'Name','leakyRelu2')

 fullyConnectedLayer(96,'Name','linear3')
 leakyReluLayer(0.01,'Name','leakyRelu3')

 fullyConnectedLayer(96,'Name','linear4')
 leakyReluLayer(0.01,'Name','leakyRelu4')

 fullyConnectedLayer(NBeamPairInTrainData,'Name','linear5')
 softmaxLayer('Name','softmax')
 classificationLayer('ClassWeights',classWeights,'Classes',allBeamPairIdxCell,'Name','output')];

 maxEpochs = 1000;
 miniBatchSize = 256;

 options = trainingOptions('adam', ...
 'MaxEpochs',maxEpochs, ...
 'MiniBatchSize',miniBatchSize, ...
 'InitialLearnRate',1e-4, ...
 'ValidationData',{valInput,valOut}, ...
 'ValidationFrequency',500, ...
 'OutputNetwork', 'best-validation-loss', ...
 'Shuffle','every-epoch', ...
 'Plots','training-progress', ...
 'ExecutionEnvironment','cpu', ...
 'Verbose',0);

 % Train the network
 net = trainNetwork(trainInput,trainOut,layers,options);

 if saveNet
 save(filename,'net');
 end
else
 if useDiffClassWeights
 load 'nnBS_trainedNetwWeighting.mat';
 else
 load 'nnBS_trainedNet.mat';
 end
end

 Neural Network for Beam Selection

4-109

Compare Different Approaches: Top-K Accuracy

This section tests the trained network with unseen test data considering the top-K accuracy metric.
The top-K accuracy metric has been widely used in the neural network-based beam selection task [2
on page 4-115]-[6 on page 4-115].

Given a receiver location, the neural network first outputs K recommended beam pairs. Then it
performs an exhaustive sequential search on these K beam pairs and selects the one with the highest
average RSRP as the final prediction. If the true optimal beam pair is the final selected beam pair,
then a successful prediction occurs. Equivalently, a success occurs when the true optimal beam pair
is one of the K recommended beam pairs by the neural network.

Three benchmarks are compared. Each scheme produces the K recommended beam pairs.

1 KNN - For a test sample, this method first collects K closest training samples based on GPS
coordinates. The method then recommends all the beam pairs associated with these K training
samples. Since each training sample has a corresponding optimal beam pair, the number of beam
pairs recommended is at most K(some beam pairs might be the same).

2 Statistical Info [5 on page 4-115] - This method first ranks all the beam pairs according to their
relative frequency in the training set, and then always selects the first K beam pairs.

3 Random [5 on page 4-115] - For a test sample, this method randomly chooses K beam pairs.

The plot shows that for K = 8, the accuracy is already more than 90%, which highlights the
effectiveness of using the trained neural network for the beam selection task. When K = 16, every
scheme (except KNN) is relaxed to the exhaustive search over all the 16 beam pairs, and hence
achieves an accuracy of 100%. However, when K = 16, KNN considers 16 closest training samples,
and the number of distinct beam pairs from these samples is often less than 16. Hence, KNN does not
achieve an accuracy of 100%.

rng(111) % for repeatability of the "Random" policy
testOut = avgOptBeamPairIdxScalarTest(1+valDataLen:end, :);
statisticCount = countcats(testOutCat);
predTestOutput = predict(net,testInput,'ExecutionEnvironment','cpu');

K = prm.numBeams^2;
accNeural = zeros(1,K);
accKNN = zeros(1,K);
accStatistic = zeros(1,K);
accRandom = zeros(1,K);
for k = 1:K
 predCorrectNeural = zeros(testDataLen,1);
 predCorrectKNN = zeros(testDataLen,1);
 predCorrectStats = zeros(testDataLen,1);
 predCorrectRandom = zeros(testDataLen,1);
 knnIdx = knnsearch(trainInput,testInput,'K',k);

 for n = 1:testDataLen
 trueOptBeamIdx = testOut(n);

 % Neural Network
 [~, topKPredOptBeamIdx] = maxk(predTestOutput(n, :),k);
 if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0
 % if true, then the true correct index belongs to one of the K predicted indices
 predCorrectNeural(n,1) = 1;
 end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-110

 % KNN
 neighborsIdxInTrainData = knnIdx(n,:);
 topKPredOptBeamIdx= avgOptBeamPairIdxScalarTrain(neighborsIdxInTrainData);
 if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0
 % if true, then the true correct index belongs to one of the K predicted indices
 predCorrectKNN(n,1) = 1;
 end

 % Statistical Info
 [~, topKPredOptBeamIdx] = maxk(statisticCount,k);
 if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0
 % if true, then the true correct index belongs to one of the K predicted indices
 predCorrectStats(n,1) = 1;
 end

 % Random
 topKPredOptBeamIdx = randperm(prm.numBeams*prm.numBeams,k);
 if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0
 % if true, then the true correct index belongs to one of the K predicted indices
 predCorrectRandom(n,1) = 1;
 end

 end

 accNeural(k) = sum(predCorrectNeural)/testDataLen*100;
 accKNN(k) = sum(predCorrectKNN)/testDataLen*100;
 accStatistic(k) = sum(predCorrectStats)/testDataLen*100;
 accRandom(k) = sum(predCorrectRandom)/testDataLen*100;

end

figure
lineWidth = 1.5;
colorNeural = [0 0.4470 0.7410];
colorKNN = [0.8500 0.3250 0.0980];
colorStats = [0.4940 0.1840 0.5560];
colorRandom = [0.4660 0.6740 0.1880];
plot(1:K,accNeural,'--*','LineWidth',lineWidth,'Color',colorNeural)
hold on
plot(1:K,accKNN,'--o','LineWidth',lineWidth,'Color',colorKNN)
plot(1:K,accStatistic,'--s','LineWidth',lineWidth,'Color',colorStats)
plot(1:K,accRandom,'--d','LineWidth',lineWidth,'Color',colorRandom)
hold off
grid on
xticks(1:K)
xlabel('K','interpreter','latex')
ylabel('Top-K Accuracy','interpreter','latex')
title('Performance Comparison of Different Beam Pair Selection Schemes')
legend('Neural Network','KNN','Statistical Info','Random','Location','best')

 Neural Network for Beam Selection

4-111

Compare Different Approaches: Average RSRP

Using unseen test data, compute the average RSRP achieved by the neural network and the three
benchmarks. The plot shows that using the trained neural network results in an average RSRP close
to the optimal exhaustive search.

rng(111) % for repeatability of the "Random" policy
K = prm.numBeams^2;
rsrpOptimal = zeros(1,K);
rsrpNeural = zeros(1,K);
rsrpKNN = zeros(1,K);
rsrpStatistic = zeros(1,K);
rsrpRandom = zeros(1,K);
for k = 1:K
 rsrpSumOpt = 0;
 rsrpSumNeural = 0;
 rsrpSumKNN = 0;
 rsrpSumStatistic = 0;
 rsrpSumRandom = 0;

 knnIdx = knnsearch(trainInput,testInput,'K',k);

 for n = 1:testDataLen
 % Exhaustive Search
 trueOptBeamIdx = testOut(n);
 rsrp = rsrpMatTest(:,:,valDataLen+n);
 rsrpSumOpt = rsrpSumOpt + rsrp(trueOptBeamIdx);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-112

 % Neural Network
 [~, topKPredOptCatIdx] = maxk(predTestOutput(n, :),k);
 rsrpSumNeural = rsrpSumNeural + max(rsrp(topKPredOptCatIdx));

 % KNN
 neighborsIdxInTrainData = knnIdx(n,:);
 topKPredOptBeamIdxKNN = avgOptBeamPairIdxScalarTrain(neighborsIdxInTrainData);
 rsrpSumKNN = rsrpSumKNN + max(rsrp(topKPredOptBeamIdxKNN));

 % Statistical Info
 [~, topKPredOptCatIdxStat] = maxk(statisticCount,k);
 rsrpSumStatistic = rsrpSumStatistic + max(rsrp(topKPredOptCatIdxStat));

 % Random
 topKPredOptBeamIdxRand = randperm(prm.numBeams*prm.numBeams,k);
 rsrpSumRandom = rsrpSumRandom + max(rsrp(topKPredOptBeamIdxRand));
 end
 rsrpOptimal(k) = rsrpSumOpt/testDataLen/prm.NRepeatSameLoc;
 rsrpNeural(k) = rsrpSumNeural/testDataLen/prm.NRepeatSameLoc;
 rsrpKNN(k) = rsrpSumKNN/testDataLen/prm.NRepeatSameLoc;
 rsrpStatistic(k) = rsrpSumStatistic/testDataLen/prm.NRepeatSameLoc;
 rsrpRandom(k) = rsrpSumRandom/testDataLen/prm.NRepeatSameLoc;
end

figure
lineWidth = 1.5;
plot(1:K,rsrpOptimal,'--h','LineWidth',lineWidth,'Color',[0.6350 0.0780 0.1840]);
hold on
plot(1:K,rsrpNeural,'--*','LineWidth',lineWidth,'Color',colorNeural)
plot(1:K,rsrpKNN,'--o','LineWidth',lineWidth,'Color',colorKNN)
plot(1:K,rsrpStatistic,'--s','LineWidth',lineWidth,'Color',colorStats)
plot(1:K,rsrpRandom,'--d','LineWidth',lineWidth, 'Color',colorRandom)
hold off
grid on
xticks(1:K)
xlabel('K','interpreter','latex')
ylabel('Average RSRP')
title('Performance Comparison of Different Beam Pair Selection Schemes')
legend('Exhaustive Search','Neural Network','KNN','Statistical Info','Random','Location','best')

 Neural Network for Beam Selection

4-113

Compare the end values for the optimal, neural network, and KNN approaches.

[rsrpOptimal(end-3:end); rsrpNeural(end-3:end); rsrpKNN(end-3:end);]

ans = 3×4

 80.7363 80.7363 80.7363 80.7363
 80.7363 80.7363 80.7363 80.7363
 80.5067 80.5068 80.5069 80.5212

The performance gap between KNN and the optimal methods indicates that the KNN might not
perform well even when a larger set of beam pairs is considered, say, 256.

Plot Confusion Matrix

We observe that the classes with fewer elements are negatively impacted with the trained network.
Using different weights for different classes could avoid this. Explore the same with the
useDiffClassWeights logical and specify custom weights per class.

predLabels = classify(net,testInput,'ExecutionEnvironment','cpu');
figure;
cm = confusionchart(testOutCat,predLabels);
title('Confusion Matrix')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-114

Conclusion and Further Exploration

This example describes the application of a neural network to the beam selection task for a 5G NR
system. You can design and train a neural network that outputs a set of K good beam pairs. Beam
sweeping overhead can be reduced by an exhaustive search only on those selected K beam pairs.

The example allows you to specify the scatterers in a MIMO channel. To see the impact of the channel
on the beam selection, experiment with different scenarios. The example also provides presaved
datasets that can be used to experiment with different network structures and training
hyperparameters.

From simulation results, for the prerecorded MIMO scattering channel for 16 beam pairs, the
proposed algorithm can achieve a top-K accuracy of 90% when K = 8. This indicates with the neural
network it is sufficient to perform an exhaustive search over only half of all the beam pairs, reducing
the beam sweeping overhead by 50%. Experiment with varying other system parameters to see the
efficacy of the network by regenerating data, then retraining and retesting the network.

References

1 3GPP TR 38.802, "Study on New Radio access technology physical layer aspects." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

2 Klautau, A., González-Prelcic, N., and Heath, R. W., "LIDAR data for deep learning-based
mmWave beam-selection," IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 909–912, Jun.
2019.

 Neural Network for Beam Selection

4-115

3 Heng, Y., and Andrews, J. G., "Machine Learning-Assisted Beam Alignment for mmWave Systems,"
2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/
GLOBECOM38437.2019.9013296.

4 Klautau, A., Batista, P., González-Prelcic, N., Wang, Y., and Heath, R. W., "5G MIMO Data for
Machine Learning: Application to Beam-Selection Using Deep Learning," 2018 Information
Theory and Applications Workshop (ITA), 2018, pp. 1-9, doi: 10.1109/ITA.2018.8503086.

5 Matteo, Z., <https://github.com/ITU-AI-ML-in-5G-Challenge/PS-012-ML5G-PHY-Beam-
Selection_BEAMSOUP> (This is the team achieving the highest test score in the ITU Artificial
Intelligence/Machine Learning in 5G Challenge in 2020).

6 Sim, M. S., Lim, Y., Park, S. H., Dai, L., and Chae, C., "Deep Learning-Based mmWave Beam
Selection for 5G NR/6G With Sub-6 GHz Channel Information: Algorithms and Prototype
Validation," IEEE Access, vol. 8, pp. 51634-51646, 2020.

Local Function
function prm = validateParams(prm)
% Validate user specified parameters and return updated parameters
%
% Only cross-dependent checks are made for parameter consistency.

 if strcmpi(prm.FreqRange,'FR1')
 if prm.CenterFreq > 7.125e9 || prm.CenterFreq < 410e6
 error(['Specified center frequency is outside the FR1 ', ...
 'frequency range (410 MHz - 7.125 GHz).']);
 end
 if strcmpi(prm.SSBlockPattern,'Case D') || ...
 strcmpi(prm.SSBlockPattern,'Case E')
 error(['Invalid SSBlockPattern for selected FR1 frequency ' ...
 'range. SSBlockPattern must be one of ''Case A'' or ' ...
 '''Case B'' or ''Case C'' for FR1.']);
 end
 if ~((length(prm.SSBTransmitted)==4) || ...
 (length(prm.SSBTransmitted)==8))
 error(['SSBTransmitted must be a vector of length 4 or 8', ...
 'for FR1 frequency range.']);
 end
 if (prm.CenterFreq <= 3e9) && (length(prm.SSBTransmitted)~=4)
 error(['SSBTransmitted must be a vector of length 4 for ' ...
 'center frequency less than or equal to 3GHz.']);
 end
 if (prm.CenterFreq > 3e9) && (length(prm.SSBTransmitted)~=8)
 error(['SSBTransmitted must be a vector of length 8 for ', ...
 'center frequency greater than 3GHz and less than ', ...
 'or equal to 7.125GHz.']);
 end
 else % 'FR2'
 if prm.CenterFreq > 52.6e9 || prm.CenterFreq < 24.25e9
 error(['Specified center frequency is outside the FR2 ', ...
 'frequency range (24.25 GHz - 52.6 GHz).']);
 end
 if ~(strcmpi(prm.SSBlockPattern,'Case D') || ...
 strcmpi(prm.SSBlockPattern,'Case E'))
 error(['Invalid SSBlockPattern for selected FR2 frequency ' ...
 'range. SSBlockPattern must be either ''Case D'' or ' ...
 '''Case E'' for FR2.']);
 end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-116

https://github.com/ITU-AI-ML-in-5G-Challenge/PS-012-ML5G-PHY-Beam-Selection_BEAMSOUP
https://github.com/ITU-AI-ML-in-5G-Challenge/PS-012-ML5G-PHY-Beam-Selection_BEAMSOUP

 if length(prm.SSBTransmitted)~=64
 error(['SSBTransmitted must be a vector of length 64 for ', ...
 'FR2 frequency range.']);
 end
 end

 % Number of beams at transmit/receive ends
 prm.numBeams = sum(prm.SSBTransmitted);

 prm.NumTx = prod(prm.TxArraySize);
 prm.NumRx = prod(prm.RxArraySize);
 if prm.NumTx==1 || prm.NumRx==1
 error(['Number of transmit or receive antenna elements must be', ...
 ' greater than 1.']);
 end
 prm.IsTxURA = (prm.TxArraySize(1)>1) && (prm.TxArraySize(2)>1);
 prm.IsRxURA = (prm.RxArraySize(1)>1) && (prm.RxArraySize(2)>1);

 if ~(strcmpi(prm.RSRPMode,'SSSonly') || ...
 strcmpi(prm.RSRPMode,'SSSwDMRS'))
 error(['Invalid RSRP measuring mode. Specify either ', ...
 '''SSSonly'' or ''SSSwDMRS'' as the mode.']);
 end

 % Select SCS based on SSBlockPattern
 switch lower(prm.SSBlockPattern)
 case 'case a'
 scs = 15;
 cbw = 10;
 scsCommon = 15;
 case {'case b', 'case c'}
 scs = 30;
 cbw = 25;
 scsCommon = 30;
 case 'case d'
 scs = 120;
 cbw = 100;
 scsCommon = 120;
 case 'case e'
 scs = 240;
 cbw = 200;
 scsCommon = 120;
 end
 prm.SCS = scs;
 prm.ChannelBandwidth = cbw;
 prm.SubcarrierSpacingCommon = scsCommon;
end

See Also
Functions
featureInputLayer | fullyConnectedLayer | reluLayer | trainNetwork |
trainingOptions

Objects
phased.ULA | phased.URA | phased.IsotropicAntennaElement

 Neural Network for Beam Selection

4-117

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “NR SSB Beam Sweeping” (5G Toolbox)
• “NR Downlink Transmit-End Beam Refinement Using CSI-RS” (5G Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-118

Spectrum Sensing with Deep Learning to Identify 5G and LTE
Signals

This example shows how to train a semantic segmentation network using deep learning for spectrum
monitoring. One of the uses of spectrum monitoring is to characterize spectrum occupancy. The
neural network in this example is trained to identify 5G NR and LTE signals in a wideband
spectrogram.

Introduction

Computer vision uses the semantic segmentation technique to identify objects and their locations in
an image or a video. In wireless signal processing, the objects of interest are wireless signals, and the
locations of the objects are the frequency and time occupied by the signals. In this example we apply
the semantic segmentation technique to wireless signals to identify spectral content in a wideband
spectrogram.

In the following, you will:

1 Generate training signals.
2 Apply transfer learning to a semantic segmentation network to identify 5G NR and LTE signals in

time and frequency.
3 Test the trained network with synthetic signals.
4 Use an SDR to test the network with over the air (OTA) signals.

Generate Training Data

One advantage of wireless signals in the deep learning domain is the fact that the signals are
synthesized. Also, we have highly reliable channel and RF impairment models. As a result, instead of
collecting and manually labeling signals, you can generate 5G NR signals using 5G Toolbox™ and LTE
signals using LTE Toolbox™ functions. You can pass these signals through standards-specified
channel models to create the training data.

Train the network with frames that contain only 5G NR or LTE signals and then shift these signals in
frequency randomly within the band of interest. Each frame is 40 ms long, which is the duration of 40
subframes. The network assumes that the 5G NR or LTE signal occupies the same band for the whole
frame duration. To test the network performance, create frames that contain both 5G NR and LTE
signals on distinct random bands within the band of interest.

Use a sampling rate of 61.44 MHz. This rate is high enough to process most of the latest standard
signals and several low-cost software defined radio (SDR) systems can sample at this rate providing
about 50 MHz of useful bandwidth. To monitor a wider band, you can increase the sample rate,
regenerate training frames and retrain the network.

Use the helperSpecSenseTrainingData function to generate training frames. This function
generates 5G NR signals using the helperSpecSenseNRSignal function and LTE signals using the
helperSpecSenseLTESignal function. This table lists 5G NR variable signal parameters.

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-119

This table lists LTE variable signal parameters.

Use the nrCDLChannel (5G Toolbox) and the lteFadingChannel (LTE Toolbox) functions to add
channel impairments. For details of the channel configurations, see the
helperSpecSenseTrainingData function. This table lists channel parameters.

The helperSpecSenseTrainingData function uses the helperSpecSenseSpectrogramImage
function to create spectrogram images from complex baseband signals. Calculate the spectrograms
using an FFT length of 4096. Generate 256 by 256 RGB images. This image size allows a large
enough batch of images to fit in memory during training while providing enough resolution in time
and frequency. If your GPU does not have sufficient memory, you can resize the images to smaller
sizes or reduce the training batch size.

The generateTrainData variable determines whether training data is to be downloaded or
generated. Choosing "Use downloaded data" sets the generateTrainData variable to false.
Choosing "Generate training data" sets the generateTrainData variable to true to generate the
training data from scratch. Data generation may take several hours depending on the configuration of
your computer. Using a PC with Intel® Xeon® W-2133 CPU @ 3.60GHz and creating a parallel pool
with six workers with the Parallel Computing Toolbox™, training data generation takes about an hour.
Choose "Train network now" to train the network. This process takes about 20 minutes with the same
PC and NVIDIA® Titan V GPU. Choose "Use trained network" to skip network training. Instead, the
example downloads the trained network.

Use 900 frames from each set of signals: 5G NR only, LTE only and 5G NR and LTE both. If you
increase the number of possible values for the system parameters, increase the number of training
frames.

imageSize = [256 256]; % pixels
sampleRate = 61.44e6; % Hz
numSubFrames = 40; % corresponds to 40 ms
frameDuration = numSubFrames*1e-3; % seconds
trainDir = fullfile(pwd,'TrainingData');

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-120

generateTrainData = ;

trainNow = ;
if ~generateTrainData || ~trainNow
 helperSpecSenseDownloadData()
end

Starting download of data files from:
 https://www.mathworks.com/supportfiles/spc/SpectrumSensing/SpectrumSenseTrainingDataNetwork.tar.gz
Download complete. Extracting files.
Extract complete.

if generateTrainData
 numFramesPerStandard = 900;
 helperSpecSenseTrainingData(numFramesPerStandard,imageSize,trainDir,numSubFrames,sampleRate);
end

Load Training Data

Use the imageDatastore function to load training images with the spectrogram of 5G NR and LTE
signals. The imageDatastore function enables you to efficiently load a large collection of images
from disk. Spectrogram images are stored in .png files.

imds = imageDatastore(trainDir,'IncludeSubfolders',false,'FileExtensions','.png');

Use the pixelLabelDatastore (Computer Vision Toolbox) function to load spectrogram pixel label
image data. Each pixel is labeled as one of "NR", "LTE" or "Noise". A pixel label datastore
encapsulates the pixel label data and the label ID to a class name mapping. Pixel labels are stored
in .hdf files.

classNames = ["NR" "LTE" "Noise"];
pixelLabelID = [127 255 0];
pxdsTruth = pixelLabelDatastore(trainDir,classNames,pixelLabelID,...
 'IncludeSubfolders',false,'FileExtensions','.hdf');

Analyze Dataset Statistics

To see the distribution of class labels in the training dataset, use the countEachLabel (Computer
Vision Toolbox) function to count the number of pixels by class label, and plot the pixel counts by
class.

tbl = countEachLabel(pxdsTruth);
frequency = tbl.PixelCount/sum(tbl.PixelCount);
figure
bar(1:numel(classNames),frequency)
grid on
xticks(1:numel(classNames))
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-121

Ideally, all classes would have an equal number of observations. However, with wireless signals it is
common for the classes in the training set to be imbalanced. 5G NR signals may have larger
bandwidth than LTE signals, and noise fills the background. Because the learning is biased in favor of
the dominant classes, imbalance in the number of observations per class can be detrimental to the
learning process. In the Balance Classes Using Class Weighting on page 4-123 section, class
weighting is used to mitigate bias caused by imbalance in the number of observations per class.

Prepare Training, Validation, and Test Sets

The deep neural network uses 80% of the single signal images from the dataset for training and, 20%
of the images for validation. The helperSpecSensePartitionData function randomly splits the
image and pixel label data into training and validation sets.

[imdsTrain,pxdsTrain,imdsVal,pxdsVal] = helperSpecSensePartitionData(imds,pxdsTruth,[80 20]);
cdsTrain = combine(imdsTrain,pxdsTrain);
cdsVal = combine(imdsVal,pxdsVal);

% Apply a transform to resize the image and pixel label data to the desired
% size.
cdsTrain = transform(cdsTrain, @(data)preprocessTrainingData(data,imageSize));
cdsVal = transform(cdsVal, @(data)preprocessTrainingData(data,imageSize));

Train Deep Neural Network

Use the deeplabv3plusLayers (Computer Vision Toolbox) function to create a semantic
segmentation neural network. Choose resnet50 (Deep Learning Toolbox) as the base network and
specify the input image size (number of pixels used to represent time and frequency axes) and the
number of classes. If the Deep Learning Toolbox™ Model for ResNet-50 Network support package is
not installed, then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install. Check that the
installation is successful by typing resnet50 at the command line. If the required support package is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-122

baseNetwork = ;
lgraph = deeplabv3plusLayers(imageSize,numel(classNames),baseNetwork);

Balance Classes Using Class Weighting

To improve training when classes in the training set are not balanced, you can use class weighting to
balance the classes. Use the pixel label counts computed earlier with the countEachLabel function
and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;

Specify the class weights using a pixelClassificationLayer (Computer Vision Toolbox).

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

Select Training Options

Configure training using the trainingOptions (Deep Learning Toolbox) function to specify the
stochastic gradient descent with momentum (SGDM) optimization algorithm and the hyper-
parameters used for SGDM. To get the best performance from the network, you can use the
Experiment Manager (Deep Learning Toolbox) to optimize training options.

opts = trainingOptions("sgdm",...
 MiniBatchSize = 40,...
 MaxEpochs = 20, ...
 LearnRateSchedule = "piecewise",...
 InitialLearnRate = 0.02,...
 LearnRateDropPeriod = 10,...
 LearnRateDropFactor = 0.1,...
 ValidationData = cdsVal,...
 ValidationPatience = 5,...
 Shuffle="every-epoch",...
 OutputNetwork = "best-validation-loss",...
 Plots = 'training-progress')

opts =
 TrainingOptionsSGDM with properties:

 Momentum: 0.9000
 InitialLearnRate: 0.0200
 LearnRateSchedule: 'piecewise'
 LearnRateDropFactor: 0.1000
 LearnRateDropPeriod: 10
 L2Regularization: 1.0000e-04
 GradientThresholdMethod: 'l2norm'
 GradientThreshold: Inf
 MaxEpochs: 20
 MiniBatchSize: 40
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: [1×1 matlab.io.datastore.TransformedDatastore]
 ValidationFrequency: 50
 ValidationPatience: 5
 Shuffle: 'every-epoch'
 CheckpointPath: ''

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-123

 CheckpointFrequency: 1
 CheckpointFrequencyUnit: 'epoch'
 ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFcn: []
 Plots: 'training-progress'
 SequenceLength: 'longest'
 SequencePaddingValue: 0
 SequencePaddingDirection: 'right'
 DispatchInBackground: 0
 ResetInputNormalization: 1
 BatchNormalizationStatistics: 'population'
 OutputNetwork: 'best-validation-loss'

Train the network using the combined training data store, cdsTrain. The combined training data
store contains single signal frames and true pixel labels.

if trainNow
 [net,trainInfo] = trainNetwork(cdsTrain,lgraph,opts); %#ok<UNRCH>
else
 load specSenseTrainedNet net
end

Test with Synthetic Signals

Test the network signal identification performance using signals that contain both 5G NR and LTE
signals. Use the semanticseg (Computer Vision Toolbox) function to get the pixel estimates of the
spectrogram images in the test data set. Use the evaluateSemanticSegmentation (Computer
Vision Toolbox) function to compute various metrics to evaluate the quality of the semantic
segmentation results.

dataDir = fullfile(trainDir,'LTE_NR');
imds = imageDatastore(dataDir,'IncludeSubfolders',false,'FileExtensions','.png');
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network

* Processed 900 images.

pxdsTruth = pixelLabelDatastore(dataDir,classNames,pixelLabelID,...
 'IncludeSubfolders',false,'FileExtensions','.hdf');
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 900 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.88609 0.87117 0.79066 0.79601 0.65623

Plot the normalized confusion matrix for all test frames.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-124

cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
 classNames, Normalization='row-normalized');
cm.Title = 'Normalized Confusion Matrix';

Plot the histogram of the per-image intersection over union (IoU). For each class, IoU is the ratio of
correctly classified pixels to the total number of ground truth and predicted pixels in that class.

imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
grid on
xlabel('IoU')
ylabel('Number of Frames')
title('Frame Mean IoU')

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-125

Inspecting low SNR frames shows that the spectrogram images do not contain visual features that
can help the network identify the low SNR frames correctly. Repeat the same process, considering
only the frames with average SNR of 50dB or 100dB and ignoring the frames with average SNR of
40dB.

files = dir(fullfile(dataDir,'*.mat'));
dataFiles = {};
labelFiles = {};
for p=1:numel(files)
 load(fullfile(files(p).folder,files(p).name),'params');
 if params.SNRdB > 40
 [~,name] = fileparts(files(p).name);
 dataFiles = [dataFiles; fullfile(files(p).folder,[name '.png'])]; %#ok<AGROW>
 labelFiles = [labelFiles; fullfile(files(p).folder,[name '.hdf'])]; %#ok<AGROW>
 end
end
imds = imageDatastore(dataFiles);
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network

* Processed 608 images.

pxdsTruth = pixelLabelDatastore(labelFiles,classNames,pixelLabelID);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 608 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-126

 0.94487 0.94503 0.89799 0.89582 0.74699

Considering only the set of frames with higher SNR, replot the normalized confusion matrix and
observe the improved network accuracy.

cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
 classNames, Normalization='row-normalized');
cm.Title = 'Normalized Confusion Matrix';

Considering only the set of frames with higher SNR, replot the per-image IoU histogram and observe
the improved distribution.

imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
grid on
xlabel('IoU')
ylabel('Number of Frames')
title('Frame Mean IoU')

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-127

Identify 5G NR and LTE Signals in Spectrogram

Visualize the received spectrum, true labels, and predicted labels for the image with index 602.

imgIdx = 602;
rcvdSpectrogram = readimage(imds,imgIdx);
trueLabels = readimage(pxdsTruth,imgIdx);
predictedLabels = readimage(pxdsResults,imgIdx);
figure
helperSpecSenseDisplayResults(rcvdSpectrogram,trueLabels,predictedLabels, ...
 classNames,sampleRate,0,frameDuration)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-128

figure
helperSpecSenseDisplayIdentifiedSignals(rcvdSpectrogram,predictedLabels, ...
 classNames,sampleRate,0,frameDuration)

Test with Over-the-Air Signals

Test the performance of the trained network using over-the-air signal captures. Find a nearby base
station and tune the center frequency of your radio to cover the band of the signals you want to
identify. This example sets the center frequency to 2.35 GHz. If you have at least one ADALM-PLUTO
radio and have installed Communication Toolbox Support Package for ADALM-PLUTO Radio, you can
run this section of the code. In case you do not have access to an ADALM-PLUTO radio, this example
shows results of a test conducted using captured signals.

runSDRSection = false;
if helperIsPlutoSDRInstalled()
 radios = findPlutoRadio();
 if length(radios) >= 1
 runSDRSection = true;
 else
 disp("At least one ADALM-PLUTO radios is needed. Skipping SDR test.")
 end
else
 disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
 disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
 disp("Skipping SDR test.")
end

Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.

Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.

Skipping SDR test.

if runSDRSection
 % Set up PlutoSDR receiver

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-129

https://www.mathworks.com/hardware-support/adalm-pluto-radio.html

 rx = sdrrx('Pluto');
 rx.CenterFrequency = 2.35e9;
 rx.BasebandSampleRate = sampleRate;
 rx.SamplesPerFrame = frameDuration*rx.BasebandSampleRate;
 rx.OutputDataType = 'single';
 rx.EnableBurstMode = true;
 rx.NumFramesInBurst = 1;
 Nfft = 4096;
 overlap = 10;

 meanAllScores = zeros([imageSize numel(classNames)]);
 segResults = zeros([imageSize 10]);
 for frameCnt=1:10
 rxWave = rx();
 rxSpectrogram = helperSpecSenseSpectrogramImage(rxWave,Nfft,sampleRate,imageSize);

 [segResults(:,:,frameCnt),scores,allScores] = semanticseg(rxSpectrogram,net);
 meanAllScores = (meanAllScores*(frameCnt-1) + allScores) / frameCnt;
 end
 release(rx)

 [~,predictedLabels] = max(meanAllScores,[],3);
 figure
 helperSpecSenseDisplayResults(rxSpectrogram,[],predictedLabels,classNames,...
 sampleRate,rx.CenterFrequency,frameDuration)
 figure
 freqBand = helperSpecSenseDisplayIdentifiedSignals(rxSpectrogram,predictedLabels,...
 classNames,sampleRate,rx.CenterFrequency,frameDuration)
else
 figure
 imshow('lte_capture_result1.png')
 figure
 imshow('lte_capture_result2.png')
 figure
 imshow('nr_capture_result1.png')
 figure
 imshow('nr_capture_result2.png')
end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-130

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-131

Conclusions and Further Exploration

The trained network can distinguish 5G NR and LTE signals including two example captures from
real base stations. The network may not be able to identify every captured signal correctly. In such
cases, enhance the training data either by generating more representative synthetic signals or
capturing over-the-air signals and including these in the training set.

You can use the LTE “Cell Search, MIB and SIB1 Recovery” (LTE Toolbox) and the “NR Cell Search
and MIB and SIB1 Recovery” (5G Toolbox) examples to identify LTE and 5G NR base stations
manually to capture training data, respectively.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-132

If you need to monitor wider bands of spectrum, increase the sampleRate, regenerate the training
data and retrain the network.

Supporting Functions

function data = preprocessTrainingData(data, imageSize)
% Resize the training image and associated pixel label image.
data{1} = imresize(data{1},imageSize);
data{2} = imresize(data{2},imageSize);
end

See Also
classificationLayer | featureInputLayer | fullyConnectedLayer | reluLayer |
softmaxLayer | pixelLabelDatastore | countEachLabel | pixelClassificationLayer

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

4-133

Autoencoders for Wireless Communications

This example shows how to model an end-to-end communications system with an autoencoder to
reliably transmit information bits over a wireless channel.

Introduction

A traditional autoencoder is an unsupervised neural network that learns how to efficiently compress
data, which is also called encoding. The autoencoder also learns how to reconstruct the data from the
compressed representation such that the difference between the original data and the reconstructed
data is minimal.

Traditional wireless communication systems are designed to provide reliable data transfer over a
channel that impairs the transmitted signals. These systems have multiple components such as
channel coding, modulation, equalization, synchronization, etc. Each component is optimized
independently based on mathematical models that are simplified to arrive at closed form expressions.
On the contrary, an autoencoder jointly optimizes the transmitter and the receiver as a whole. This
joint optimization has the potential of providing a better performance than the traditional systems [1]
on page 4-149,[2] on page 4-149.

Traditional autoencoders are usually used to compress images, in other words remove redundancies
in an image and reduce its dimension. A wireless communication system on the other hand uses
channel coding and modulation techniques to add redundancy to the information bits. With this added
redundancy, the system can recover the information bits that are impaired by the wireless channel.
So, a wireless autoencoder actually adds redundancy and tries to minimize the number of errors in
the received information for a given channel while learning to apply both channel coding and
modulation in an unsupervised way.

Basic Autoencoder System

The following is the block diagram of a wireless autoencoder system. The encoder (transmitter) first
maps k information bits into a message s such that s ∈ {1, …, M}, where M = 2k. Then message s is
mapped to n real number to create x = f (s) ∈ ℝn. The last layer of the encoder imposes constraints on
x to further restrict the encoded symbols. The following are possible such constraints and are
implemented using the normalization layer:

• Energy constraint: ‖x‖2
2 ≤ n

• Average power constraint: E[|xi |2] ≤ 1, ∀i

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-134

Define the communication rate of this system as R = k/n [bits/channel use], where (n,k) means that
the system sends one of M = 2k messages using n channel uses. The channel impairs encoded (i.e.
transmitted) symbols to generate y ∈ ℝn. The decoder (i.e. receiver) produces an estimate, s, of the
transmitted message, s.

The input message is defined as a one-hot vector 1s ∈ ℝM, which is defined as a vector whose
elements are all zeros except the sth one. The channel is additive white Gaussian noise (AWGN) that
adds noise to achieve a given energy per data bit to noise power density ratio, Eb/No.

The autoencoder maps k data bits into n channel uses, which results in an effective coding rate of
R = k/n data bits per channel use. Then, 2 channel uses are mapped into a symbol, which results in 2
channel uses per symbol. Map the channel uses per channel symbol value to the BitsPerSymbol
parameter of the AWGN channel.

Define a (7,4) autoencoder network with energy normalization and a training Eb/No of 3 dB. In [1] on
page 4-149, authors showed that two fully connected layers for both the encoder (transmitter) and
the decoder (receiver) provides the best results with minimal complexity. Input layer
(featureInputLayer (Deep Learning Toolbox)) accepts a one-hot vector of length M. The encoder
has two fully connected layers (fullyConnectedLayer (Deep Learning Toolbox)). The first one has
M inputs and M outputs and is followed by an ReLU layer (reluLayer (Deep Learning Toolbox)). The
second fully connected layer has M inputs and n outputs and is followed by the normalization layer
(helperAEWNormalizationLayer.m). The encoder layers are followed by the AWGN channel layer
(helperAEWAWGNLayer.m). The output of the channel is passed to the decoder layers. The first
decoder layer is a fully connected layer that has n inputs and M outputs and is followed by an ReLU
layer. The second fully connected layer has M inputs and M outputs and is followed by a softmax layer
(softmaxLayer (Deep Learning Toolbox)), which outputs the probability of each M symbols. The
classification layer (classificationLayer (Deep Learning Toolbox)) outputs the most probable
transmitted symbol from 0 to M-1.

k = 4; % number of input bits
M = 2^k; % number of possible input symbols
n = 7; % number of channel uses
EbNo = 3; % Eb/No in dB

% Convert Eb/No to channel Eb/No values using the code rate
R = k/n;
EbNoChannel = EbNo + 10*log10(R);

 Autoencoders for Wireless Communications

4-135

wirelessAutoencoder = [
 featureInputLayer(M,"Name","One-hot input","Normalization","none")

 fullyConnectedLayer(M,"Name","fc_1")
 reluLayer("Name","relu_1")

 fullyConnectedLayer(n,"Name","fc_2")

 helperAEWNormalizationLayer("Method", "Energy", "Name", "wnorm")

 helperAEWAWGNLayer("Name","channel", ...
 "NoiseMethod","EbNo", ...
 "EbNo",EbNoChannel, ...
 "BitsPerSymbol",2, ... % channel use per channel symbol
 "SignalPower",1)

 fullyConnectedLayer(M,"Name","fc_3")
 reluLayer("Name","relu_2")

 fullyConnectedLayer(M,"Name","fc_4")
 softmaxLayer("Name","softmax")

 classificationLayer("Name","classoutput")]

wirelessAutoencoder =
 11x1 Layer array with layers:

 1 'One-hot input' Feature Input 16 features
 2 'fc_1' Fully Connected 16 fully connected layer
 3 'relu_1' ReLU ReLU
 4 'fc_2' Fully Connected 7 fully connected layer
 5 'wnorm' Wireless Normalization Energy normalization layer
 6 'channel' AWGN Channel AWGN channel with EbNo = 0.56962
 7 'fc_3' Fully Connected 16 fully connected layer
 8 'relu_2' ReLU ReLU
 9 'fc_4' Fully Connected 16 fully connected layer
 10 'softmax' Softmax softmax
 11 'classoutput' Classification Output crossentropyex

The helperAEWTrainWirelessAutoencoder.m function defines such a network based on the (n,k),
normalization method and the Eb/No values.

Train Autoencoder

Run the helperAEWTrainWirelessAutoencoder.m function to train a (2,2) autoencoder with
energy normalization. This function uses the trainingOptions (Deep Learning Toolbox) function to
select

• Adam (adaptive moment estimation) optimizer,
• Initial learning rate of 0.08,
• Maximum epochs of 10,
• Minibatch size of 100*M,
• Piecewise learning schedule with drop period of 5 and drop factor of 0.1.

Then, the helperAEWTrainWirelessAutoencoder.m function runs the trainNetwork (Deep
Learning Toolbox) function to train the autoencoder network with the selected options. Finally, this

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-136

function separates the network into encoder and decoder parts. Encoder starts with the input layer
and ends after the normalization layer. Decoder starts after the channel layer and ends with the
classification layer. A feature input layer is added at the beginning of the decoder.

Train the autoencoder with an Eb/No value that is low enough to result in some errors but not too low
such that the training algorithm cannot extract any useful information from the received symbols, y.
Set Eb/No to 3 dB.

n = 2; % number of channel uses
k = 2; % number of input bits
EbNo = 3; % dB
normalization = "Energy"; % Normalization "Energy" | "Average power"

[txNet(1),rxNet(1),infoTemp,wirelessAutoEncoder(1)] = ...
 helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info = infoTemp;

Plot the training progress. The validation accuracy quickly reaches more than 90% while the
validation loss keeps slowly decreasing. This behavior shows that the training Eb/No value was low
enough to cause some errors but not too low to avoid convergence. For definitions of validation
accuracy and validation loss, see “Monitor Deep Learning Training Progress” (Deep Learning
Toolbox) section.

figure
helperAEWPlotTrainingPerformance(info(1))

 Autoencoders for Wireless Communications

4-137

Use the plot object function of the trained network objects to show the layer graphs of the full
autoencoder, the encoder network, i.e. the transmitter, and the decoder network, i.e. the receiver.

figure
tiledlayout(2,2)
nexttile([2 1])
plot(wirelessAutoEncoder(1))
title('Autoencoder')
nexttile
plot(txNet(1))
title('Encoder/Tx')
nexttile
plot(rxNet(1))
title('Decoder/Rx')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-138

Simulate BLER Performance

Simulate the block error rate (BLER) performance of the (2,2) autoencoder. Set up simulation
parameters.

simParams.EbNoVec = 0:0.5:8;
simParams.MinNumErrors = 10;
simParams.MaxNumFrames = 300;
simParams.NumSymbolsPerFrame = 10000;
simParams.SignalPower = 1;

Generate random integers in the [0 M-1] range that represents k random information bits. Encode
these information bits into complex symbols with helperAEWEncode function. The
helperAEWEncode function runs the encoder part of the autoencoder then maps the real valued x
vector into a complex valued xc vector such that the odd and even elements are mapped into the in-
phase and the quadrature component of a complex symbol, respectively, where
xc = x(1:2:end) + jx(2:2:end). In other words, treat the x array as an interleaved complex array.

Pass the complex symbols through an AWGN channel. Decode the channel impaired complex symbols
with the helperAEWDecode function. The following code runs the simulation for each Eb/No point for
at least 10 block errors. To obtain more accurate results, increase minimum number of errors to at
least 100. If Parallel Computing Toolbox™ is installed and a license is available, uncomment the
parfor line to run the simulations on a parallel pool.

 Autoencoders for Wireless Communications

4-139

https://www.mathworks.com/products/parallel-computing.html

Plot the constellation learned by the autoencoder to send symbols through the AWGN channel
together with the received constellation. For a (2,2) configuration, autoencoder learns a QPSK
(M = 2k = 4) constellation with a phase rotation.

R = k/n;
EbNoChannelVec = simParams.EbNoVec + 10*log10(R);
M = 2^k;
txConst = comm.ConstellationDiagram(ShowReferenceConstellation=false, ...
 ShowLegend=true, ChannelNames={'Tx Constellation'});
rxConst = comm.ConstellationDiagram(ShowReferenceConstellation=false, ...
 ShowLegend=true, ChannelNames={'Rx Constellation'});
BLER = zeros(size(EbNoChannelVec));
%parfor trainingEbNoIdx = 1:length(EbNoChannelVec)
for trainingEbNoIdx = 1:length(EbNoChannelVec)
 EbNo = EbNoChannelVec(trainingEbNoIdx);
 chan = comm.AWGNChannel("BitsPerSymbol",2, ...
 "EbNo", EbNo, "SamplesPerSymbol", 1, "SignalPower", 1);

 numBlockErrors = 0;
 frameCnt = 0;
 while (numBlockErrors < simParams.MinNumErrors) ...
 && (frameCnt < simParams.MaxNumFrames)

 d = randi([0 M-1],simParams.NumSymbolsPerFrame,1); % Random information bits
 x = helperAEWEncode(d,txNet(1)); % Encoder
 txConst(x)
 y = chan(x); % Channel
 rxConst(y)
 dHat = helperAEWDecode(y,rxNet(1)); % Decoder

 numBlockErrors = numBlockErrors + sum(d ~= dHat);
 frameCnt = frameCnt + 1;
 end
 BLER(trainingEbNoIdx) = numBlockErrors / (frameCnt*simParams.NumSymbolsPerFrame);
end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-140

 Autoencoders for Wireless Communications

4-141

Compare the results with that of an uncoded QPSK system with block length n=2. For this n value,
the autoencoder gets the same BLER as an uncoded QPSK system.

figure
semilogy(simParams.EbNoVec,BLER,'-')
hold on
% Calculate uncoded block error rate (R=k/n=1)
pskBLER = 1-(1-berawgn(EbNoChannelVec,'psk',2^k,'nondiff')).^n;
semilogy(simParams.EbNoVec,pskBLER,'--')
hold off
ylim([1e-4 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend(sprintf('AE (%d,%d)',n,k),sprintf('QPSK (%d,%d)',n,k))

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-142

The well formed constellation together with the BLER results show that training for 10 epochs is
enough to get a satisfactory convergence.

Compare Constellation Diagrams

Compare learned constellations of several autoencoders normalized to unit energy and unit average
power. Train (2,4) autoencoder normalized to unit energy.

n = 2; % number of channel uses
k = 4; % number of input bits
EbNo = 9; % dB
normalization = "Energy";

[txNet(2),rxNet(2),infoTemp,wirelessAutoEncoder(2)] = ...
 helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info(2) = infoTemp;

Train (2,4) autoencoder normalized to unit average power.

n = 2; % number of channel uses
k = 4; % number of input bits
EbNo = 6; % dB
normalization = "Average power";

 Autoencoders for Wireless Communications

4-143

[txNet(3),rxNet(3),infoTemp,wirelessAutoEncoder(3)] = ...
 helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info(3) = infoTemp;

Train (7,4) autoencoder normalized to unit energy.

n = 7; % number of channel uses
k = 4; % number of input bits
EbNo = 3; % dB
normalization = "Energy";

[txNet(4),rxNet(4),infoTemp,wirelessAutoEncoder(4)] = ...
 helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info(4) = infoTemp;

Plot the constellation using the helperAEWPlotConstellation.m function. The trained (2,2)
autoencoder converges on a QPSK constellation with a phase shift as the optimal constellation for the
channel conditions experienced. The (2,4) autoencoder with energy normalization converges to a
16PSK constellation with a phase shift. Note that, energy normalization forces every symbol to have
unit energy and places the symbols on the unit circle. Given this constraint, best constellation is a
PSK constellation with equal angular distance between symbols. The (2,4) autoencoder with average
power normalization converges to a three-tier constellation of 1-6-9 symbols. Average power
normalization forces the symbols to have unity average power over time. This constraint results in an
APSK constellation, which is different than the conventional QAM or APSK schemes. Note that, this
network configuration may also converge to a two-tier constellation with 7-9 symbols based on the
random initial condition used during training. The last plot shows the 2-D mapping of the 7-D
constellation generated by the (7,4) autoencoder with energy constraint. 2-D mapping is obtained
using the t-Distributed Stochastic Neighbor Embedding (t-SNE) method (see tsne (Statistics and
Machine Learning Toolbox) function).

figure
subplot(2,2,1)
helperAEWPlotConstellation(txNet(1))
title(sprintf('(%d,%d) %s',info(1).n,info(1).k,info(1).Normalization))
subplot(2,2,2)
helperAEWPlotConstellation(txNet(2))
title(sprintf('(%d,%d) %s',info(2).n,info(2).k,info(2).Normalization))
subplot(2,2,3)
helperAEWPlotConstellation(txNet(3))
title(sprintf('(%d,%d) %s',info(3).n,info(3).k,info(3).Normalization))
subplot(2,2,4)
helperAEWPlotConstellation(txNet(4),'t-sne')
title(sprintf('(%d,%d) %s',info(4).n,info(4).k,info(4).Normalization))

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-144

Compare BLER Performance of Autoencoders with Coded and Uncoded QPSK

Simulate the BLER performance of a (7,4) autoencoder with that of (7,4) Hamming code with QPSK
modulation for both hard decision and maximum likelihood (ML) decoding. Use uncoded (4,4) QPSK
as a baseline. (4,4) uncoded QPSK is basically a QPSK modulated system that sends blocks of 4 bits
and measures BLER. The data for the following figures is obtained using
helperAEWSimulateBLER.mlx and helperAEWPrepareAutoencoders.mlx files.

load codedBLERResults.mat
figure
qpsk44BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^4;
semilogy(simParams.EbNoVec,qpsk44BLERTh,':*')
hold on
semilogy(simParams.EbNoVec,qpsk44BLER,':o')
semilogy(simParams.EbNoVec,hammingHard74BLER,'--s')
semilogy(simParams.EbNoVec,ae74eBLER,'-')
semilogy(simParams.EbNoVec,hammingML74BLER,'--d')
hold off
ylim([1e-5 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend('Theoretical Uncoded QPSK (4,4)','Uncoded QPSK (4,4)','Hamming (7,4) Hard Decision', ...
 'Autoencoder (7,4)','Hamming (7,4) ML','Location','southwest')
title('BLER comparison of (7,4) Autoencoder')

 Autoencoders for Wireless Communications

4-145

As expected, hard decision (7,4) Hamming code with QPSK modulation provides about 0.6 dB Eb/No
advantage over uncoded QPSK, while the ML decoding of (7,4) Hamming code with QPSK modulation
provides another 1.5 dB advantage for a BLER of 10−3. The (7,4) autoencoder BLER performance
approaches the ML decoding of (7,4) Hamming code, when trained with 3 dB Eb/No. This BLER
performance shows that the autoencoder is able to learn not only modulation but also channel coding
to achieve a coding gain of about 2 dB for a coding rate of R=4/7.

Next, simulate the BLER performance of autoencoders with R=1 with that of uncoded QPSK systems.
Use uncoded (2,2) and (8,8) QPSK as baselines. Compare BLER performance of these systems with
that of (2,2), (4,4) and (8,8) autoencoders.

load uncodedBLERResults.mat
qpsk22BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^2;
semilogy(simParams.EbNoVec,qpsk22BLERTh,':*')
hold on
semilogy(simParams.EbNoVec,qpsk88BLER,'--*')
qpsk88BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^8;
semilogy(simParams.EbNoVec,qpsk88BLERTh,':o')
semilogy(simParams.EbNoVec,ae22eBLER,'-o')
semilogy(simParams.EbNoVec,ae44eBLER,'-d')
semilogy(simParams.EbNoVec,ae88eBLER,'-s')
hold off
ylim([1e-5 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-146

legend('Uncoded QPSK (2,2)','Uncoded QPSK (8,8)','Theoretical Uncoded QPSK (8,8)', ...
 'Autoencoder (2,2)','Autoencoder (4,4)','Autoencoder (8,8)','Location','southwest')
title('BLER performance of R=1 Autoencoders')

Bit error rate of QPSK is the same for both (8,8) and (2,2) cases. However, the BLER depends on the
block length, n, and gets worse as n increases as given by BLER = 1− (1− BER)n. As expected, BLER
performance of (8,8) QPSK is worse than the (2,2) QPSK system. The BLER performance of (2,2)
autoencoder matches the BLER performance of (2,2) QPSK. On the other hand, (4,4) and (8,8)
autoencoders optimize the channel coder and the constellation jointly to obtain a coding gain with
respect to the corresponding uncoded QPSK systems.

Effect of Training Eb/No on BLER Performance

Train the (7,4) autoencoder with energy normalization under different Eb/No values and compare the
BLER performance. To extend the BLER curve, set simParams.EbNoVec to -2:0.5:8.

n = 7;
k = 4;
normalization = 'Energy';
traningEbNoVec = -3:5:7;
simParams.EbNoVec = 0:4;
for trainingEbNoIdx = 1:length(traningEbNoVec)
 trainingEbNo = traningEbNoVec(trainingEbNoIdx);
 [txNetVec{trainingEbNoIdx},rxNetVec{trainingEbNoIdx},infoVec{trainingEbNoIdx},trainedNetVec{trainingEbNoIdx}] = ...
 helperAEWTrainWirelessAutoencoder(n,k,normalization,trainingEbNo); %#ok<SAGROW>
 BLERVec{trainingEbNoIdx} = helperAEWAutoencoderBLER(txNetVec{trainingEbNoIdx},rxNetVec{trainingEbNoIdx},simParams); %#ok<SAGROW>
end

 Autoencoders for Wireless Communications

4-147

Plot the BLER performance together with theoretical upper bound for hard decision decoded
Hamming (7,4) code and simulated BLER of maximum likelihood decoded (MLD) Hamming (7,4)
code. The BLER performance of the (7,4) autoencoder gets closer to the Hamming (7,4) code with
MLD as the training Eb/No decreases from 10 dB to 1 dB, at which point it almost matches the MLD
Hamming (7,4) code.

berHamming = bercoding(simParams.EbNoVec,'hamming','hard',n);
blerHamming = 1-(1-berHamming).^k;
hammingBLER = load('codedBLERResults');
figure
semilogy(simParams.EbNoVec,blerHamming,':k')
legendStr = sprintf('(%d,%d) Hamming HDD Upper',n,k);
hold on
linespec = {'-*','-d','-o','-s',};
for trainingEbNoIdx=length(traningEbNoVec):-1:1
 semilogy(simParams.EbNoVec,BLERVec{trainingEbNoIdx},linespec{trainingEbNoIdx})
 legendStr = [legendStr {sprintf('(%d,%d) AE - Training Eb/No=%1.1f', ...
 n,k,traningEbNoVec(trainingEbNoIdx))}]; %#ok<AGROW>
end
semilogy(hammingBLER.simParams.EbNoVec,hammingBLER.hammingML74BLER,'--vk')
legendStr = [legendStr {'Hamming (7,4) MLD'}];
hold off
xlim([min(simParams.EbNoVec) max(simParams.EbNoVec)])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend(legendStr{:},'location','southwest')

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-148

Conclusions and Further Exploration

The BLER results show that it is possible for autoencoders to learn joint coding and modulation
schemes in an unsupervised way. It is even possible to train an autoencoder with R=1 to obtain a
coding gain as compared to traditional methods. The example also shows the effect of
hyperparameters such as Eb/No on the BLER performance.

The results are obtained using the following default settings for training and BLER simulations:

trainParams.Plots = 'none';
trainParams.Verbose = false;
trainParams.MaxEpochs = 10;
trainParams.InitialLearnRate = 0.08;
trainParams.LearnRateSchedule = 'piecewise';
trainParams.LearnRateDropPeriod = 5;
trainParams.LearnRateDropFactor = 0.1;
trainParams.MiniBatchSize = 100*2^k;

simParams.EbNoVec = -2:0.5:8;
simParams.MinNumErrors = 100;
simParams.MaxNumFrames = 300;
simParams.NumSymbolsPerFrame = 10000;
simParams.SignalPower = 1;

Vary these parameters to train different autoencoders and test their BLER performance. Experiment
with different n, k, normalization and Eb/No values. See the help for
helperAEWTrainWirelessAutoencoder.m, helperAEWPrepareAutoencoders.mlx and
helperAEWAutoencoderBLER.m for more information.

List of Helper Functions

• helperAEWAWGNLayer.m
• helperAEWNormalizationLayer.m
• helperAEWEncode.m
• helperAEWDecode.m
• helperAEWTrainWirelessAutoencoder.m
• helperAEWPlotConstellation.m
• helperAEWPlotTrainingPerformance.m
• helperAEWAutoencoderBLER.m
• helperAEWPrepareAutoencoders.mlx
• helperAEWSimulateBLER.mlx

References

[1] T. O’Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," in IEEE
Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, Dec. 2017,
doi: 10.1109/TCCN.2017.2758370.

 Autoencoders for Wireless Communications

4-149

[2] S. Dörner, S. Cammerer, J. Hoydis and S. t. Brink, "Deep Learning Based Communication Over the
Air," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132-143, Feb. 2018,
doi: 10.1109/JSTSP.2017.2784180.

See Also
classificationLayer | featureInputLayer | fullyConnectedLayer | reluLayer |
softmaxLayer

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-150

Training and Testing a Neural Network for LLR Estimation

This example shows how to generate signals and channel impairments to train a neural network,
called LLRNet, to estimate exact log likelihood ratios (LLR).

Most modern communication systems, such as 5G New Radio (NR) and Digital Video Broadcasting for
Satellite, Second Generation (DVB-S.2) use forward error correction algorithms that benefit from soft
demodulated bit values. These systems calculate soft bit values using the LLR approach. LLR is
defined as the log of the ratio of probability of a bit to be 0 to the probability of a bit to be 1 or

li ≜ log
Pr(ci = 0|s)
Pr(ci = 1|s) , i = 1, . . . , k

where s is an k-bit received symbol, and ci is the ithbit of the symbol. Assuming an additive white
Gaussian noise (AWGN) channel, the exact computation of the LLR expression is

li ≜ log
∑s ∈ ci

0exp −
‖s− s‖2

2

σ2

∑s ∈ ci
1exp −

‖s− s‖2
2

σ2

where σ2 is the noise variance. Exponential and logarithmic calculations are very costly especially in
embedded systems. Therefore, most practical systems use the max-log approximation. For a given
array x, the max-log approximation is

log ∑
j

exp − x j
2 ≈ max

j
− x j

2 .

Substituting this in the exact LLR expression results in the max-log LLR approximation [1] on page 4-
160

li ≈
1
σ2 min

s ∈ Ci
1
‖s− s‖2

2− min
s ∈ Ci

0
‖s− s‖2

2 .

LLRNet uses a neural network to estimate the exact LLR values given the baseband complex received
symbol for a given SNR value. A shallow network with a small number of hidden layers has the
potential to estimate the exact LLR values at a complexity similar to the approximate LLR algorithm
[1] on page 4-160.

Compare Exact LLR, Max-Log Approximate LLR and LLRNet for M-ary QAM

5G NR uses M-ary QAM modulation. This section explores the accuracy of LLRNet in estimating the
LLR values for 16-, 64-, and 256-QAM modulation. Assume an M-ary QAM system that operates under
AWGN channel conditions. This assumption is valid even when the channel is frequency selective but
symbols are equalized. The following shows calculated LLR values for the following three algorithms:

• Exact LLR
• Max-log approximate LLR

 Training and Testing a Neural Network for LLR Estimation

4-151

• LLRNet

16-QAM LLR Estimation Performance

Calculate exact and approximate LLR values for symbol values that cover the 99.7% (±3σ) of the
possible received symbols. Assuming AWGN, 99.7% (±3σ) of the received signals will be in the range

max
s ∈ C

Re(s) + 3σ min
s ∈ C

Re(s)− 3σ + i max
s ∈ C

Im(s) + 3σ min
s ∈ C

Im(s)− 3σ . Generate uniformly

distributed I/Q symbols over this space and use qamdemod function to calculate exact LLR and
approximate LLR values.

M = 16; % Modulation order
k = log2(M); % Bits per symbols
SNRValues = -5:5:5; % in dB
numSymbols = 1e4;
numSNRValues = length(SNRValues);
symOrder = llrnetQAMSymbolMapping(M);

const = qammod(0:15,M,symOrder,'UnitAveragePower',1);
maxConstReal = max(real(const));
maxConstImag = max(imag(const));

numBits = numSymbols*k;
exactLLR = zeros(numBits,numSNRValues);
approxLLR = zeros(numBits,numSNRValues);
rxSym = zeros(numSymbols,numSNRValues);
for snrIdx = 1:numSNRValues
 SNR = SNRValues(snrIdx);
 noiseVariance = 10^(-SNR/10);
 sigma = sqrt(noiseVariance);

 maxReal = maxConstReal + 3*sigma;
 minReal = -maxReal;
 maxImag = maxConstImag + 3*sigma;
 minImag = -maxImag;

 r = (rand(numSymbols,1)*(maxReal-minReal)+minReal) + ...
 1i*(rand(numSymbols,1)*(maxImag-minImag)+minImag);
 rxSym(:,snrIdx) = r;

 exactLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
 'UnitAveragePower',1,'OutputType','llr','NoiseVariance',noiseVariance);
 approxLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
 'UnitAveragePower',1,'OutputType','approxllr','NoiseVariance',noiseVariance);
end

Set Up and Train Neural Network

Set up a shallow neural network with one input layer, one hidden layer, and one output layer. Input a
received symbol to the network and train it to estimate the exact LLR values. Since the network
expects real inputs, create a two column vector, where the first column is the real values of the
received symbol and the second column is the imaginary values of the received symbol. Also, the
output must be a k × N vector, where k is the number of bits per symbol and N is the number of
symbols.

nnInput = zeros(numSymbols,2,numSNRValues);
nnOutput = zeros(numSymbols,k,numSNRValues);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-152

for snrIdx = 1:numSNRValues
 rxTemp = rxSym(:,snrIdx);
 rxTemp = [real(rxTemp) imag(rxTemp)];
 nnInput(:,:,snrIdx) = rxTemp;

 llrTemp = exactLLR(:,snrIdx);
 nnOutput(:,:,snrIdx) = reshape(llrTemp, k, numSymbols)';
end

For 16-QAM symbols, the hidden layer has 8 neurons and the output layer has 4 neurons, which
corresponds to the number of bits per symbol. The llrnetNeuralNetwork function returns a
preconfigured neural network. Train the neural network for three different SNR values. Use the exact
LLR values calculated using the qamdemod function as the expected output values.

hiddenLayerSize = 8;
trainedNetworks = cell(1,numSNRValues);
for snrIdx=1:numSNRValues
 fprintf('Training neural network for SNR = %1.1fdB\n', ...
 SNRValues(snrIdx))
 x = nnInput(:,:,snrIdx)';
 y = nnOutput(:,:,snrIdx)';

 MSExactLLR = mean(y(:).^2);
 fprintf('\tMean Square LLR = %1.2f\n', MSExactLLR)

 % Train the Network. Use parallel pool, if available. Train three times
 % and pick the best one.
 mse = inf;
 for p=1:3
 netTemp = llrnetNeuralNetwork(hiddenLayerSize);
 if parallelComputingLicenseExists()
 [netTemp,tr] = train(netTemp,x,y,'useParallel','yes');
 else
 [netTemp,tr] = train(netTemp,x,y);
 end
 % Test the Network
 predictedLLRSNR = netTemp(x);
 mseTemp = perform(netTemp,y,predictedLLRSNR);
 fprintf('\t\tTrial %d: MSE = %1.2e\n', p, mseTemp)
 if mse > mseTemp
 mse = mseTemp;
 net = netTemp;
 end
 end

 % Store the trained network
 trainedNetworks{snrIdx} = net;
 fprintf('\tBest MSE = %1.2e\n', mse)
end

Training neural network for SNR = -5.0dB

 Mean Square LLR = 4.43

 Trial 1: MSE = 7.44e-05
 Trial 2: MSE = 6.90e-05
 Trial 3: MSE = 6.81e-05

 Best MSE = 6.81e-05

 Training and Testing a Neural Network for LLR Estimation

4-153

Training neural network for SNR = 0.0dB

 Mean Square LLR = 15.74

 Trial 1: MSE = 1.86e-03
 Trial 2: MSE = 4.04e-04
 Trial 3: MSE = 9.05e-05

 Best MSE = 9.05e-05

Training neural network for SNR = 5.0dB

 Mean Square LLR = 60.01

 Trial 1: MSE = 8.59e-03
 Trial 2: MSE = 2.19e-02
 Trial 3: MSE = 2.14e-02

 Best MSE = 8.59e-03

Performance metric for this network is mean square error (MSE). The final MSE values show that the
neural network converges to an MSE value that is at least 40 dB less than the mean square exact LLR
values. Note that, as SNR increases so do the LLR values, which results in relatively higher MSE
values.

Results for 16-QAM

Compare the LLR estimates of LLRNet to that of exact LLR and approximate LLR. Simulate 1e4 16-
QAM symbols and calculate LLR values using all three methods. Do not use the symbols that we
generated in the previous section so as not to give LLRNet an unfair advantage, since those symbols
were used to train the LLRNet.

numBits = numSymbols*k;
d = randi([0 1], numBits, 1);

txSym = qammod(d,M,symOrder,'InputType','bit','UnitAveragePower',1);

exactLLR = zeros(numBits,numSNRValues);
approxLLR = zeros(numBits,numSNRValues);
predictedLLR = zeros(numBits,numSNRValues);
rxSym = zeros(length(txSym),numSNRValues);
for snrIdx = 1:numSNRValues
 SNR = SNRValues(snrIdx);
 sigmas = 10^(-SNR/10);
 r = awgn(txSym,SNR);
 rxSym(:,snrIdx) = r;

 exactLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
 'UnitAveragePower',1,'OutputType','llr','NoiseVariance',sigmas);
 approxLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
 'UnitAveragePower',1,'OutputType','approxllr','NoiseVariance',sigmas);

 net = trainedNetworks{snrIdx};
 x = [real(r) imag(r)]';
 tempLLR = net(x);
 predictedLLR(:,snrIdx) = reshape(tempLLR, numBits, 1);
end

qam16Results.exactLLR = exactLLR;

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-154

qam16Results.approxLLR = approxLLR;
qam16Results.predictedLLR = predictedLLR;
qam16Results.RxSymbols = rxSym;
qam16Results.M = M;
qam16Results.SNRValues = SNRValues;
qam16Results.HiddenLayerSize = hiddenLayerSize;
qam16Results.NumSymbols = numSymbols;

The following figure shows exact LLR, max-log approximate LLR, and LLRNet estimate of LLR values
versus the real part of the received symbol for odd bits. LLRNet matches the exact LLR values even
for low SNR values.

llrnetPlotLLR(qam16Results,'16-QAM LLR Comparison')

64-QAM and 256-QAM LLR Estimation Performance

Check if the LLRNet can estimate the LLR values for higher order QAM. Repeat the same process you
followed for 16-QAM for 64-QAM and 256-QAM using the llrnetQAMLLR helper function. The
following figures show exact LLR, max-log approximate LLR, and LLRNet estimate of LLR values
versus the real part of the received symbol for odd bits.

 Training and Testing a Neural Network for LLR Estimation

4-155

trainNow = ;
if trainNow
 % Parameters for 64-QAM
 simParams(1).M = 64; %#ok<UNRCH>
 simParams(1).SNRValues = 0:5:10;
 simParams(1).HiddenLayerSize = 16;
 simParams(1).NumSymbols = 1e4;
 simParams(1).UseReLU = false;

 % Parameters for 256-QAM
 simParams(2).M = 256;
 simParams(2).SNRValues = 0:10:20;
 simParams(2).HiddenLayerSize = 32;
 simParams(2).NumSymbols = 1e4;
 simParams(2).UseReLU = false;

 simResults = llrnetQAMLLR(simParams);
 llrnetPlotLLR(simResults(1),sprintf('%d-QAM LLR Comparison',simResults(1).M))
 llrnetPlotLLR(simResults(2),sprintf('%d-QAM LLR Comparison',simResults(2).M))
else
 load('llrnetQAMPerformanceComparison.mat', 'simResults')
 for p=1:length(simResults)
 llrnetPlotLLR(simResults(p),sprintf('%d-QAM LLR Comparison',simResults(p).M))
 end
end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-156

 Training and Testing a Neural Network for LLR Estimation

4-157

DVB-S.2 Packet Error Rate

DVB-S.2 system uses a soft demodulator to generate inputs for the LDPC decoder. Simulate the
packet error rate (PER) of a DVB-S.2 system with 16-APSK modulation and 2/3 LDPC code using
exact LLR, approximate LLR, and LLRNet using llrNetDVBS2PER function. This function uses the
comm.PSKDemodulator System object™ and the dvbsapskdemod function to calculate exact and
approximate LLR values and the comm.AWGNChannel System object to simulate the channel.

Set simulateNow to true (or select "Simulate" in the dropdown) to run the PER simulations for the
values of subsystemType, EsNoValues, and numSymbols using the llrnetDVBS2PER function. If
Parallel Computing Toolbox™ is installed, this function uses the parfor command to run the
simulations in parallel. On an Intel® Xeon® W-2133 CPU @ 3.6GHz and running a “Run Code on
Parallel Pools” (Parallel Computing Toolbox) of size 6, the simulation takes about 40 minutes. Set
simulateNow to false (or select "Plot saved results" in the dropdown), to load the PER results for
the values of subsystemType='16APSK 2/3', EsNoValues=8.6:0.1:8.9, and
numSymbols=10000.

Set trainNow to true (or select "Train LLRNet" in the dropdown) to train LLR neural networks for
each value of EsNoValues, for the given subsystemType and numSymbols. If Parallel Computing

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-158

https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html

Toolbox is installed, the train function can be called with the optional name-value pair
'useParallel' set to 'yes' to run the simulations in parallel. On an Intel Xeon W-2133 CPU @
3.6GHz and running a “Run Code on Parallel Pools” (Parallel Computing Toolbox) of size 6, the
simulation takes about 21 minutes. Set trainNow to false (or select "Use saved networks" in the
dropdown) to load LLR neural networks trained for subsystemType='16APSK 2/3',
EsNoValues=8.6:0.1:8.9.

For more information on the DVB-S.2 PER simulation, see the “DVB-S.2 Link, Including LDPC Coding
in Simulink” on page 1-393 example. For more information on training the network, refer to the
llrnetTrainDVBS2LLRNetwork function and [1] on page 4-160.

simulateNow = ;
if simulateNow
 subsystemType = '16APSK 2/3'; %#ok<UNRCH>
 EsNoValues = 8.6:0.1:8.9; % in dB
 numFrames = 10000;
 numErrors = 200;

 trainNow = ;
 if trainNow && (~strcmp(subsystemType,'16APSK 2/3') || ~isequal(EsNoValues,8.6:0.1:9))
 % Train the networks for each EsNo value
 numTrainSymbols = 1e4;
 hiddenLayerSize = 64;
 llrNets = llrnetTrainDVBS2LLRNetwork(subsystemType, EsNoValues, numTrainSymbols, hiddenLayerSize);
 else
 load('llrnetDVBS2Networks','llrNets','subsystemType','EsNoValues');
 end

 % Simulate PER with exact LLR, approximate LLR, and LLRNet
 [perLLR,perApproxLLR,perLLRNet] = llrnetDVBS2PER(subsystemType,EsNoValues,llrNets,numFrames,numErrors);
 llrnetPlotLLRvsEsNo(perLLR,perApproxLLR,perLLRNet,EsNoValues,subsystemType)
else
 load('llrnetDVBS2PERResults.mat','perApproxLLR','perLLR','perLLRNet',...
 'subsystemType','EsNoValues');
 llrnetPlotLLRvsEsNo(perLLR,perApproxLLR,perLLRNet,EsNoValues,subsystemType)
end

 Training and Testing a Neural Network for LLR Estimation

4-159

https://www.mathworks.com/products/parallel-computing.html

The results show that the LLRNet almost matches the performance of exact LLR without using any
expensive operations such as logarithm and exponential.

Further Exploration

Try different modulation and coding schemes for the DVB-S.2 system. The full list of modulation types
and coding rates are given in the “DVB-S.2 Link, Including LDPC Coding in Simulink” on page 1-393
example. You can also try different sizes for the hidden layer of the network to reduce the number of
operations and measure the performance loss as compared to exact LLR.

The example uses these helper functions. Examine these files to learn about details of the
implementation.

• llrnetDVBS2PER.m: Simulate DVB-S.2 PER using exact LLR, approximate LLR, and LLRNet LLR
• llrnetTrainDVBS2LLRNetwork.m: Train neural networks for DVB-S.2 LLR estimation
• llrnetQAMLLR.m: Train neural networks for M-ary QAM LLR estimation and calculate exact LLR,

approximate LLR, and LLRNet LLR
• llrnetNeuralNetwork.m: Configure a shallow neural network for LLR estimation

References

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-160

[1] O. Shental and J. Hoydis, ""Machine LLRning": Learning to Softly Demodulate," 2019 IEEE
Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 2019, pp. 1-7.

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Training and Testing a Neural Network for LLR Estimation

4-161

Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation

This example shows how to design a radio frequency (RF) fingerprinting convolutional neural
network (CNN) with simulated data. You train the CNN with simulated wireless local area network
(WLAN) beacon frames from known and unknown routers for RF fingerprinting. You then compare
the media access control (MAC) address of received signals and the RF fingerprint detected by the
CNN to detect WLAN router impersonators.

For more information on how to test the designed neural network with signals captured from real Wi-
Fi® routers, see the “Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation” on page 4-176 example.

Detect Router Impersonation Using RF Fingerprinting

Router impersonation is a form of attack on a WLAN network where a malicious agent tries to
impersonate a legitimate router and trick network users to connect to it. Security identification
solutions based on simple digital identifiers, such as MAC addresses, IP addresses, and SSID, are not
effective in detecting such an attack. These identifiers can be easily spoofed. Therefore, a more
secure solution uses other information, such as the RF signature of the radio link, in addition to these
simple digital identifiers.

A wireless transmitter-receiver pair creates a unique RF signature at the receiver that is a
combination of the channel and RF impairments. RF Fingerprinting is the process of distinguishing
transmitting radios in a shared spectrum through these signatures. In [1] on page 4-175, authors
designed a deep learning (DL) network that consumes raw baseband in-phase/quadrature (IQ)
samples and identifies the transmitting radio. The network can identify the transmitting radios if the
RF impairments are dominant or the channel profile stays constant during the operation time. Most
WLAN networks have fixed routers that create a static channel profile when the receiver location is
also fixed. In such a scenario, the deep learning network can identify router impersonators by
comparing the received signal's RF fingerprint and MAC address pair to that of the known routers.

This example simulates a WLAN system with several fixed routers and a fixed observer using the
WLAN Toolbox™ and trains a neural network (NN) with the simulated data using Deep Learning
Toolbox™.

System Description

Assume an indoor space with a number of trusted routers with known MAC addresses, which we will
refer to as known routers. Also, assume that unknown routers may enter the observation area, some
of which may be router impersonators. The class "Unknown" represents any transmitting device that
is not contained in the known set. The following figure shows a scenario where there are three known
routers. The observer collects non-high throughput (non-HT) beacon signals from these routers and
uses the (legacy) long training field (L-LTF) to identify the RF fingerprint. Transmitted L-LTF signals
are the same for all routers that enable the algorithm to avoid any data dependency. Since the routers
and the observer are fixed, the RF fingerprints (combination of multipath channel profile and RF
impairments) RF1, RF2, and RF3 do not vary in time. Unknown router data is a collection of random
RF fingerprints, which are different than the known routers.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-162

The following figure shows a user connected to a router and a mobile hot spot. After training, the
observer receives beacon frames and decodes the MAC address. Also, the observer extracts the L-LTF
signal and uses this signal to classify the RF fingerprint of the source of the beacon frame. If the MAC
address and the RF fingerprint match, as in the case of Router 1, Router 2, and Router3, then the
observer declares the source as a "known" router. If the MAC address of the beacon is not in the
database and the RF fingerprint does not match any of the known routers, as in the case of a mobile
hot spot, then the observer declares the source as an "unknown" router.

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-163

The following figure shows a router impersonator in action. A router impersonator (a.k.a. evil twin)
can replicate the MAC address of a known router and transmit beacon frames. Then, the hacker can
jam the original router and force the user to connect to the evil twin. The observer receives the
beacon frames from the evil twin too and decodes the MAC address. The decoded MAC address
matches the MAC address of a known router but the RF fingerprint does not match. The observer
declares the source as a router impersonator.

Set System Parameters

Generate a dataset of 5,000 Non-HT WLAN beacon frames for each router. Use MAC addresses as
labels for the known routers; the remaining are labeled as "Unknown". A NN is trained to classify the
known routers as well as to detect any unknown ones. Split the dataset into training, validation, and
test, where the splitting ratios are 80%, 10%, and 10%, respectively. Consider an SNR of 20 dB,
working on the 5 GHz band. The number of simulated devices is set to 4 but it can be modified by
choosing a different value for numKnownRouters. Set the number of unknown routers more than the
known ones to represent in the dataset the variability in the unknown router RF fingerprints.

numKnownRouters = 4;
numUnknownRouters = 10;
numTotalRouters = numKnownRouters+numUnknownRouters;
SNR = 20; % dB
channelNumber = 153; % WLAN channel number
channelBand = 5; % GHz
frameLength = 160; % L-LTF sequence length in samples

By default, this example downloads training data and trained network from https://
www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar.
If you do not have an Internet connection, you can download the file manually on a computer that is
connected to the Internet and save to the same directory as the current example files.

To run this example quickly, download the pretrained network and generate a small number of
frames, for example 10. To train the network on your computer, choose the "Train network now"
option (i.e. set trainNow to true). Generating 5000 frames of data takes about 50 minutes on an
Intel® Xeon® W-2133 CPU @ 3.6 GHz with 64 GB memory. Training this network takes about 20

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-164

https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar
https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar

seconds with an NVIDIA® GeForce RTX 3080 GPU and about 3 minutes with an Intel® Xeon®
W-2133 CPU @ 3.6 GHz.

trainNow = ;

if trainNow
 numTotalFramesPerRouter = 5000; %#ok<UNRCH>
else
 numTotalFramesPerRouter = 10;
 rfFingerprintingDownloadData('simulated')
end

Starting download of data files from:
 https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar
Download and extracting files done

numTrainingFramesPerRouter = numTotalFramesPerRouter*0.8;
numValidationFramesPerRouter = numTotalFramesPerRouter*0.1;
numTestFramesPerRouter = numTotalFramesPerRouter*0.1;

Generate WLAN Waveforms

Wi-Fi routers that implement 802.11a/g/n/ac protocols transmit beacon frames in the 5 GHz band to
broadcast their presence and capabilities using the OFDM non-HT format. The beacon frame consists
of two main parts: preamble (SYNC) and payload (DATA). The preamble has two parts: short training
and long training. In this example, the payload contains the same bits except the MAC address for
each router. The CNN uses the L-LTF part of the preamble as training units. Reusing the L-LTF signal
for RF fingerprinting provides an overhead-free fingerprinting solution. Use wlanMACFrameConfig
(WLAN Toolbox), wlanMACFrame (WLAN Toolbox), wlanNonHTConfig (WLAN Toolbox), and
wlanWaveformGenerator (WLAN Toolbox) functions to generate WLAN beacon frames.

% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon', ...
 "ManagementConfig", frameBodyConfig);

% Generate Beacon frame bits
[~, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

% Create a wlanNONHTConfig object, 20 MHz bandwidth and MCS 1 are used
nonHTConfig = wlanNonHTConfig(...
 'ChannelBandwidth', "CBW20",...
 "MCS", 1,...
 "PSDULength", mpduLength);

The rfFingerprintingNonHTFrontEnd object performs front-end processing including extracting the
L-LTF signal. The object is configured with a channel bandwidth of 20 MHz to process non-HT
signals.

rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');

fc = wlanChannelFrequency(channelNumber, channelBand);
fs = wlanSampleRate(nonHTConfig);

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-165

Setup Channel and RF Impairments

Pass each frame through a channel with

• Rayleigh multipath fading
• Radio impairments, such as phase noise, frequency offset and DC offset
• AWGN

Rayleigh Multipath and AWGN

The channel passes the signals through a Rayleigh multipath fading channel using the
comm.RayleighChannel System object™. Assume a delay profile of [0 1.8 3.4] samples with
corresponding average path gains of [0 -2 -10] dB. Since the channel is static, set maximum Doppler
shift to zero to make sure that the channel does not change for the same radio. Implement the
multipath channel with these settings. Add noise using the awgn function,

multipathChannel = comm.RayleighChannel(...
 'SampleRate', fs, ...
 'PathDelays', [0 1.8 3.4]/fs, ...
 'AveragePathGains', [0 -2 -10], ...
 'MaximumDopplerShift', 0);

Radio Impairments

The RF impairments, and their corresponding range of values are:

• Phase noise [0.01, 0.3] rms (degrees)
• Frequency offset [-4, 4] ppm
• DC offset: [-50, -32] dBc

See helperRFImpairments on page 4-174 function for more details on RF impairment simulation. This
function uses comm.PhaseFrequencyOffset and comm.PhaseNoise System objects.

phaseNoiseRange = [0.01, 0.3];
freqOffsetRange = [-4, 4];
dcOffsetRange = [-50, -32];

rng(123456) % Fix random generator

% Assign random impairments to each simulated radio within the previously
% defined ranges
radioImpairments = repmat(...
 struct('PhaseNoise', 0, 'DCOffset', 0, 'FrequencyOffset', 0), ...
 numTotalRouters, 1);
for routerIdx = 1:numTotalRouters
 radioImpairments(routerIdx).PhaseNoise = ...
 rand*(phaseNoiseRange(2)-phaseNoiseRange(1)) + phaseNoiseRange(1);
 radioImpairments(routerIdx).DCOffset = ...
 rand*(dcOffsetRange(2)-dcOffsetRange(1)) + dcOffsetRange(1);
 radioImpairments(routerIdx).FrequencyOffset = ...
 fc/1e6*(rand*(freqOffsetRange(2)-freqOffsetRange(1)) + freqOffsetRange(1));
end

Apply Channel Impairments and Generate Data Frames for Training

Apply the RF and channel impairments defined previously. Reset the channel object for each radio to
generate an independent channel. Use rfFingerprintingNonHTFrontEnd function to process the

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-166

received frames. Finally, extract the L-LTF from every transmitted WLAN frame. Split the received L-
LTF signals into training, validation and test sets.

% Create variables that will store the training, validation and testing
% datasets
xTrainingFrames = zeros(frameLength, numTrainingFramesPerRouter*numTotalRouters);
xValFrames = zeros(frameLength, numValidationFramesPerRouter*numTotalRouters);
xTestFrames = zeros(frameLength, numTestFramesPerRouter*numTotalRouters);

% Index vectors for train, validation and test data units
trainingIndices = 1:numTrainingFramesPerRouter;
validationIndices = 1:numValidationFramesPerRouter;
testIndices = 1:numTestFramesPerRouter;

tic
generatedMACAddresses = strings(numTotalRouters, 1);
rxLLTF = zeros(frameLength, numTotalFramesPerRouter); % Received L-LTF sequences
for routerIdx = 1:numTotalRouters

 % Generate a 12-digit random hexadecimal number as a MAC address for
 % known routers. Set the MAC address of all unknown routers to
 % 'AAAAAAAAAAAA'.
 if (routerIdx<=numKnownRouters)
 generatedMACAddresses(routerIdx) = string(dec2hex(bi2de(randi([0 1], 12, 4)))');
 else
 generatedMACAddresses(routerIdx) = 'AAAAAAAAAAAA';
 end
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Generating frames for router %d with MAC address %s\n', ...
 elapsedTime, routerIdx, generatedMACAddresses(routerIdx))

 % Set MAC address into the wlanFrameConfig object
 beaconFrameConfig.Address2 = generatedMACAddresses(routerIdx);

 % Generate beacon frame bits
 beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

 txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);

 txWaveform = helperNormalizeFramePower(txWaveform);

 % Add zeros to account for channel delays
 txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>

 % Reset multipathChannel object to generate a new static channel
 reset(multipathChannel)

 frameCount= 0;
 while frameCount<numTotalFramesPerRouter

 rxMultipath = multipathChannel(txWaveform);

 rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);

 rxSig = awgn(rxImpairment,SNR,0);

 % Detect the WLAN packet and return the received L-LTF signal using

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-167

 % rfFingerprintingNonHTFrontEnd object
 [valid, ~, ~, ~, ~, LLTF] = rxFrontEnd(rxSig);

 % Save successfully received L-LTF signals
 if valid
 frameCount=frameCount+1;
 rxLLTF(:,frameCount) = LLTF;
 end

 if mod(frameCount,500) == 0
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Generated %d/%d frames\n', ...
 elapsedTime, frameCount, numTotalFramesPerRouter)
 end
 end

 rxLLTF = rxLLTF(:, randperm(numTotalFramesPerRouter));

 % Split data into training, validation and test
 xTrainingFrames(:, trainingIndices+(routerIdx-1)*numTrainingFramesPerRouter) ...
 = rxLLTF(:, trainingIndices);
 xValFrames(:, validationIndices+(routerIdx-1)*numValidationFramesPerRouter)...
 = rxLLTF(:, validationIndices+ numTrainingFramesPerRouter);
 xTestFrames(:, testIndices+(routerIdx-1)*numTestFramesPerRouter)...
 = rxLLTF(:, testIndices + numTrainingFramesPerRouter+numValidationFramesPerRouter);
end

00:00:00 - Generating frames for router 1 with MAC address 4DA3EE3C8968
00:00:00 - Generating frames for router 2 with MAC address B1077CFE3777
00:00:01 - Generating frames for router 3 with MAC address DB28133A97BF
00:00:01 - Generating frames for router 4 with MAC address B8AF375DAC0F
00:00:01 - Generating frames for router 5 with MAC address AAAAAAAAAAAA
00:00:01 - Generating frames for router 6 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 7 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 8 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 9 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 10 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 11 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 12 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 13 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 14 with MAC address AAAAAAAAAAAA

% Label received frames. Label the first numKnownRouters with their MAC
% address. Label the rest with "Unknown”.
labels = generatedMACAddresses;
labels(generatedMACAddresses == generatedMACAddresses(numTotalRouters)) = "Unknown";

yTrain = repelem(labels, numTrainingFramesPerRouter);
yVal = repelem(labels, numValidationFramesPerRouter);
yTest = repelem(labels, numTestFramesPerRouter);

Create Real-Valued Input Matrices

The Deep Learning model only works on real numbers. Thus, I and Q are split into two separate
columns. Then, the data is rearranged into a frameLength X 2 x 1 x numFrames array, as required by
the Deep Learning Toolbox. Additionally, the training set is shuffled, and the label variables are saved
as categorical variables.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-168

https://www.mathworks.com/products/deep-learning.html

% Rearrange datasets into a one-column vector
xTrainingFrames = xTrainingFrames(:);
xValFrames = xValFrames(:);
xTestFrames = xTestFrames(:);

% Separate between I and Q
xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
xValFrames = [real(xValFrames), imag(xValFrames)];
xTestFrames = [real(xTestFrames), imag(xTestFrames)];

% Reshape training data into a frameLength x 2 x 1 x
% numTrainingFramesPerRouter*numTotalRouters matrix
xTrainingFrames = permute(...
 reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numTotalRouters, 2, 1]),...
 [1 3 4 2]);

% Shuffle data
vr = randperm(numTotalRouters*numTrainingFramesPerRouter);
xTrainingFrames = xTrainingFrames(:,:,:,vr);

% Create label vector and shuffle
yTrain = categorical(yTrain(vr));

% Reshape validation data into a frameLength x 2 x 1 x
% numValidationFramesPerRouter*numTotalRouters matrix
xValFrames = permute(...
 reshape(xValFrames,[frameLength,numValidationFramesPerRouter*numTotalRouters, 2, 1]),...
 [1 3 4 2]);

% Create label vector
yVal = categorical(yVal);

% Reshape test dataset into a numTestFramesPerRouter*numTotalRouter matrix
xTestFrames = permute(...
 reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numTotalRouters, 2, 1]),...
 [1 3 4 2]); %#ok<NASGU>

% Create label vector
yTest = categorical(yTest); %#ok<NASGU>

Train the Neural Network

This example uses a neural network (NN) architecture that consists of two convolutional and three
fully connected layers. The intuition behind this design is that the first layer will learn features
independently in I and Q. Note that the filter sizes are 1x7. Then, the next layer will use a filter size of
2x7 that will extract features combining I and Q together. Finally, the last three fully connected layers
will behave as a classifier using the extracted features in the previous layers [1] on page 4-175.

poolSize = [2 1];
strideSize = [2 1];
layers = [
 imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')

 convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
 batchNormalizationLayer('Name', 'BN1')
 leakyReluLayer('Name', 'LeakyReLu1')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-169

 convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
 batchNormalizationLayer('Name', 'BN2')
 leakyReluLayer('Name', 'LeakyReLu2')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')

 fullyConnectedLayer(256, 'Name', 'FC1')
 leakyReluLayer('Name', 'LeakyReLu3')
 dropoutLayer(0.5, 'Name', 'DropOut1')

 fullyConnectedLayer(80, 'Name', 'FC2')
 leakyReluLayer('Name', 'LeakyReLu4')
 dropoutLayer(0.5, 'Name', 'DropOut2')

 fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
 softmaxLayer('Name', 'SoftMax')
 classificationLayer('Name', 'Output')
]

layers =
 18×1 Layer array with layers:

 1 'Input Layer' Image Input 160×2×1 images
 2 'CNN1' 2-D Convolution 50 7×1 convolutions with stride [1 1] and padding [1 1 0 0]
 3 'BN1' Batch Normalization Batch normalization
 4 'LeakyReLu1' Leaky ReLU Leaky ReLU with scale 0.01
 5 'MaxPool1' 2-D Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 6 'CNN2' 2-D Convolution 50 7×2 convolutions with stride [1 1] and padding [1 1 0 0]
 7 'BN2' Batch Normalization Batch normalization
 8 'LeakyReLu2' Leaky ReLU Leaky ReLU with scale 0.01
 9 'MaxPool2' 2-D Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 10 'FC1' Fully Connected 256 fully connected layer
 11 'LeakyReLu3' Leaky ReLU Leaky ReLU with scale 0.01
 12 'DropOut1' Dropout 50% dropout
 13 'FC2' Fully Connected 80 fully connected layer
 14 'LeakyReLu4' Leaky ReLU Leaky ReLU with scale 0.01
 15 'DropOut2' Dropout 50% dropout
 16 'FC3' Fully Connected 5 fully connected layer
 17 'SoftMax' Softmax softmax
 18 'Output' Classification Output crossentropyex

Configure the training options to use the ADAM optimizer with a mini-batch size of 512. By default,
'ExecutionEnvironment' is set to 'auto', which uses a GPU for training if one is available.
Otherwise, trainNetwork (Deep Learning Toolbox) uses a CPU for training. To explicitly set the
execution environment, set 'ExecutionEnvironment' to one of 'cpu', 'gpu', 'multi-gpu', or
'parallel'.

if trainNow

 miniBatchSize = 512; %#ok<UNRCH>
 iterPerEpoch = floor(numTrainingFramesPerRouter*numTotalRouters/miniBatchSize);

 % Training options
 options = trainingOptions('adam', ...
 'MaxEpochs',5, ...
 'ValidationData',{xValFrames, yVal}, ...
 'ValidationFrequency',iterPerEpoch, ...
 'Verbose',false, ...
 'InitialLearnRate', 0.004, ...

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-170

 'LearnRateSchedule','piecewise', ...
 'LearnRateDropFactor', 0.5, ...
 'LearnRateDropPeriod', 2, ...
 'MiniBatchSize', miniBatchSize, ...
 'Plots','training-progress', ...
 'Shuffle','every-epoch');

 % Train the network
 simNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
 % Load trained network (simNet), testing dataset (xTestFrames and
 % yTest) and the used MACAddresses (generatedMACAddresses)
 load('rfFingerprintingSimulatedDataTrainedNN_R2023a.mat',...
 'generatedMACAddresses',...
 'simNet',...
 'xTestFrames',...
 'yTest')
end

As the plot of the training progress shows, the network converges in about 2 epochs to almost 100%
accuracy. The final accuracy is 100%.

Classify test frames and calculate the final accuracy of the neural network.

% Obtain predicted classes for xTestFrames
yTestPred = classify(simNet,xTestFrames);

% Calculate test accuracy

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-171

testAccuracy = mean(yTest == yTestPred);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 100%

Plot the confusion matrix for the test frames. As mentioned before, perfect classification accuracy is
achieved with the synthetic dataset.

figure
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

Detect Router Impersonator

Generate beacon frames with the known MAC addresses and one unknown MAC address. Generate a
new set of RF impairments and multipath channel. Since the impairments are all new, the RF
fingerprint for these frames should be classified as "Unknown". The frames with known MAC
addresses represent router impersonators while the frames with unknown MAC addresses are simply
unknown routers.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-172

framesPerRouter = 4;
knownMACAddresses = generatedMACAddresses(1:numKnownRouters);

% Assign random impairments to each simulated radio within the previously
% defined ranges
for routerIdx = 1:numTotalRouters
 radioImpairments(routerIdx).PhaseNoise = rand*(phaseNoiseRange(2)-phaseNoiseRange(1)) + phaseNoiseRange(1);
 radioImpairments(routerIdx).DCOffset = rand*(dcOffsetRange(2)-dcOffsetRange(1)) + dcOffsetRange(1);
 radioImpairments(routerIdx).FrequencyOffset = fc/1e6*(rand*(freqOffsetRange(2)-freqOffsetRange(1)) + freqOffsetRange(1));
end
% Reset multipathChannel object to generate a new static channel
reset(multipathChannel)

% Run for all known routers and one unknown
for macIndex = 1:(numKnownRouters+1)

 beaconFrameConfig.Address2 = generatedMACAddresses(macIndex);

 % Generate Beacon frame bits
 beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

 txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);

 txWaveform = helperNormalizeFramePower(txWaveform);

 % Add zeros to account for channel delays
 txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>

 % Create an unseen multipath channel. In other words, create an unseen
 % RF fingerprint.
 reset(multipathChannel)

 frameCount= 0;
 while frameCount<framesPerRouter

 rxMultipath = multipathChannel(txWaveform);

 rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);

 rxSig = awgn(rxImpairment,SNR,0);

 % Detect the WLAN packet and return the received L-LTF signal using
 % rfFingerprintingNonHTFrontEnd object
 [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
 rxFrontEnd(rxSig);

 if payloadFull
 frameCount = frameCount+1;
 recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
 noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');

 % Decode and evaluate recovered bits
 mpduCfg = wlanMPDUDecode(recBits, cfgNonHT);

 % Separate I and Q and reshape for neural network
 LLTF= [real(LLTF), imag(LLTF)];
 LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-173

 ypred = classify(simNet, LLTF);

 if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
 if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
 end
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"))
 end
 end

 % Reset multipathChannel object to generate a new static channel
 reset(multipathChannel)
 end
end

MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device

Further Exploration

You can test the system under different channel and RF impairments by modifying the

• Multipath profile (PathDelays and AveragePathGains properties of Rayleigh channel object),
• Channel noise level (SNR input of awgn function),
• RF impairments (phaseNoiseRange, freqOffsetRange, and dcOffsetRange variables).

You can also modify the neural network structure by changing

• Convolutional layer parameters (filter size, number of filters, padding),
• Number of fully connected layers,
• Number of convolutional layers.

Appendix: Helper Functions

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-174

function [impairedSig] = helperRFImpairments(sig, radioImpairments, fs)
% helperRFImpairments Apply RF impairments
% IMPAIREDSIG = helperRFImpairments(SIG, RADIOIMPAIRMENTS, FS) returns signal
% SIG after applying the impairments defined by RADIOIMPAIRMENTS
% structure at the sample rate FS.

% Apply frequency offset
fOff = comm.PhaseFrequencyOffset('FrequencyOffset', radioImpairments.FrequencyOffset, 'SampleRate', fs);

% Apply phase noise
phaseNoise = helperGetPhaseNoise(radioImpairments);
phNoise = comm.PhaseNoise('Level', phaseNoise, 'FrequencyOffset', abs(radioImpairments.FrequencyOffset));

impFOff = fOff(sig);
impPhNoise = phNoise(impFOff);

% Apply DC offset
impairedSig = impPhNoise + 10^(radioImpairments.DCOffset/10);

end

function [phaseNoise] = helperGetPhaseNoise(radioImpairments)
% helperGetPhaseNoise Get phase noise value
load('Mrms.mat','Mrms','MyI','xI');
[~, iRms] = min(abs(radioImpairments.PhaseNoise - Mrms));
[~, iFreqOffset] = min(abs(xI - abs(radioImpairments.FrequencyOffset)));
phaseNoise = -abs(MyI(iRms, iFreqOffset));
end

Selected Bibliography

[1] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis and K. Chowdhury, "ORACLE: Optimized
Radio clAssification through Convolutional neuraL nEtworks," IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 2019, pp. 370-378.

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

4-175

Test a Deep Neural Network with Captured Data to Detect
WLAN Router Impersonation

This example shows how to train a radio frequency (RF) fingerprinting convolutional neural network
(CNN) with captured data. You capture wireless local area network (WLAN) beacon frames from real
routers using a software defined radio (SDR). You program a second SDR to transmit unknown
beacon frames and capture them. You train the CNN using these captured signals. You then program
a software-defined radio (SDR) as a router impersonator that transmits beacon signals with the media
access control (MAC) address of one of the known routers and use the CNN to identify it as an
impersonator.

For more information on router impersonation and validation of the network design with simulated
data, see the “Design a Deep Neural Network with Simulated Data to Detect WLAN Router
Impersonation” on page 4-162 example.

Train with Captured Data

Collect a dataset of 802.11a/g/n/ac OFDM non-high throughput (non-HT) beacon frames from real
WLAN routers. As described in the “Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation” on page 4-162 example, only the legacy long training field (L-LTF) field
present in preambles are used as training units in order to avoid any data dependency.

In this example, the data was collected using the scenario depicted in the following figure. The
observer is a stationary ADALM-PLUTO radio. Known router data was collected as follows:

1 Set the observer's center frequency based on the WLAN channel used by the routers
2 Receive a beacon frame
3 Extract the L-LTF signal
4 Decode the MAC address to use as the label
5 Save the L-LTF signal together with its label
6 Repeat steps 2-5 to collect numFramesPerRouter frames from numKnownRouters routers.

Unknown router beacon frames are simulated using a mobile ADALM-PLUTO radio as a transmitter.
This radio repeatedly transmits beacon frames with a random MAC address. Unknown router data
was collected as follows:

1 Generate beacon frames with a random MAC address
2 Start transmitting the beacon frames repeatedly using the ADALM-PLUTO radio
3 Collect NUMFRAMES beacon frames
4 Extract the L-LTF signal
5 Save the L-LTF frames with label "Unknown"
6 Move the radio to another location
7 Repeat steps 3-6 to collect data from NUMLOC locations

This combined dataset of known and unknown routers is used to train the same DL model as in the
“Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation” on
page 4-162 example.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-176

This example downloads training data and trained network from https://www.mathworks.com/
supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar. If you do not have an
Internet connection, you can download the file manually on a computer that is connected to the
Internet and save to the same directory as the current example files. For privacy reasons, MAC
addresses have been anonymized in the downloaded data. To replicate the results of this example,
capture your own data as described in Appendix: Known and Unknown Router Data Collection on
page 4-185.

rfFingerprintingDownloadData('captured')

Starting download of data files from:
 https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar
Download and extracting files done

To run this example quickly, use the downloaded pretrained network. To train the network on your
computer, choose the "Train network now" option (i.e. set trainNow to true). Training this network
takes about 25 seconds with an NVIDIA® GeForce RTX 3080 GPU and about 2 minutes with an
Intel® Xeon W-2133 CPU @ 3.6 GHz.

trainNow = ; %#ok<*UNRCH>

This example uses data from four known routers. The dataset contains 3600 frames per router, where
90% is used as training frames and 10% is used as test frames.

numKnownRouters = 4;
numFramesPerRouter = 3600;
numTrainingFramesPerRouter = numFramesPerRouter * 0.9;
numTestFramesPerRouter = numFramesPerRouter * 0.1;
frameLength = 160;

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

4-177

https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar
https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar

Preprocess Known and Unknown Router Data

Separate collected complex baseband data into its in-phase and quadrature components and reshape
it into a frameLength x 2 x 1 x numFramesPerRouter*numKnownRouters matrix. Repeat the same
process for the unknown router data. The following code uses previously collected and pre-processed
data. To use your own data, first collect data as described in Appendix: Known and Unknown Router
Data Collection on page 4-185. Copy the new data files named
rfFingerprintingCapturedDataUser.mat and
rfFingerprintingCapturedUnknownFramesUser.mat to the same directory as this example.
Then update the load commands to load these files.

if trainNow
 % Load known router data
 load('rfFingerprintingCapturedData.mat')

 % Create label vectors
 yTrain = repelem(MACAddresses, numTrainingFramesPerRouter);
 yTest = repelem(MACAddresses, numTestFramesPerRouter);

 % Separate between I and Q
 numTrainingSamples = numTrainingFramesPerRouter*numKnownRouters*frameLength;
 xTrainingFrames = xTrainingFrames(1:numTrainingSamples,1);
 xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
 numTestSamples = numTestFramesPerRouter*numKnownRouters*frameLength;
 xTestFrames = xTestFrames(1:numTestSamples,1);
 xTestFrames = [real(xTestFrames), imag(xTestFrames)];

 % Reshape dataset into an frameLength x 2 x 1 x numTrainingFramesPerRouter*numKnownRouters matrix
 xTrainingFrames = permute(...
 reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numKnownRouters, 2, 1]),...
 [1 3 4 2]);

 % Reshape dataset into an frameLength x 2 x 1 x numTestFramesPerRouter*numKnownRouters matrix
 xTestFrames = permute(...
 reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numKnownRouters, 2, 1]),...
 [1 3 4 2]);

 % Load unknown router data
 load('rfFingerprintingCapturedUnknownFrames.mat')

 % Number of training units
 numUnknownFrames = size(unknownFrames, 4);

 % Split data into 90% training and 10% test
 numUnknownTrainingFrames = floor(numUnknownFrames*0.9);
 numUnknownTest = numUnknownFrames - numUnknownTrainingFrames;

 % Add ADALM-PLUTO data into training and test datasets
 xTrainingFrames(:,:,:,(1:numUnknownTrainingFrames) + numTrainingFramesPerRouter*numKnownRouters) ...
 = unknownFrames(:,:,:, 1:numUnknownTrainingFrames);
 xTestFrames(:,:,:,(1:numUnknownTest) + numTestFramesPerRouter*numKnownRouters) ...
 = unknownFrames(:,:,:, (1:numUnknownTest) + numUnknownTrainingFrames);

 % Shuffle data
 vr = randperm(numKnownRouters*numTrainingFramesPerRouter+numUnknownTrainingFrames);
 xTrainingFrames = xTrainingFrames(:,:,:,vr);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-178

 % Add "unknown" label and shuffle
 yTrain = [yTrain, repmat("Unknown", [1, numUnknownTrainingFrames])];
 yTrain = categorical(yTrain(vr));

 yTest = [yTest, repmat("Unknown", [1, numUnknownTest])];
 yTest = categorical(yTest);
end

Train the CNN

Use the same NN architecture and training options as in the training with simulated data example.

poolSize = [2 1];
strideSize = [2 1];
% Create network architecture
layers = [
 imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')

 convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
 batchNormalizationLayer('Name', 'BN1')
 leakyReluLayer('Name', 'LeakyReLu1')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')

 convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
 batchNormalizationLayer('Name', 'BN2')
 leakyReluLayer('Name', 'LeakyReLu2')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')

 fullyConnectedLayer(256, 'Name', 'FC1')
 leakyReluLayer('Name', 'LeakyReLu3')
 dropoutLayer(0.5, 'Name', 'DropOut1')

 fullyConnectedLayer(80, 'Name', 'FC2')
 leakyReluLayer('Name', 'LeakyReLu4')
 dropoutLayer(0.5, 'Name', 'DropOut2')

 fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
 softmaxLayer('Name', 'SoftMax')
 classificationLayer('Name', 'Output')
];

Configure the training options to use ADAM optimizer with a mini-batch size of 256. Use test frames
for validation since optimization of hyperparameters were done in [1] on page 4-186.

By default, ExecutionEnvironment is set to 'auto', which uses a GPU for training if one is
available. Otherwise, trainNetwork (Deep Learning Toolbox) uses the CPU for training. To explicitly
set the execution environment, set ExecutionEnvironment to one of 'cpu', 'gpu', 'multi-gpu',
or 'parallel'.

if trainNow
 miniBatchSize = 256;
 iterPerEpoch = floor((numTrainingFramesPerRouter*numKnownRouters + numUnknownTrainingFrames)/miniBatchSize);

 options = trainingOptions('adam', ...
 'MaxEpochs', 12, ...
 'ValidationData',{xTestFrames, yTest}, ...
 'ValidationFrequency', iterPerEpoch, ...
 'Verbose',false, ...

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

4-179

 'LearnRateSchedule','piecewise', ...
 'InitialLearnRate', 0.001, ...
 'LearnRateDropFactor', 0.5, ...
 'LearnRateDropPeriod', 2, ...
 'MiniBatchSize', miniBatchSize, ...
 'Plots','training-progress', ...
 'Shuffle', 'every-epoch');

 % Train the network
 capturedDataNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
 load('rfFingerprintingCapturedDataTrainedNN_R2023a.mat','capturedDataNet','xTestFrames','yTest','MACAddresses')
end

The following plot shows the training progress of the network run on a computer with a single
NVIDIA GeForce RTX 3080 GPU, where the network converged in 12 epochs to 100% accuracy.

Generate the confusion matrix.

figure
yTestPred = classify(capturedDataNet,xTestFrames,ExecutionEnvironment='cpu');
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-180

Test with SDR

Test the performance of the trained network on the class "Unknown". Generate beacon frames with
MAC addresses of the known routers and one unknown router. Transmit these frames using an
ADALM-PLUTO radio and receive using another ADALM-PLUTO radio. Since the channel and RF
impairments created between these two radios are different than the ones created between the real
routers and the observer, the neural network should classify all of the received signals as "Unknown".
If the received MAC address is a known one, then the system declares the source as a router
impersonator. If the received MAC address is an unknown one, then the system declares the source
as an unknown router. To perform this test, you need two ADALM-PLUTO radios for transmission and
reception. Also, you need to install Communication Toolbox Support Package for ADALM-PLUTO
Radio.

Waveform Generation

Generate a transmission waveform consisting of beacon frames with different MAC addresses. The
transmitter repeatedly transmits these WLAN frames. The receiver captures the WLAN frames and
determines if it is a router impersonator using the received MAC address and RF fingerprint detected
by the trained NN.

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

4-181

https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html

chanBW='CBW20'; % Channel Bandwidth
osf = 2; % Oversampling Factor
frameLength=160; % Frame Length in samples
% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon');
beaconFrameConfig.ManagementConfig = frameBodyConfig;

% Create interpolation and decimation objects
decimator = dsp.FIRDecimator('DecimationFactor',osf);

% Save known MAC addresses
knownMACAddresses = MACAddresses;
MACAddressesToSimulate = [MACAddresses, "ABCDEFABCDEF"];

% Create WLAN waveform with the MAC addresses of known routers and an
% unknown router
txWaveform = zeros(1540,5);
for i = 1:length(MACAddressesToSimulate)

 % Set MAC Address
 beaconFrameConfig.Address2 = MACAddressesToSimulate(i);

 % Generate Beacon frame bits
 [beacon, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

 nonHTcfg = wlanNonHTConfig(...
 'ChannelBandwidth', chanBW,...
 "MCS", 1,...
 "PSDULength", mpduLength);
 txWaveform(:,i) = [wlanWaveformGenerator(beacon, nonHTcfg); zeros(20,1)];
end

txWaveform = txWaveform(:);

% Get center frequency for channel 153 in 5 GHz band
fc = wlanChannelFrequency(153, 5);
fs = wlanSampleRate(nonHTcfg);

txSig = resample(txWaveform,osf,1);

% Samples per frame in Burst Mode
spf = length(txSig)/length(MACAddressesToSimulate);

runSDRSection = false;
if helperIsPlutoSDRInstalled()
 radios = findPlutoRadio();
 if length(radios) >= 2
 runSDRSection = true;
 else
 disp("Two ADALM-PLUTO radios are needed. Skipping SDR test.")
 end
else
 disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
 disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
 disp("Skipping SDR test.")

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-182

end

if runSDRSection
 % Set up PlutoSDR transmitter
 deviceNameSDR = 'Pluto';
 txGain = 0;
 txSDR = sdrtx(deviceNameSDR);
 txSDR.RadioID = 'usb:0';
 txSDR.BasebandSampleRate = fs*osf;
 txSDR.CenterFrequency = fc;
 txSDR.Gain = txGain;

 % Set up PlutoSDR Receiver
 rxSDR = sdrrx(deviceNameSDR);
 rxSDR.RadioID = 'usb:1';
 rxSDR.BasebandSampleRate = txSDR.BasebandSampleRate;
 rxSDR.CenterFrequency = txSDR.CenterFrequency;
 rxSDR.GainSource ='Manual';
 rxSDR.Gain = 30;
 rxSDR.OutputDataType = 'double';
 rxSDR.EnableBurstMode=true;
 rxSDR.NumFramesInBurst = 20;
 rxSDR.SamplesPerFrame = osf*spf;
end

L-LTF for Classification

The L-LTF sequence present in each beacon frame preamble is used as input units to the NN.
rfFingerprintingNonHTFrontEnd System object™ is used to detect the WLAN packets, perform
synchronization tasks and, extract the L-LTF sequences and data. In addition, the MAC address is
also decoded. In addition, the data is pre-processed and classified using the trained network.

if runSDRSection
 numLLTF = 20; % Number of L-LTF captured for Testing

 rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');

 disp("The known MAC addresses are:");
 disp(knownMACAddresses)

 % Set PlutoSDR to transmit repeatedly
 disp('Starting transmitter')
 transmitRepeat(txSDR, txSig);

 % Captured Frames counter
 numCapturedFrames = 0;

 disp('Starting receiver')
 % Loop until numLLTF frames are collected
 while numCapturedFrames < numLLTF

 % Receive data using PlutoSDR
 rxSig = rxSDR();

 rxSig = decimator(rxSig);

 % Perform front-end processing and payload buffering

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

4-183

 [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
 rxFrontEnd(rxSig);

 if payloadFull

 % Recover payload bits
 recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
 noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');

 % Decode and evaluate recovered bits
 [mpduCfg, ~, success] = wlanMPDUDecode(recBits, cfgNonHT);

 if success == wlanMACDecodeStatus.Success
 % Update counter
 numCapturedFrames = numCapturedFrames+1;

 % Create real-valued input
 LLTF = [real(LLTF), imag(LLTF)];
 LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);

 ypred = classify(capturedDataNet, LLTF);

 if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
 if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
 end
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"));
 end
 end
 end
 end
 release(txSDR)
end

The known MAC addresses are:

 "71B63A2D0B83" "A3F8AC0F2253" "EF11D125044A" "F636A97E07E7"

Starting transmitter

Establishing connection to hardware. This process can take several seconds.
Waveform transmission has started successfully and will repeat indefinitely.
Call the release method to stop the transmission.

Starting receiver

Establishing connection to hardware. This process can take several seconds.

MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-184

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

Further Exploration

Capture data from your own routers as explained in Appendix: Known and Unknown Router Data
Collection, on page 4-185 train the neural network with this data, and test the performance of the
network.

Appendix: Helper Functions

• rfFingerprintingRouterDataCollection
• rfFingerprintingUnknownClassDataCollectionTx
• rfFingerprintingUnknownClassDataCollectionRx
• rfFingerprintingNonHTFrontEnd
• rfFingerprintingNonHTReceiver

Appendix: Known and Unknown Router Data Collection

Use rfFingerprintingRouterDataCollection to collect data from known (i.e. trusted) routers.
This function extracts L-LTF signals present in 802.11a/g/n/ac OFDM Non-HT beacons frames
transmitted from commercial 802.11 hardware. For more information see the “OFDM Beacon
Receiver Using Software-Defined Radio” (Communications Toolbox Support Package for USRP Radio)
example. L-LTF signals and corresponding router MAC addresses are used to train the RF
fingerprinting neural network. This method works best if the routers and their antennas are fixed and
hard to move unintentionally. For example, in most office environments, routers are mounted on the
ceiling. Follow these steps:

1 Connect an ADALM-PLUTO radio to your PC to use as the observer radio.
2 Place the radio in a central location where it can receive signals from as many routers as

possible. Fix the radio so that it does not move. If possible, place the observer radio on the
ceiling or high on a wall.

3 Determine the channel number of the routers. You can use a Wi-Fi® analyzer app on your phone
to find out the channel numbers.

4 Start data collection by running "rfFingerprintingRouterDataCollection(channel)"
where channel is the Wi-Fi channel number

5 Monitor the "max(abs(LLTF))" value. If it is above 1.2 or smaller than 0.01, adjust the gain of the
receiver using the GAIN input of rfFingerprintingRouterDataCollection function.

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

4-185

Use the helper functions rfFingerprintingUnknownClassDataCollectionTx and
rfFingerprintingUnknownClassDataCollectionRx to collect data from unknown routers.
These functions set two ADALM-PLUTO radios to transmit and receive L-LTF signals. The received
signals are combined with the known router signals to train the neural network. You need two
ADALM-PLUTO radios, preferably connected to two separate PCs. Follow these steps:

1 Connect an ADALM-PLUTO radio to a stationary PC to act as the unknown router.
2 Start transmissions by running "rfFingerprintingUnknownClassDataCollectionTx".
3 Connect another ADALM-PLUTO radio to a mobile PC to act as the observer.
4 Start data collection by running "rfFingerprintingUnknownClassDataCollectionRx". This

function by default collects 200 frames per location. Each location represents a different
unknown router.

5 When the function instructs you to move to a new location, move the observer radio to a new
location. By default, this function collects data from 10 locations.

6 If the observer does not receive any beacons or it rarely receives beacons, move the observer
closer to the transmitter.

7 Once the data collection is done, call "release(sdrTransmitter)" in the transmitting radio's
MATLAB® session.

Selected Bibliography

[1] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis and K. Chowdhury, "ORACLE: Optimized
Radio clAssification through Convolutional neuraL nEtworks," IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 2019, pp. 370-378.

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-186

Modulation Classification with Deep Learning

This example shows how to use a convolutional neural network (CNN) for modulation classification.
You generate synthetic, channel-impaired waveforms. Using the generated waveforms as training
data, you train a CNN for modulation classification. You then test the CNN with software-defined
radio (SDR) hardware and over-the-air signals.

Predict Modulation Type Using CNN

The trained CNN in this example recognizes these eight digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• Quadrature phase shift keying (QPSK)
• 8-ary phase shift keying (8-PSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 64-ary quadrature amplitude modulation (64-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modulationTypes = categorical(["BPSK", "QPSK", "8PSK", ...
 "16QAM", "64QAM", "PAM4", "GFSK", "CPFSK", ...
 "B-FM", "DSB-AM", "SSB-AM"]);

First, load the trained network. For details on network training, see the Training a CNN on page 4-
197 section.

load trainedModulationClassificationNetwork
trainedNet

trainedNet =
 SeriesNetwork with properties:

 Layers: [28×1 nnet.cnn.layer.Layer]
 InputNames: {'Input Layer'}
 OutputNames: {'Output'}

The trained CNN takes 1024 channel-impaired samples and predicts the modulation type of each
frame. Generate several PAM4 frames that are impaired with Rician multipath fading, center
frequency and sampling time drift, and AWGN. Use following function to generate synthetic signals to
test the CNN. Then use the CNN to predict the modulation type of the frames.

• randi: Generate random bits
• pammod PAM4-modulate the bits
• rcosdesign: Design a square-root raised cosine pulse shaping filter

 Modulation Classification with Deep Learning

4-187

• filter: Pulse shape the symbols
• comm.RicianChannel: Apply Rician multipath channel
• comm.PhaseFrequencyOffset: Apply phase and/or frequency shift due to clock offset
• interp1: Apply timing drift due to clock offset
• awgn: Add AWGN

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(123456)
% Random bits
d = randi([0 3], 1024, 1);
% PAM4 modulation
syms = pammod(d,4);
% Square-root raised cosine filter
filterCoeffs = rcosdesign(0.35,4,8);
tx = filter(filterCoeffs,1,upsample(syms,8));

% Channel
SNR = 30;
maxOffset = 5;
fc = 902e6;
fs = 200e3;
multipathChannel = comm.RicianChannel(...
 'SampleRate', fs, ...
 'PathDelays', [0 1.8 3.4] / 200e3, ...
 'AveragePathGains', [0 -2 -10], ...
 'KFactor', 4, ...
 'MaximumDopplerShift', 4);

frequencyShifter = comm.PhaseFrequencyOffset(...
 'SampleRate', fs);

% Apply an independent multipath channel
reset(multipathChannel)
outMultipathChan = multipathChannel(tx);

% Determine clock offset factor
clockOffset = (rand() * 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1e6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift
t = (0:length(tx)-1)' / fs;
newFs = fs * C;
tp = (0:length(tx)-1)' / newFs;
outTimeDrift = interp1(t, outFreqShifter, tp);

% Add noise
rx = awgn(outTimeDrift,SNR,0);

% Frame generation for classification
unknownFrames = helperModClassGetNNFrames(rx);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-188

% Classification
[prediction1,score1] = classify(trainedNet,unknownFrames);

Return the classifier predictions, which are analogous to hard decisions. The network correctly
identifies the frames as PAM4 frames. For details on the generation of the modulated signals, see
helperModClassGetModulator function.

prediction1

prediction1 = 7×1 categorical
 PAM4
 PAM4
 PAM4
 PAM4
 PAM4
 PAM4
 PAM4

The classifier also returns a vector of scores for each frame. The score corresponds to the probability
that each frame has the predicted modulation type. Plot the scores.

helperModClassPlotScores(score1,modulationTypes)

 Modulation Classification with Deep Learning

4-189

Before we can use a CNN for modulation classification, or any other task, we first need to train the
network with known (or labeled) data. The first part of this example shows how to use
Communications Toolbox™ features, such as modulators, filters, and channel impairments, to
generate synthetic training data. The second part focuses on defining, training, and testing the CNN
for the task of modulation classification. The third part tests the network performance with over-the-
air signals using software defined radio (SDR) platforms.

Waveform Generation for Training

Generate 10,000 frames for each modulation type, where 80% is used for training, 10% is used for
validation and 10% is used for testing. We use training and validation frames during the network
training phase. Final classification accuracy is obtained using test frames. Each frame is 1024
samples long and has a sample rate of 200 kHz. For digital modulation types, eight samples represent
a symbol. The network makes each decision based on single frames rather than on multiple
consecutive frames (as in video). Assume a center frequency of 902 MHz and 100 MHz for the digital
and analog modulation types, respectively.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-190

To run this example quickly, use the trained network and generate a small number of training frames.
To train the network on your computer, choose the "Train network now" option (i.e. set trainNow to
true).

trainNow = ;
if trainNow == true
 numFramesPerModType = 10000;
else
 numFramesPerModType = 200;
end
percentTrainingSamples = 80;
percentValidationSamples = 10;
percentTestSamples = 10;

sps = 8; % Samples per symbol
spf = 1024; % Samples per frame
symbolsPerFrame = spf / sps;
fs = 200e3; % Sample rate
fc = [902e6 100e6]; % Center frequencies

Create Channel Impairments

Pass each frame through a channel with

• AWGN
• Rician multipath fading
• Clock offset, resulting in center frequency offset and sampling time drift

Because the network in this example makes decisions based on single frames, each frame must pass
through an independent channel.

AWGN

The channel adds AWGN with an SNR of 30 dB. Implement the channel using awgn function.

Rician Multipath

The channel passes the signals through a Rician multipath fading channel using the
comm.RicianChannel System object™. Assume a delay profile of [0 1.8 3.4] samples with
corresponding average path gains of [0 -2 -10] dB. The K-factor is 4 and the maximum Doppler shift is
4 Hz, which is equivalent to a walking speed at 902 MHz. Implement the channel with the following
settings.

Clock Offset

Clock offset occurs because of the inaccuracies of internal clock sources of transmitters and
receivers. Clock offset causes the center frequency, which is used to downconvert the signal to
baseband, and the digital-to-analog converter sampling rate to differ from the ideal values. The
channel simulator uses the clock offset factor C, expressed as C = 1 +

Δclock
106 , where Δclock is the clock

offset. For each frame, the channel generates a random Δclock value from a uniformly distributed set
of values in the range [−maxΔclock maxΔclock], where maxΔclock is the maximum clock offset. Clock
offset is measured in parts per million (ppm). For this example, assume a maximum clock offset of 5
ppm.

 Modulation Classification with Deep Learning

4-191

maxDeltaOff = 5;
deltaOff = (rand()*2*maxDeltaOff) - maxDeltaOff;
C = 1 + (deltaOff/1e6);

Frequency Offset

Subject each frame to a frequency offset based on clock offset factor C and the center frequency.
Implement the channel using comm.PhaseFrequencyOffset.

Sampling Rate Offset

Subject each frame to a sampling rate offset based on clock offset factor C. Implement the channel
using the interp1 function to resample the frame at the new rate of C × fs.

Combined Channel

Use the helperModClassTestChannel object to apply all three channel impairments to the frames.

channel = helperModClassTestChannel(...
 'SampleRate', fs, ...
 'SNR', SNR, ...
 'PathDelays', [0 1.8 3.4] / fs, ...
 'AveragePathGains', [0 -2 -10], ...
 'KFactor', 4, ...
 'MaximumDopplerShift', 4, ...
 'MaximumClockOffset', 5, ...
 'CenterFrequency', 902e6)

channel =
 helperModClassTestChannel with properties:

 SNR: 30
 CenterFrequency: 902000000
 SampleRate: 200000
 PathDelays: [0 9.0000e-06 1.7000e-05]
 AveragePathGains: [0 -2 -10]
 KFactor: 4
 MaximumDopplerShift: 4
 MaximumClockOffset: 5

You can view basic information about the channel using the info object function.

chInfo = info(channel)

chInfo = struct with fields:
 ChannelDelay: 6
 MaximumFrequencyOffset: 4510
 MaximumSampleRateOffset: 1

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-192

Waveform Generation

Create a loop that generates channel-impaired frames for each modulation type and stores the frames
with their corresponding labels in MAT files. By saving the data into files, you eliminate the need to
generate the data every time you run this example. You can also share the data more effectively.

Remove a random number of samples from the beginning of each frame to remove transients and to
make sure that the frames have a random starting point with respect to the symbol boundaries.

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(1235)
tic

numModulationTypes = length(modulationTypes);

channelInfo = info(channel);
transDelay = 50;
pool = getPoolSafe();
if ~isa(pool,"parallel.ClusterPool")
 dataDirectory = fullfile(tempdir,"ModClassDataFiles");
else
 dataDirectory = uigetdir("","Select network location to save data files");
end
disp("Data file directory is " + dataDirectory)

Data file directory is C:\TEMP\ModClassDataFiles

fileNameRoot = "frame";

% Check if data files exist
dataFilesExist = false;
if exist(dataDirectory,'dir')
 files = dir(fullfile(dataDirectory,sprintf("%s*",fileNameRoot)));
 if length(files) == numModulationTypes*numFramesPerModType
 dataFilesExist = true;
 end
end

if ~dataFilesExist
 disp("Generating data and saving in data files...")
 [success,msg,msgID] = mkdir(dataDirectory);
 if ~success
 error(msgID,msg)
 end
 for modType = 1:numModulationTypes
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Generating %s frames\n', ...
 elapsedTime, modulationTypes(modType))

 label = modulationTypes(modType);
 numSymbols = (numFramesPerModType / sps);
 dataSrc = helperModClassGetSource(modulationTypes(modType), sps, 2*spf, fs);
 modulator = helperModClassGetModulator(modulationTypes(modType), sps, fs);
 if contains(char(modulationTypes(modType)), {'B-FM','DSB-AM','SSB-AM'})
 % Analog modulation types use a center frequency of 100 MHz
 channel.CenterFrequency = 100e6;

 Modulation Classification with Deep Learning

4-193

 else
 % Digital modulation types use a center frequency of 902 MHz
 channel.CenterFrequency = 902e6;
 end

 for p=1:numFramesPerModType
 % Generate random data
 x = dataSrc();

 % Modulate
 y = modulator(x);

 % Pass through independent channels
 rxSamples = channel(y);

 % Remove transients from the beginning, trim to size, and normalize
 frame = helperModClassFrameGenerator(rxSamples, spf, spf, transDelay, sps);

 % Save data file
 fileName = fullfile(dataDirectory,...
 sprintf("%s%s%03d",fileNameRoot,modulationTypes(modType),p));
 save(fileName,"frame","label")
 end
 end
else
 disp("Data files exist. Skip data generation.")
end

Generating data and saving in data files...

00:00:00 - Generating BPSK frames
00:00:02 - Generating QPSK frames
00:00:03 - Generating 8PSK frames
00:00:05 - Generating 16QAM frames
00:00:06 - Generating 64QAM frames
00:00:08 - Generating PAM4 frames
00:00:10 - Generating GFSK frames
00:00:11 - Generating CPFSK frames
00:00:13 - Generating B-FM frames
00:00:24 - Generating DSB-AM frames
00:00:26 - Generating SSB-AM frames

% Plot the amplitude of the real and imaginary parts of the example frames
% against the sample number
helperModClassPlotTimeDomain(dataDirectory,modulationTypes,fs)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-194

% Plot the spectrogram of the example frames
helperModClassPlotSpectrogram(dataDirectory,modulationTypes,fs,sps)

 Modulation Classification with Deep Learning

4-195

Create a Datastore

Use a signalDatastore object to manage the files that contain the generated complex waveforms.
Datastores are especially useful when each individual file fits in memory, but the entire collection
does not necessarily fit.

frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"]);

Transform Complex Signals to Real Arrays

The deep learning network in this example expects real inputs while the received signal has complex
baseband samples. Transform the complex signals into real valued 4-D arrays. The output frames
have size 1-by-spf-by-2-by-N, where the first page (3rd dimension) is in-phase samples and the second
page is quadrature samples. When the convolutional filters are of size 1-by-spf, this approach ensures
that the information in the I and Q gets mixed even in the convolutional layers and makes better use
of the phase information. See helperModClassIQAsPages for details.

frameDSTrans = transform(frameDS,@helperModClassIQAsPages);

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-196

Split into Training, Validation, and Test

Next divide the frames into training, validation, and test data. See helperModClassSplitData for
details.

splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);

Import Data into Memory

Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. If the data fits into the memory of your
computer, importing the data from the files into the memory enables faster training by eliminating
this repeated read from file and transform process. Instead, the data is read from the files and
transformed once. Training this network using data files on disk takes about 110 minutes while
training using in-memory data takes about 50 min.

Import all the data in the files into memory. The files have two variables: frame and label and each
read call to the datastore returns a cell array, where the first element is the frame and the second
element is the label. Use the transform functions helperModClassReadFrame and
helperModClassReadLabel to read frames and labels. Use readall with "UseParallel" option set
to true to enable parallel processing of the transform functions, in case you have Parallel Computing
Toolbox™ license. Since readall function, by default, concatenates the output of the read function
over the first dimension, return the frames in a cell array and manually concatenate over the 4th
dimension.

% Read the training and validation frames into the memory
pctExists = parallelComputingLicenseExists();
trainFrames = transform(trainDSTrans, @helperModClassReadFrame);
rxTrainFrames = readall(trainFrames,"UseParallel",pctExists);
rxTrainFrames = cat(4, rxTrainFrames{:});
validFrames = transform(validDSTrans, @helperModClassReadFrame);
rxValidFrames = readall(validFrames,"UseParallel",pctExists);
rxValidFrames = cat(4, rxValidFrames{:});

% Read the training and validation labels into the memory
trainLabels = transform(trainDSTrans, @helperModClassReadLabel);
rxTrainLabels = readall(trainLabels,"UseParallel",pctExists);
validLabels = transform(validDSTrans, @helperModClassReadLabel);
rxValidLabels = readall(validLabels,"UseParallel",pctExists);

Train the CNN

This example uses a CNN that consists of six convolution layers and one fully connected layer. Each
convolution layer except the last is followed by a batch normalization layer, rectified linear unit
(ReLU) activation layer, and max pooling layer. In the last convolution layer, the max pooling layer is
replaced with an average pooling layer. The output layer has softmax activation. For network design
guidance, see “Deep Learning Tips and Tricks” (Deep Learning Toolbox).

modClassNet = helperModClassCNN(modulationTypes,sps,spf);

Next configure TrainingOptionsSGDM (Deep Learning Toolbox) to use an SGDM solver with a mini-
batch size of 1024. Set the maximum number of epochs to 20, since a larger number of epochs
provides no further training advantage. By default, the 'ExecutionEnvironment' property is set to
'auto', where the trainNetwork function uses a GPU if one is available or uses the CPU, if not. To
use the GPU, you must have a Parallel Computing Toolbox license. Set the initial learning rate to

 Modulation Classification with Deep Learning

4-197

https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html

2x10−1. Reduce the learning rate by a factor of 1.25 every 7 epochs. Set 'Plots' to 'training-
progress' to plot the training progress. On an NVIDIA® GeForce RTX 3080 GPU, the network takes
approximately 3 minutes to train.

maxEpochs = 20;
miniBatchSize = 1024;
options = helperModClassTrainingOptions(maxEpochs,miniBatchSize,...
 numel(rxTrainLabels),rxValidFrames,rxValidLabels);

Either train the network or use the already trained network. By default, this example uses the trained
network.

if trainNow == true
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Training the network\n', elapsedTime)
 trainedNet = trainNetwork(rxTrainFrames,rxTrainLabels,modClassNet,options);
else
 load trainedModulationClassificationNetwork
end

As the plot of the training progress shows, the network converges in about 20 epochs to more than
97% accuracy.

Evaluate the trained network by obtaining the classification accuracy for the test frames. The results
show that the network achieves about 97% accuracy for this group of waveforms.

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-198

elapsedTime = seconds(toc);
elapsedTime.Format = 'hh:mm:ss';
fprintf('%s - Classifying test frames\n', elapsedTime)

00:00:50 - Classifying test frames

% Read the test frames into the memory
testFrames = transform(testDSTrans, @helperModClassReadFrame);
rxTestFrames = readall(testFrames,"UseParallel",pctExists);
rxTestFrames = cat(4, rxTestFrames{:});

% Read the test labels into the memory
testLabels = transform(testDSTrans, @helperModClassReadLabel);
rxTestLabels = readall(testLabels,"UseParallel",pctExists);

rxTestPred = classify(trainedNet,rxTestFrames);
testAccuracy = mean(rxTestPred == rxTestLabels);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 97.7273%

Plot the confusion matrix for the test frames. As the matrix shows, the network confuses 16-QAM and
64-QAM frames. This problem is expected since each frame carries only 128 symbols and 16-QAM is a
subset of 64-QAM. The network also confuses QPSK and 8-PSK frames, since the constellations of
these modulation types look similar once phase-rotated due to the fading channel and frequency
offset.

figure
cm = confusionchart(rxTestLabels, rxTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';
cm.Parent.Position = [cm.Parent.Position(1:2) 950 550];

 Modulation Classification with Deep Learning

4-199

Test with SDR

Test the performance of the trained network with over-the-air signals using the
helperModClassSDRTest function. To perform this test, you must have dedicated SDRs for
transmission and reception. You can use two ADALM-PLUTO radios, or one ADALM-PLUTO radio for
transmission and one USRP® radio for reception. You must “Install Support Package for Analog
Devices ADALM-PLUTO Radio” (Communications Toolbox Support Package for Analog Devices
ADALM-Pluto Radio). If you are using a USRP® radio, you must also “Install Communications Toolbox
Support Package for USRP Radio” (Communications Toolbox Support Package for USRP Radio). The
helperModClassSDRTest function uses the same modulation functions as used for generating the
training signals, and then transmits them using an ADALM-PLUTO radio. Instead of simulating the
channel, capture the channel-impaired signals using the SDR that is configured for signal reception
(ADALM-PLUTO or USRP® radio). Use the trained network with the same classify function used
previously to predict the modulation type. Running the next code segment produces a confusion
matrix and prints out the test accuracy.

radioPlatform = ;

switch radioPlatform
 case "ADALM-PLUTO"
 if helperIsPlutoSDRInstalled() == true
 radios = findPlutoRadio();
 if length(radios) >= 2
 helperModClassSDRTest(radios);
 else
 disp('Selected radios not found. Skipping over-the-air test.')
 end

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-200

 end
 case {"USRP B2xx","USRP X3xx","USRP N2xx"}
 if (helperIsUSRPInstalled() == true) && (helperIsPlutoSDRInstalled() == true)
 txRadio = findPlutoRadio();
 rxRadio = findsdru();
 switch radioPlatform
 case "USRP B2xx"
 idx = contains({rxRadio.Platform}, {'B200','B210'});
 case "USRP X3xx"
 idx = contains({rxRadio.Platform}, {'X300','X310'});
 case "USRP N2xx"
 idx = contains({rxRadio.Platform}, 'N200/N210/USRP2');
 end
 rxRadio = rxRadio(idx);
 if (length(txRadio) >= 1) && (length(rxRadio) >= 1)
 helperModClassSDRTest(rxRadio);
 else
 disp('Selected radios not found. Skipping over-the-air test.')
 end
 end
end

When using two stationary ADALM-PLUTO radios separated by about 2 feet, the network achieves
99% overall accuracy with the following confusion matrix. Results will vary based on experimental
setup.

 Modulation Classification with Deep Learning

4-201

Further Exploration

It is possible to optimize the hyperparameters parameters, such as number of filters, filter size, or
optimize the network structure, such as adding more layers, using different activation layers, etc. to
improve the accuracy.

Communication Toolbox provides many more modulation types and channel impairments. For more
information see “Modulation” and “Propagation and Channel Models” sections. You can also add
standard specific signals with LTE Toolbox, WLAN Toolbox, and 5G Toolbox. You can also add radar
signals with Phased Array System Toolbox.

helperModClassGetModulator function provides the MATLAB® functions used to generate modulated
signals. You can also explore the following functions and System objects for more details:

• helperModClassGetModulator.m
• helperModClassTestChannel.m
• helperModClassGetSource.m
• helperModClassFrameGenerator.m
• helperModClassCNN.m
• helperModClassTrainingOptions.m

Helper Files

function pool = getPoolSafe()
if exist("gcp","file") && license('test','distrib_computing_toolbox')
 pool = gcp;
 if isempty(pool)
 pool = parpool;
 end
else
 pool = [];
end
end

References

1 O'Shea, T. J., J. Corgan, and T. C. Clancy. "Convolutional Radio Modulation Recognition
Networks." Preprint, submitted June 10, 2016. https://arxiv.org/abs/1602.04105

2 O'Shea, T. J., T. Roy, and T. C. Clancy. "Over-the-Air Deep Learning Based Radio Signal
Classification." IEEE Journal of Selected Topics in Signal Processing. Vol. 12, Number 1, 2018,
pp. 168–179.

3 Liu, X., D. Yang, and A. E. Gamal. "Deep Neural Network Architectures for Modulation
Classification." Preprint, submitted January 5, 2018. https://arxiv.org/abs/1712.00443v3

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

4 Shared deeplearning_shared Examples (comm/deeplearning)

4-202

https://www.mathworks.com/products/lte.html
https://www.mathworks.com/products/wlan.html
https://www.mathworks.com/products/5g.html
https://www.mathworks.com/products/phased-array.html
https://arxiv.org/abs/1602.04105
https://arxiv.org/abs/1712.00443v3

Shared phased_comm Examples (comm/
phased)

5

Massive MIMO Hybrid Beamforming

This example shows how to use hybrid beamforming at the transmit end of a massive MIMO
communications system, using multi-user and single-user systems techniques. The example
determines the channel state information at the transmitter by using full channel sounding. It
partitions the required precoding into digital baseband and analog RF components, using different
techniques for multi-user and single-user systems. The example computes EVM and BER
communications system figures of merit to compare the signal recovered by simplified all-digital
receivers to the multiple transmitted data streams.

In the example a scattering-based spatial channel technique models the transmit/receive spatial
locations and antenna patterns. A simpler static-flat MIMO channel is also offered for link validation
purposes.

Introduction

The ever-growing demand for high data rate and more user capacity increases the need to use the
available spectrum more efficiently. Multi-user MIMO (MU-MIMO) improves the spectrum efficiency
by allowing a base station (BS) transmitter to communicate simultaneously with multiple mobile
stations (MS) receivers using the same time-frequency resources. Massive MIMO allows the number
of BS antenna elements to be on the order of tens or hundreds, thereby also increasing the number of
data streams in a cell to a large value.

5G wireless systems use millimeter wave (mmWave) bands to take advantage of their wider
bandwidth. The 5G systems also deploy large scale antenna arrays to mitigate severe propagation
loss in the mmWave band.

The small mmWave band wavelengths allow an array to contain more elements within the same
physical dimension. It becomes much more expensive to provide one transmit-receive (TR) module, or
an RF chain, for each antenna element. Hybrid transceivers are a practical solution as they use a
combination of analog beamformers in the RF and digital beamformers in the baseband domains,
with fewer RF chains than the number of transmit elements [1].

Hybrid Beamforming

Hybrid beamforming (also known as hybrid precoding) is a method that enables the use of massive
MIMO antenna arrays in a lower power and cost-efficient manner [1]. In a traditional antenna array,
each antenna requires a dedicated RF chain to transmit and receive each data stream; with hybrid
precoding, each stream requires a dedicated RF chain. This greatly reduces the number of RF chains,
thus reducing cost and power. The analog outputs of each chain are combined into a network of
analog RF gains and phase shifters (the analog RF beamformer, denoted Frf) that are connected to a
large antenna array, where the number of antennas >> number of streams. These analog units
cannot change weights quickly; however the computed RF weights change slowly over time since
they are primarily determined by spatial positions of receivers. The digital baseband precoding
weights (denoted Fbb) may change from symbol to symbol due to smaller-scale multipath effects, and
may also be different from subcarrier to subcarrier to account for frequency-selective fading.

5 Shared phased_comm Examples (comm/phased)

5-2

This example uses a single-user or multi-user MIMO-OFDM system to highlight the partitioning of the
required precoding into its digital baseband and RF analog components at the transmitter end. The
example uses the orthogonal matching pursuit (OMP) algorithm [3] for a single-user system and the
joint spatial division multiplexing (JSDM) technique [2, 4] for a multi-user system, to determine the
digital baseband Fbb and RF analog Frf precoding weights for the selected system configuration.
Building on the system highlighted in the “MIMO-OFDM Precoding with Phased Arrays” (Phased
Array System Toolbox) example, this example shows the formulation of the transmit-end precoding
matrices and their application to a MIMO-OFDM system.

Virtual Sectorization Using Joint Spatial Division Multiplexing

JSDM takes advantage of spatial clustering of users within the cell and groups these clusters to
create virtual sectors via RF analog beamforming to these groups. The spatial covariance matrices of
the groups are related to the spatial direction of the groups with respect to the base station antenna
array. These matrices are computed using the channel estimates produced from the sounding signals,
and the analog RF beams are derived from these matrices. These beams focus transmitted energy to
the respective groups and minimize intergroup interference.

 Massive MIMO Hybrid Beamforming

5-3

Once the beams are formed, the digital precoding weights are computed and used to orthogonalize
users within each of the groups. These precoding weights are based on the user's channel state
information (CSI) of the "effective channel" as seen from the output of the RF chains (not the output
of the antenna array). Such beam-based measurements are done in 5G systems.

Because the analog RF gains and phase shifters are done at the antennas, it is implied that the RF
weights apply across all subcarriers. However, the digital precoding weights may be applied per
subcarrier. In this example, each subcarrier applies digital precoding weights as computed from the
subcarrier's CSI.

s = rng(67); % Set RNG state for repeatability

System Parameters

Define system parameters for the example. Modify these parameters to explore their impact on the
system.

prm.fc = 28e9; % 28 GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps

5 Shared phased_comm Examples (comm/phased)

5-4

prm.ChanType = 'Scattering'; % Channel options: 'Scattering', 'MIMO'
prm.NFig = 8; % Noise figure (increase to worsen, 5-10 dB)
prm.nRays = 500; % Number of rays for Frf, Fbb partitioning

% Each user has the same modulation
prm.bitsPerSubCarrier = 4; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols

% Create a vector of users where each element is a user and the value of
% that element describes the number of independent data streams. For a
% single user case, make this a scalar value.
prm.numSTSVec = [4 3 2 4 3]; % Number of independent data streams per user
prm.numSTS = sum(prm.numSTSVec); % Must be a power of 2
prm.numTx = prm.numSTS*8; % Number of BS transmit antennas (power of 2)

Assign each user to a group. Users are randomly arranged around the center of each group. For a
single user use case, the concept of grouping is not applicable, and the user is randomly placed in the
cell.

% The group assignments for the active users must be in ascending
% order. The default setting matches the group diagram above; there are two
% groups of users with the first three users assigned to group one and the
% last two users assigned to group two.
prm.groups = [1 1 1 2 2]; % Describes which users are in which groups

Two JSDM options are available for simulation. This option determines the method for computing the
digital precoding weights; the RF analog weights are calculated independent of which option is
chosen.

• 'JGP': Joint Spatial Division Multiplexing with Joint Group Processing (JGP). MIMO streams are
precoded based on the CSI feedback of the channel estimates for all users.

• 'PGP': Joint Spatial Division Multiplexing with Per-Group Processing (PGP). This is a special case
where user CSI feedback is reduced to only send back the CSI of the streams transmitted to the
user's group, thus increasing available bandwidth that was reserved for CSI feedback.
Performance is slightly worse than JGP since precoding is done only on the streams for each
group, and is particularly sensitive to the rank of the channel relative to the number of
transmitted streams.

prm.jsdmType = 'JGP'; % JSDM option: 'JGP' or 'PGP' (for multi-user simulation)

Note that selecting the MIMO channel via the ChanType parameter field will cause sub-optimal
performance for JSDM, since the MIMO channel is not location-aware. If using a scattering channel,
add in an additional receiver in each group to improve the channel rank of the group's observed
covariance matrix and support the number of streams being transmitted to each group. These
receivers are not actively receiving data, but are considered connected to the base station as part of a
group.

prm.numSTSVecAll = prm.numSTSVec; % Number of independent data streams per user
prm.numUsers = length(prm.numSTSVec); % Number of active users
prm.numGroups = max(prm.groups); % Number of groups
numGroups = prm.numGroups;
if strcmp(prm.ChanType,'Scattering')
 for g = 1:numGroups
 prm.groups(prm.numUsers+g) = g;
 prm.numSTSVecAll(prm.numUsers+g) = 2;
 end

 Massive MIMO Hybrid Beamforming

5-5

end

% Define the center of each group's range, azimuth, and elevation,
% assuming the BS is at the origin.
% Angles specified as [azimuth;elevation] degrees
% Note: the number of columns must equal the number of groups
maxRange = 700; % all MSs within 700 meters of BS
groupRanges = randi([1 maxRange],1,numGroups);
groupAzimuth = -60 + 60/(numGroups+1) + ...
 (120-(120/(numGroups+1)))/(numGroups-1) * (0:numGroups-1);
groupElevations = randi([-10 10],1,numGroups);

% Position mobile units
prm.numConnectedUsers = length(prm.numSTSVecAll); % Number of connected users
if prm.numUsers == 1
 % For a single user, randomly place the user
 % MS positions: assumes BS at origin
 % Angles specified as [azimuth;elevation] degrees
 % az in range [-180 180], el in range [-90 90], e.g. [45;0]
 prm.mobileRanges = randi([1 maxRange],1,prm.numConnectedUsers);
 prm.mobileAngles = [rand(1,prm.numConnectedUsers)*360-180; ...
 rand(1,prm.numConnectedUsers)*180-90];
else
 % For multiple users, randomly place the users within their assigned
 % group locations
 prm.mobileRanges = zeros(prm.numConnectedUsers,1);
 prm.mobileAngles = zeros(2,prm.numConnectedUsers);
 for uIdx = 1:prm.numConnectedUsers
 g = prm.groups(uIdx);
 prm.mobileRanges(uIdx) = groupRanges(g) + 30*rand(1);
 prm.mobileAngles(:,uIdx) = ...
 [groupAzimuth(g)+3*rand(1); groupElevations(g)+3*rand(1)];
 end
end

Define OFDM modulation parameters used for the system.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NullCarrierIndices = [1:7 129 256-5:256]'; % Guards and DC
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232]';
nonDataIdx = [prm.NullCarrierIndices; prm.PilotCarrierIndices];
prm.CarriersLocations = setdiff((1:prm.FFTLength)', sort(nonDataIdx));
prm.numRx = prm.numSTSVecAll; % Number of receive antennas, per connected user

numSTS = prm.numSTS;
numTx = prm.numTx;
numRx = prm.numRx;
numSTSVec = prm.numSTSVec;
numUsers = prm.numUsers;
codeRate = 1/3; % same code rate per user
numTails = 6; % number of termination tail bits
prm.numFrmBits = numSTSVec.*(prm.numDataSymbols*prm.numCarriers* ...
 prm.bitsPerSubCarrier*codeRate)-numTails;
prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay

5 Shared phased_comm Examples (comm/phased)

5-6

numPadSym = 3; % number of symbols to zero pad
prm.numPadZeros = numPadSym*(prm.FFTLength+prm.CyclicPrefixLength);

Define transmit and receive arrays and positional parameters for the system.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;

% Get transmit and receive array information
prm.numSTSVec = prm.numSTSVecAll; % get array info for all connected users
prm.numUsers = prm.numConnectedUsers;
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);
prm.numSTSVec = numSTSVec; % restore parameters to active users
prm.numUsers = numUsers;

% Transmit antenna array definition
% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
if isTxURA
 % Uniform Rectangular array
 txarray = phased.PartitionedArray(...
 'Array',phased.URA([expFactorTx numSTS],0.5*prm.lambda),...
 'SubarraySelection',ones(numSTS,numTx),'SubarraySteering','Custom');
else
 % Uniform Linear array
 txarray = phased.ULA(numTx, 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',false));
end
prm.posTxElem = getElementPosition(txarray)/prm.lambda;

spLoss = zeros(prm.numConnectedUsers,1);
prm.posRx = zeros(3,prm.numConnectedUsers);
for uIdx = 1:prm.numConnectedUsers

 % Receive arrays
 if isRxURA(uIdx)
 % Uniform Rectangular array
 rxarray = phased.PartitionedArray(...
 'Array',phased.URA([expFactorRx(uIdx) numRx(uIdx)], ...
 0.5*prm.lambda),'SubarraySelection',ones(numRx(uIdx), ...
 numRx(uIdx)),'SubarraySteering','Custom');
 prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
 else
 if numRx(uIdx)>1
 % Uniform Linear array
 rxarray = phased.ULA(numRx(uIdx), ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
 prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
 else
 rxarray = phased.IsotropicAntennaElement;
 prm.posRxElem = [0; 0; 0]; % LCS
 end
 end

 % Mobile positions
 [xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngles(1,uIdx)), ...
 deg2rad(prm.mobileAngles(2,uIdx)), ...

 Massive MIMO Hybrid Beamforming

5-7

 prm.mobileRanges(uIdx));
 prm.posRx(:,uIdx) = [xRx;yRx;zRx];
 [toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx(:,uIdx));
 spLoss(uIdx) = fspl(toRxRange,prm.lambda);
end

Channel State Information

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first. The BS
sounds the channel by using a reference transmission, that the MS receiver uses to estimate the
channel. The MS transmits the channel estimate information back to the BS for calculation of the
precoding needed for the subsequent data transmission.

The following schematic shows the processing for the channel sounding modeled.

For the chosen MIMO system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver antenna elements perform pre-
amplification, OFDM demodulation, and frequency domain channel estimation for all links.

% Generate the preamble signal
prm.numSTS = numTx; % set to numTx to sound out all channels
preambleSig = helperGenPreamble(prm);

% Transmit preamble over channel
prm.numSTS = numSTS; % keep same array config for channel
prm.numUsers = prm.numConnectedUsers; % transmit sounding to all connected users
prm.numSTSVec = prm.numSTSVecAll; % transmit sounding to all connected users
[rxPreSig,chanDelay] = helperApplyMUChannel(preambleSig,prm,spLoss);
prm.numUsers = numUsers;
prm.numSTSVec = numSTSVec;

% Channel state information feedback
hDp = cell(prm.numConnectedUsers,1);
prm.numSTS = numTx; % set to numTx to estimate all links
for uIdx = 1:prm.numConnectedUsers

5 Shared phased_comm Examples (comm/phased)

5-8

 % Front-end amplifier gain and thermal noise
 rxPreAmp = phased.ReceiverPreamp(...
 'Gain',spLoss(uIdx), ... % account for path loss
 'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
 rxPreSigAmp = rxPreAmp(rxPreSig{uIdx});
 % scale power for used sub-carriers
 rxPreSigAmp = rxPreSigAmp * (sqrt(prm.FFTLength - ...
 length(prm.NullCarrierIndices))/prm.FFTLength);

 % OFDM demodulation
 rxOFDM = ofdmdemod(rxPreSigAmp(chanDelay(uIdx)+1: ...
 end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
 prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
 prm.NullCarrierIndices,prm.PilotCarrierIndices);

 % Channel estimation from preamble
 % numCarr, numTx, numRx
 hDp{uIdx} = helperMIMOChannelEstimate(rxOFDM(:,1:numTx,:),prm);

end
prm.numSTS = numSTS; % revert back for data transmission
prm.numRx = prm.numRx(1:numUsers); % set numRx to number of active users

For a single-user system, the OMP partitioning algorithm is sensitive to the array response vectors
At. Ideally, these response vectors account for all the scatterers seen by the channel, but these are
unknown for an actual system and channel realization, so a random set of rays within a 3-dimensional
space to cover as many scatterers as possible is used. The prm.nRays parameter specifies the
number of rays.

For a multi-user system, the JSDM algorithm requires the calculation of the spatial covariance from
each group to calculate the RF beamformer weights based on the block diagonalization method 5.
The channel estimate is fed back from each MS, and used by the BS to determine the precoding
weights. The example assumes perfect feedback with no quantization or implementation delays. The
effective channel is calculated from the RF beamformer weights and the CSI, and the digital
baseband precoder weights are then calculated.

% Calculate the hybrid weights on the transmit side
if numUsers==1
 % Single-user OMP
 % Spread rays in [az;el]=[-180:180;-90:90] 3D space, equal spacing
 % txang = [-180:360/prm.nRays:180; -90:180/prm.nRays:90];
 txang = [rand(1,prm.nRays)*360-180;rand(1,prm.nRays)*180-90]; % random
 At = steervec(prm.posTxElem,txang);
 AtExp = complex(zeros(prm.numCarriers,size(At,1),size(At,2)));
 for carrIdx = 1:prm.numCarriers
 AtExp(carrIdx,:,:) = At; % same for all sub-carriers
 end

 % Orthogonal matching pursuit hybrid weights
 [Fbb,Frf] = omphybweights(hDp{1},numSTS,numSTS,AtExp);

 v = Fbb; % set the baseband precoder (Fbb)
 % Frf is same across subcarriers for flat channels
 mFrf = permute(mean(Frf,1),[2 3 1]);

 Massive MIMO Hybrid Beamforming

5-9

else
 % Multi-user Joint Spatial Division Multiplexing

 % Get number of streams per group
 prm.numSTSGroupVec = zeros(1,numGroups);
 for g = 1:numGroups
 prm.numSTSGroupVec(g) = sum(prm.numSTSVecAll(prm.groups(1:prm.numUsers)==g));
 end

 % Get Rg (group covariances)
 % Note that there is only one R per group (not per user). It is up to the
 % caller to determine how this autocorrelation matrix is obtained from the
 % group.
 hcov = helperGetCovariance(hDp,prm);

 % Calculate the analog beamformer weights
 Bg = jsdmrfweights(hcov,prm.numSTSGroupVec);

 % Pack beamformer weights into a precoding array
 mFrf = cat(1,Bg{:});

 % Calculate (predict) the effective channel response for each user from
 % a beamformed sounding signal
 hEff = helperGetHeff(hDp,mFrf,prm);

 % Get the digital (baseband) weights
 Fbb = jsdmbbweights(hEff,prm.numSTSGroupVec,Bg);

 if strcmp(prm.jsdmType,'PGP')
 % Pack the per group CSI into a matrix (block diagonal) for PGP
 v = zeros(prm.numCarriers,sum(numSTSVec),sum(numSTSVec));
 for g = 1:prm.numGroups
 stsIdx = sum(prm.numSTSGroupVec(1:g-1))+(1:prm.numSTSGroupVec(g));
 v(:,stsIdx,stsIdx) = Fbb{g}; % Nst-by-Nsts-by-Nsts
 end
 else
 % JGP
 v = Fbb;
 end

end

Plot the transmit array pattern. For a scattering channel, the beam directions should correlate closely
with the spatial positions of the users, and the beam magnitude should correlate with the number of
streams being sent in that direction.

% Transmit array pattern plots
figure;
if isTxURA
 % URA element response for the first subcarrier
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
 'ElementWeights',mFrf.'*squeeze(v(1,:,:)), ...
 'PropagationSpeed',prm.cLight);
else % ULA
 % Array response for first subcarrier
 wts = mFrf.'*squeeze(v(1,:,:));
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...

5 Shared phased_comm Examples (comm/phased)

5-10

 'Weights',wts(:,1),'PropagationSpeed',prm.cLight);
end

For the wideband OFDM system modeled, the analog weights, mFrf, are the averaged weights over
the multiple subcarriers. The array response pattern shows distinct data streams represented by the
stronger lobes. These lobes indicate the spread or separability achieved by beamforming. The
“Introduction to Hybrid Beamforming” (Phased Array System Toolbox) example compares the
patterns realized by the optimal, fully digital approach, with those realized from the selected hybrid
approach, for a single-user system.

Data Transmission

Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
baseband precoding of the transmit streams, OFDM modulation with pilot mapping and RF analog
beamforming for all the transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
 'TrellisStructure',poly2trellis(7,[133 171 165]), ...
 'TerminationMethod','Terminated');

txDataBits = cell(numUsers, 1);
gridData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for uIdx = 1:numUsers
 % Generate mapped symbols from bits per user
 txDataBits{uIdx} = randi([0,1],prm.numFrmBits(uIdx),1);

 Massive MIMO Hybrid Beamforming

5-11

 encodedBits = encoder(txDataBits{uIdx});

 % Bits to QAM symbol mapping
 mappedSym = qammod(encodedBits,prm.modMode,'InputType','bit', ...
 'UnitAveragePower',true);

 % Map to layers: per user, per symbol, per data stream
 stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:numSTSVec(uIdx));
 gridData(:,:,stsIdx) = reshape(mappedSym,prm.numCarriers, ...
 prm.numDataSymbols,numSTSVec(uIdx));
end

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
 for carrIdx = 1:prm.numCarriers
 Q = squeeze(v(carrIdx,:,:));
 normQ = Q * sqrt(numTx)/norm(Q,'fro');
 preData(carrIdx,symIdx,:) = squeeze(gridData(carrIdx,symIdx,:)).' ...
 * normQ;
 end
end

% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);

% OFDM modulation of the data
txOFDM = ofdmmod(preData,prm.FFTLength,prm.CyclicPrefixLength,...
 prm.NullCarrierIndices,prm.PilotCarrierIndices,pilots);
% scale power for used sub-carriers
txOFDM = txOFDM * (prm.FFTLength/ ...
 sqrt((prm.FFTLength-length(prm.NullCarrierIndices))));

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];

% RF beamforming: Apply Frf to the digital signal
% Each antenna element is connected to each data stream
txSig = txSigSTS*mFrf;

For the selected, fully connected RF architecture, each antenna element uses prm.numSTS analog
gains, as given by the individual columns of the mFrf matrix.

The processing for the data transmission and reception modeled is shown below.

5 Shared phased_comm Examples (comm/phased)

5-12

Signal Propagation

The example offers an option for spatial MIMO channel and a simpler static-flat MIMO channel for
validation purposes.

The scattering model uses a single-bounce ray tracing approximation with a parametrized number of
scatterers. For this example, the number of scatterers is set to 50. The 'Scattering' option models the
scatterers placed randomly within a sphere around the receiver, similar to the one-ring model [6].

The channel models allow path-loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear or rectangular geometry.

% Apply a spatially defined channel to the transmit signal
[rxSig,chanDelay] = helperApplyMUChannel(txSig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission. The data transmission has a
longer duration and is controlled by the number of data symbols parameter, prm.numDataSymbols.
The channel evolution between the sounding and transmission stages is modeled by prepending the
preamble signal to the data signal. The preamble primes the channel to a valid state for the data
transmission, and is ignored from the channel output.

For a multi-user system, independent channels per user are modeled.

Receive Amplification and Signal Recovery

The receiver modeled per user compensates for the path loss by amplification and adds thermal
noise. Like the transmitter, the receiver used in a MIMO-OFDM system contains many stages
including OFDM demodulation, MIMO equalization, QAM demapping, and channel decoding.

hfig = figure('Name','Equalized symbol constellation per stream');
scFact = ((prm.FFTLength-length(prm.NullCarrierIndices))...
 /prm.FFTLength^2)/numTx;
nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;

 Massive MIMO Hybrid Beamforming

5-13

decoder = comm.ViterbiDecoder('InputFormat','Unquantized', ...
 'TrellisStructure',poly2trellis(7, [133 171 165]), ...
 'TerminationMethod','Terminated','OutputDataType','double');

for uIdx = 1:numUsers
 stsU = numSTSVec(uIdx);
 stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:stsU);

 % Front-end amplifier gain and thermal noise
 rxPreAmp = phased.ReceiverPreamp(...
 'Gain',spLoss(uIdx), ... % account for path loss
 'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
 rxSigAmp = rxPreAmp(rxSig{uIdx});

 % Scale power for occupied sub-carriers
 rxSigAmp = rxSigAmp*(sqrt(prm.FFTLength-length(prm.NullCarrierIndices)) ...
 /prm.FFTLength);

 % OFDM demodulation
 rxOFDM = ofdmdemod(rxSigAmp(chanDelay(uIdx)+1: ...
 end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
 prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
 prm.NullCarrierIndices,prm.PilotCarrierIndices);

 % Channel estimation from the mapped preamble
 hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

 % MIMO equalization
 % Index into streams for the user of interest
 [rxEq,CSI] = ofdmEqualize(rxOFDM(:,numSTS+1:end,:),hD(:,stsIdx,:),'Algorithm','zf');

 % Soft demodulation
 rxSymbs = rxEq(:)/sqrt(numTx);
 rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
 'OutputType','approxllr','NoiseVariance',nVar);

 % Apply CSI prior to decoding
 rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
 prm.numDataSymbols,stsU);
 csitmp = reshape(CSI,1,[],1,numSTSVec(uIdx));
 rxScaledLLR = rxLLRtmp.*csitmp;

 % Soft-input channel decoding
 rxDecoded = decoder(rxScaledLLR(:));

 % Decoded received bits
 rxBits = rxDecoded(1:prm.numFrmBits(uIdx));

 % Plot equalized symbols for all streams per user
 scaler = 2;
 for i = 1:stsU
 subplot(numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
 plot(reshape(rxEq(:,:,i)/sqrt(numTx), [], 1), '.');
 axis square
 xlim(gca,[-scaler scaler]);
 ylim(gca,[-scaler scaler]);
 title(['U' num2str(uIdx) ', G' num2str(prm.groups(uIdx)) ', DS' num2str(i)]);

5 Shared phased_comm Examples (comm/phased)

5-14

 grid on;
 end

 % Compute and display the EVM
 evm = comm.EVM('Normalization','Average constellation power', ...
 'ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation', ...
 qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',1));
 rmsEVM = evm(rxSymbs);
 disp(['User ' num2str(uIdx) ' (Group ' num2str(prm.groups(uIdx)) ')']);
 disp([' RMS EVM (%) = ' num2str(rmsEVM)]);

 % Compute and display bit error rate
 ber = comm.ErrorRate;
 measures = ber(txDataBits{uIdx},rxBits);
 fprintf(' BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1),measures(3),measures(2));
end

User 1 (Group 1)
 RMS EVM (%) = 0.00051611
 BER = 0.00000; No. of Bits = 12474; No. of errors = 0
User 2 (Group 1)
 RMS EVM (%) = 0.00053232
 BER = 0.00000; No. of Bits = 9354; No. of errors = 0
User 3 (Group 1)
 RMS EVM (%) = 0.00070922
 BER = 0.00000; No. of Bits = 6234; No. of errors = 0
User 4 (Group 2)
 RMS EVM (%) = 0.00081068
 BER = 0.00000; No. of Bits = 12474; No. of errors = 0
User 5 (Group 2)
 RMS EVM (%) = 0.00055681
 BER = 0.00000; No. of Bits = 9354; No. of errors = 0

 Massive MIMO Hybrid Beamforming

5-15

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits per user.

rng(s); % restore RNG state

Conclusion and Further Exploration

The example highlights the use of hybrid beamforming for multi-user MIMO-OFDM systems. It allows
you to explore different system configurations for a variety of channel models by changing a few
system-wide parameters.

The set of configurable parameters includes the number of users, number of data streams per user,
number of transmit/receive antenna elements, array locations, and channel models. Adjusting these
parameters, you can study the parameters' individual or combined effects on the overall system. As
examples, vary:

• the number of users and corresponding data streams, prm.numSTSVec, and their corresponding
group, prm.groups, to switch between multi-user and single-user systems, or

• the channel type, prm.ChanType, or
• the number of rays, prm.nRays, used for a single-user system, or
• the JSDM feedback type, prm.jsdmType, and the group locations, groupAngles and

groupRanges, used in the multi-user system.

Explore the following helper functions used by the example:

5 Shared phased_comm Examples (comm/phased)

5-16

• helperApplyMUChannel.m
• helperArrayInfo.m
• helperGetCovariance.m
• helperGenPreamble.m
• helperGenPilots.m
• helperGetHeff.m
• helperGetP.m
• helperMIMOChannelEstimate.m

To see JSDM used in a 5G communications system, see the “TDD Reciprocity-Based PDSCH MU-
MIMO Using SRS” (5G Toolbox) example.

References

1 Molisch, A. F., et al. "Hybrid Beamforming for Massive MIMO: A Survey." IEEE®
Communications Magazine, Vol. 55, No. 9, September 2017, pp. 134-141.

2 Li Z., S. Han, and A. F. Molisch. "Hybrid Beamforming Design for Millimeter-Wave Multi-User
Massive MIMO Downlink." IEEE ICC 2016, Signal Processing for Communications Symposium.

3 El Ayach, Oma, et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems." IEEE
Transactions on Wireless Communications, Vol. 13, No. 3, March 2014, pp. 1499-1513.

4 Adhikary A., J. Nam, J-Y Ahn, and G. Caire. "Joint Spatial Division and Multiplexing - The Large-
Scale Array Regime." IEEE Transactions on Information Theory, Vol. 59, No. 10, October 2013,
pp. 6441-6463.

5 Spencer Q., A. Swindlehurst, M. Haardt, "Zero-Forcing Methods for Downlink Spatial
Multiplexing in Multiuser MIMO Channels." IEEE Transactions on Signal Processing, Vol. 52, No.
2, February 2004, pp. 461-471.

6 Shui, D. S., G. J. Foschini, M. J. Gans and J. M. Kahn. "Fading Correlation and its Effect on the
Capacity of Multielement Antenna Systems." IEEE Transactions on Communications, Vol. 48, No.
3, March 2000, pp. 502-513.

 Massive MIMO Hybrid Beamforming

5-17

MIMO-OFDM Precoding with Phased Arrays

This example shows how phased arrays are used in a MIMO-OFDM communication system employing
beamforming. Using components from Communications Toolbox™ and Phased Array System
Toolbox™, it models the radiating elements that comprise a transmitter and the front-end receiver
components, for a MIMO-OFDM communication system. With user-specified parameters, you can
validate the performance of the system in terms of bit error rate and constellations for different
spatial locations and array sizes.

The example uses functions and System objects™ from Communications Toolbox and Phased Array
System Toolbox and requires

• WINNER II Channel Model for Communications Toolbox

Introduction

MIMO-OFDM systems are the norm in current wireless systems (e.g. 5G NR, LTE, WLAN) due to their
robustness to frequency-selective channels and high data rates enabled. With ever-increasing
demands on data rates supported, these systems are getting more complex and larger in
configurations with increasing number of antenna elements, and resources (subcarriers) allocated.

With antenna arrays and spatial multiplexing, efficient techniques to realize the transmissions are
necessary [6]. Beamforming is one such technique, that is employed to improve the signal to noise
ratio (SNR) which ultimately improves the system performance, as measured here in terms of bit
error rate (BER) [1].

This example illustrates an asymmetric MIMO-OFDM single-user system where the maximum number
of antenna elements on transmit and receive ends can be 1024 and 32 respectively, with up to 16
independent data streams. It models a spatial channel where the array locations and antenna
patterns are incorporated into the overall system design. For simplicity, a single point-to-point link
(one base station communicating with one mobile user) is modeled. The link uses channel sounding to
provide the transmitter with the channel information it needs for beamforming.

The example offers the choice of a few spatially defined channel models, specifically a WINNER II
Channel model and a scattering-based model, both of which account for the transmit/receive spatial
locations and antenna patterns.

s = rng(61); % Set RNG state for repeatability

System Parameters

Define parameters for the system. These parameters can be modified to explore their impact on the
system.

% Single-user system with multiple streams
prm.numUsers = 1; % Number of users
prm.numSTS = 16; % Number of independent data streams, 4/8/16/32/64
prm.numTx = 32; % Number of transmit antennas
prm.numRx = 16; % Number of receive antennas
prm.bitsPerSubCarrier = 6; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols

prm.fc = 4e9; % 4 GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps

5 Shared phased_comm Examples (comm/phased)

5-18

prm.ChanType = 'Scattering'; % Channel options: 'WINNER', 'Scattering',
 % 'ScatteringFcn', 'StaticFlat'
prm.NFig = 5; % Noise figure, dB

% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
prm.mobileRange = 300; % meters
% Angles specified as [azimuth;elevation], az=[-90 90], el=[-90 90]
prm.mobileAngle = [33; 0]; % degrees
prm.steeringAngle = [30; -20]; % Transmit steering angle (close to mobileAngle)
prm.enSteering = true; % Enable/disable steering

Parameters to define the OFDM modulation employed for the system are specified below.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NumGuardBandCarriers = [7 6];
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232];
nonDataIdx = [(1:prm.NumGuardBandCarriers(1))'; prm.FFTLength/2+1; ...
 (prm.FFTLength-prm.NumGuardBandCarriers(2)+1:prm.FFTLength)'; ...
 prm.PilotCarrierIndices.';];
prm.CarriersLocations = setdiff((1:prm.FFTLength)',sort(nonDataIdx));

numTx = prm.numTx;
numRx = prm.numRx;
numSTS = prm.numSTS;
prm.numFrmBits = numSTS*prm.numDataSymbols*prm.numCarriers* ...
 prm.bitsPerSubCarrier*1/3-6; % Account for termination bits

prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
prm.numPadZeros = 3*(prm.FFTLength+prm.CyclicPrefixLength);

% Get transmit and receive array information
prm.numSTSVec = numSTS;
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);

The processing for channel sounding, data transmission and reception modeled in the example are
shown in the following block diagrams.

The free space path loss is calculated based on the base station and mobile station positions for the
spatially-aware system modeled.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;

 MIMO-OFDM Precoding with Phased Arrays

5-19

% Mobile position
[xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngle(1)),...
 deg2rad(prm.mobileAngle(2)),prm.mobileRange);
prm.posRx = [xRx;yRx;zRx];
[toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx);
spLoss = fspl(toRxRange,prm.lambda);
gainFactor = 1;

Channel Sounding

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first, wherein
for a reference transmission, the receiver estimates the channel and feeds this information back to
the transmitter.

For the chosen system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver components perform pre-
amplification, OFDM demodulation, frequency domain channel estimation, and calculation of the
feedback weights based on channel diagonalization using singular value decomposition (SVD) per
data subcarrier.

% Generate the preamble signal
preambleSigSTS = helperGenPreamble(prm);
% repeat over numTx
preambleSig = zeros(size(preambleSigSTS,1),numTx);
for i = 1:numSTS
 preambleSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
 repmat(preambleSigSTS(:,i),1,expFactorTx);
end

% Transmit preamble over channel
[rxPreSig,chanDelay] = helperApplyChannel(preambleSig,prm,spLoss);

% Front-end amplifier gain and thermal noise
rxPreAmp = phased.ReceiverPreamp(...
 'Gain',gainFactor*spLoss, ... % account for path loss
 'NoiseFigure',prm.NFig, ...
 'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
rxPreSigAmp = rxPreAmp(rxPreSig);
rxPreSigAmp = rxPreSigAmp * ... % scale power
 (sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));

% OFDM Demodulation
demodulatorOFDM = comm.OFDMDemodulator(...
 'FFTLength',prm.FFTLength, ...
 'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
 'RemoveDCCarrier',true, ...
 'PilotOutputPort',true, ...
 'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
 'CyclicPrefixLength',prm.CyclicPrefixLength, ...
 'NumSymbols',numSTS, ... % preamble symbols alone
 'NumReceiveAntennas',numRx);

rxOFDM = demodulatorOFDM(...
 rxPreSigAmp(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));

5 Shared phased_comm Examples (comm/phased)

5-20

% Channel estimation from preamble
% numCarr, numSTS, numRx
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

% Calculate the feedback weights
v = diagbfweights(hD);

For conciseness in presentation, front-end synchronization including carrier and timing recovery are
assumed. The weights computed using diagbfweights are hence fed back to the transmitter, for
subsequent application for the actual data transmission.

Data Transmission

Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
precoding of the transmit streams, OFDM modulation with pilot mapping and replication for the
transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
 'TrellisStructure',poly2trellis(7,[133 171 165]), ...
 'TerminationMethod','Terminated');

% Generate mapped symbols from bits
txBits = randi([0, 1],prm.numFrmBits,1);
encodedBits = encoder(txBits);

% Bits to QAM symbol mapping
mappedSym = qammod(encodedBits,prm.modMode,'InputType','Bit', ...
 'UnitAveragePower',true);

% Map to layers: per symbol, per data stream
gridData = reshape(mappedSym,prm.numCarriers,prm.numDataSymbols,numSTS);

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
 for carrIdx = 1:prm.numCarriers
 Q = squeeze(v(carrIdx,:,:));
 normQ = Q * sqrt(numTx)/norm(Q,'fro');
 preData(carrIdx,symIdx,:) = ...
 squeeze(gridData(carrIdx,symIdx,:)).' * normQ;
 end
end

% OFDM modulation of the data
modulatorOFDM = comm.OFDMModulator(...
 'FFTLength',prm.FFTLength,...
 'NumGuardBandCarriers',prm.NumGuardBandCarriers.',...
 'InsertDCNull',true, ...
 'PilotInputPort',true,...
 'PilotCarrierIndices',prm.PilotCarrierIndices.',...
 'CyclicPrefixLength',prm.CyclicPrefixLength,...
 'NumSymbols',prm.numDataSymbols,...
 'NumTransmitAntennas',numSTS);

% Multi-antenna pilots

 MIMO-OFDM Precoding with Phased Arrays

5-21

pilots = helperGenPilots(prm.numDataSymbols,numSTS);

txOFDM = modulatorOFDM(preData,pilots);
txOFDM = txOFDM * (prm.FFTLength/ ...
 sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)); % scale power

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];

% Repeat over numTx
txSig = zeros(size(txSigSTS,1),numTx);
for i = 1:numSTS
 txSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
 repmat(txSigSTS(:,i),1,expFactorTx);
end

For precoding, the preamble signal is regenerated to enable channel estimation. It is prepended to
the data portion to form the transmission packet which is then replicated over the transmit antennas.

Transmit Beam Steering

Phased Array System Toolbox offers components appropriate for the design and simulation of phased
arrays used in wireless communications systems.

For the spatially aware system, the signal transmitted from the base station is steered towards the
direction of the mobile, so as to focus the radiated energy in the desired direction. This is achieved by
applying a phase shift to each antenna element to steer the transmission.

The example uses a linear or rectangular array at the transmitter, depending on the number of data
streams and number of transmit antennas selected.

% Gain per antenna element
amplifier = phased.Transmitter('PeakPower',1/numTx,'Gain',0);

% Amplify to achieve peak transmit power for each element
for n = 1:numTx
 txSig(:,n) = amplifier(txSig(:,n));
end

% Transmit antenna array definition
if isTxURA
 % Uniform Rectangular array
 arrayTx = phased.URA([expFactorTx,numSTS],[0.5 0.5]*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
 % Uniform Linear array
 arrayTx = phased.ULA(numTx, ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
end

% For evaluating weights for steering
SteerVecTx = phased.SteeringVector('SensorArray',arrayTx, ...
 'PropagationSpeed',prm.cLight);

% Generate weights for steered direction
wT = SteerVecTx(prm.fc,prm.steeringAngle);

5 Shared phased_comm Examples (comm/phased)

5-22

% Radiate along the steered direction, without signal combining
radiatorTx = phased.Radiator('Sensor',arrayTx, ...
 'WeightsInputPort',true, ...
 'PropagationSpeed',prm.cLight, ...
 'OperatingFrequency',prm.fc, ...
 'CombineRadiatedSignals',false);

if prm.enSteering
 txSteerSig = radiatorTx(txSig,repmat(prm.mobileAngle,1,numTx), ...
 conj(wT));
else
 txSteerSig = txSig;
end

% Visualize the array
h = figure('Position',figposition([10 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Geometry';
viewArray(arrayTx);

% Visualize the transmit pattern and steering
h = figure('Position',figposition([32 55 22 30]),'MenuBar','none');
h.Name = 'Transmit Array Response Pattern';
pattern(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
h = figure('Position',figposition([54 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Azimuth Pattern';
patternAzimuth(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
if isTxURA
 h = figure('Position',figposition([76 55 22 35]),'MenuBar','none');
 h.Name = 'Transmit Array Elevation Pattern';
 patternElevation(arrayTx,prm.fc,'PropagationSpeed',prm.cLight, ...
 'Weights',wT);
end

 MIMO-OFDM Precoding with Phased Arrays

5-23

5 Shared phased_comm Examples (comm/phased)

5-24

The plots indicate the array geometry and the transmit array response in multiple views. The
response shows the transmission direction as specified by the steering angle.

 MIMO-OFDM Precoding with Phased Arrays

5-25

The example assumes the steering angle known and close to the mobile angle. In actual systems, this
would be estimated from angle-of-arrival estimation at the receiver as a part of the channel sounding
or initial beam tracking procedures.

Signal Propagation

The example offers three options for spatial MIMO channels and a simpler static-flat MIMO channel
for evaluation purposes.

The WINNER II channel model [5] is a spatially defined MIMO channel that allows you to specify the
array geometry and location information. It is configured to use the typical urban microcell indoor
scenario with very low mobile speeds.

The two scattering based channels use a single-bounce path through each scatterer where the
number of scatterers is user-specified. For this example, the number of scatterers is set to 100. The
'Scattering' option models the scatterers placed randomly within a circle in between the transmitter
and receiver, while the 'ScatteringFcn' models their placement completely randomly.

The models allow path loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear geometry.

% Apply a spatially defined channel to the steered signal
[rxSig,chanDelay] = helperApplyChannel(txSteerSig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission, with the data transmission having
a longer duration controlled by the number of data symbols parameter, prm.numDataSymbols.

Receive Beam Steering

The receiver steers the incident signals to align with the transmit end steering, per receive element.
Thermal noise and receiver gain are applied. Uniform linear or rectangular arrays with isotropic
responses are modeled to match the channel and transmitter arrays.

rxPreAmp = phased.ReceiverPreamp(...
 'Gain',gainFactor*spLoss, ... % accounts for path loss
 'NoiseFigure',prm.NFig, ...
 'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);

% Front-end amplifier gain and thermal noise
rxSigAmp = rxPreAmp(rxSig);
rxSigAmp = rxSigAmp * ... % scale power
 (sqrt(prm.FFTLength - sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));

% Receive array
if isRxURA
 % Uniform Rectangular array
 arrayRx = phased.URA([expFactorRx,numSTS],0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
 % Uniform Linear array
 arrayRx = phased.ULA(numRx, ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
end

5 Shared phased_comm Examples (comm/phased)

5-26

% For evaluating receive-side steering weights
SteerVecRx = phased.SteeringVector('SensorArray',arrayRx, ...
 'PropagationSpeed',prm.cLight);

% Generate weights for steered direction towards mobile
wR = SteerVecRx(prm.fc,toRxAng);

% Steer along the mobile receive direction
if prm.enSteering
 rxSteerSig = rxSigAmp.*(wR');
else
 rxSteerSig = rxSigAmp;
end

% Visualize the array
h = figure('Position',figposition([10 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Geometry';
viewArray(arrayRx);

% Visualize the receive pattern and steering
h = figure('Position',figposition([32 20 22 30]));
h.Name = 'Receive Array Response Pattern';
pattern(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
h = figure('Position',figposition([54 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Azimuth Pattern';
patternAzimuth(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
if isRxURA
 figure('Position',figposition([76 20 22 35]),'MenuBar','none');
 h.Name = 'Receive Array Elevation Pattern';
 patternElevation(arrayRx,prm.fc,'PropagationSpeed',prm.cLight, ...
 'Weights',wR);
end

 MIMO-OFDM Precoding with Phased Arrays

5-27

5 Shared phased_comm Examples (comm/phased)

5-28

The receive antenna pattern mirrors the transmission steering.

Signal Recovery

The receive antenna array passes the propagated signal to the receiver to recover the original
information embedded in the signal. Similar to the transmitter, the receiver used in a MIMO-OFDM
system contains many components, including OFDM demodulator, MIMO equalizer, QAM
demodulator, and channel decoder.

demodulatorOFDM = comm.OFDMDemodulator(...
 'FFTLength',prm.FFTLength, ...
 'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
 'RemoveDCCarrier',true, ...
 'PilotOutputPort',true, ...
 'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
 'CyclicPrefixLength',prm.CyclicPrefixLength, ...
 'NumSymbols',numSTS+prm.numDataSymbols, ... % preamble & data
 'NumReceiveAntennas',numRx);

% OFDM Demodulation
rxOFDM = demodulatorOFDM(...
 rxSteerSig(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));

% Channel estimation from the mapped preamble
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

% MIMO Equalization
[rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD);

% Soft demodulation
scFact = ((prm.FFTLength-sum(prm.NumGuardBandCarriers)-1) ...
 /prm.FFTLength^2)/numTx;

 MIMO-OFDM Precoding with Phased Arrays

5-29

nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
rxSymbs = rxEq(:)/sqrt(numTx);
rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
 'OutputType','approxllr','NoiseVariance',nVar);

% Apply CSI prior to decoding
rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
 prm.numDataSymbols,numSTS);
csitmp = reshape(CSI,1,[],1,numSTS);
rxScaledLLR = rxLLRtmp.*csitmp;

% Soft-input channel decoding
decoder = comm.ViterbiDecoder(...
 'InputFormat','Unquantized', ...
 'TrellisStructure',poly2trellis(7, [133 171 165]), ...
 'TerminationMethod','Terminated', ...
 'OutputDataType','double');
rxDecoded = decoder(rxScaledLLR(:));

% Decoded received bits
rxBits = rxDecoded(1:prm.numFrmBits);

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits.

% Display received constellation
constDiag = comm.ConstellationDiagram(...
 'SamplesPerSymbol',1, ...
 'ShowReferenceConstellation',true, ...
 'ReferenceConstellation', ...
 qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',true), ...
 'ColorFading',false, ...
 'Position',figposition([20 20 35 40]), ...
 'Title','Equalized Symbols', ...
 'EnableMeasurements',true, ...
 'MeasurementInterval',length(rxSymbs));
constDiag(rxSymbs);

% Compute and display bit error rate
ber = comm.ErrorRate;
measures = ber(txBits,rxBits);
fprintf('BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1),measures(3),measures(2));

rng(s); % Restore RNG state

BER = 0.00000; No. of Bits = 74874; No. of errors = 0

5 Shared phased_comm Examples (comm/phased)

5-30

Conclusion and Further Exploration

The example highlighted the use of phased antenna arrays for a beamformed MIMO-OFDM system. It
accounted for the spatial geometry and location of the arrays at the base station and mobile station
for a single user system. Using channel sounding, it illustrated how precoding is realized in current
wireless systems and how steering of antenna arrays is modeled.

Within the set of configurable parameters, you can vary the number of data streams, transmit/receive
antenna elements, station or array locations and geometry, channel models and their configurations
to study the parameters' individual or combined effects on the system. E.g. vary just the number of
transmit antennas to see the effect on the main lobe of the steered beam and the resulting system
performance.

The example also made simplifying assumptions for front-end synchronization, channel feedback,
user velocity and path loss models, which need to be further considered for a practical system.
Individual systems also have their own procedures which must be folded in to the modeling [2, 3, 4].

Explore the following helper functions used:

• helperApplyChannel.m
• helperArrayInfo.m
• helperGenPilots.m
• helperGenPreamble.m
• helperGetP.m

 MIMO-OFDM Precoding with Phased Arrays

5-31

• helperMIMOChannelEstimate.m
• helperMIMOEqualize.m

Selected Bibliography

1 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

2 IEEE® Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 3GPP TS 36.213. "Physical layer procedures." 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-
UTRA). URL: https://www.3gpp.org.

4 3GPP TS 36.101. "User Equipment (UE) Radio Transmission and Reception." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). URL: https://www.3gpp.org.

5 Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2, V1.2. IST-4-027756
WINNER II, September 2007.

6 George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC Press, Boca
Raton, FL, 2006.

5 Shared phased_comm Examples (comm/phased)

5-32

https://www.3gpp.org
https://www.3gpp.org

HDL Coder Featured Examples

6

Airplane Tracking with ADS-B Captured Data

This example shows how to implement the Automatic Dependent Surveillance - Broadcast (ADS-B)
receiver for HDL code generation and hardware implementation. This example decodes ADS-B
extended squitter messages which can be used to track the airplane. The HDL-optimized model in
this example uses Simulink® blocks that support HDL code generation to implement the ADS-B
Receiver. This example model is used for real-time processing in “HW/SW Co-Design Implementation
of ADS-B Receiver Using Analog Devices AD9361/AD9364” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio), which requires the Communications Toolbox™ Support
Package for Xilinx® Zynq®-Based Radio.

Introduction

ADS-B is an air traffic management and control surveillance system. The broadcast messages
(approximately once per second) contain the flight information including position and velocity. For
introduction on ADS-B technology and modes of transmission, see [1]. The HDLRx subsystem is
optimized for HDL code generation. The captured received signal is streamed into the receiver
(HDLRx subsystem) front end. The streaming output of the receiver is buffered and passed to the
MapResults MATLAB® function to view the output.

Structure of the Example

The model supports both Normal and Accelerator modes. The top-level structure of the ADS-B
receiver model is shown in the following figure.

The receiver input data is captured using “HW/SW Co-Design Implementation of ADS-B Receiver
Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for Xilinx Zynq-
Based Radio) running on the Zynq® platform. The captured data represents the baseband received
signal with a sampling rate of 4 MHz. The data contains 8 frames of extended squitter messages. The

6 HDL Coder Featured Examples

6-2

ADS-B transmitter modulates the 112-bit extended squitter messages using 2-bit pulse-position
modulation, and adds a 16-bit prefix. Then, to generate 4 MHz data, each 240-bit message is zero-
padded and upsampled by 2.

This diagram shows the detailed structure of the HDLRx subsystem.

The subsystems listed here are described further in the following sections.

1. Magnitude Calculation - Finds the complex modulus of the received input signal

2. Threshold Calculation - Calculates the threshold value based on received input signal strength

3. Correlation with Preamble - Correlates the received signal with reference signal to detect the
preamble

4. Timing Control - Provides timing synchronization for the receiver

5. Bit Process - Decodes symbols using PPM demodulation

6. Compute CRC and Frame Validation - Validates the frame by checking for CRC errors

HDL Optimized ADS-B Receiver

1. Magnitude Calculation

The inputs to the Magnitude Calculation subsystem are the in-phase (real) and quadrature
(imaginary) phase samples. This subsystem outputs the modulus of the complex number. The
sqrt(I^2+Q^2) can be approximated by the "|L|+0.4*|S| algorithm" described on page 238 of [2].

where

| L | is the larger value of | I | or | Q |

| S | is the smaller value of | I | or | Q |.

The Gain block converts received input from 12-bit to 16-bit word length.

 Airplane Tracking with ADS-B Captured Data

6-3

For the implementation of "|L|+0.4|S| algorithm", see the following model.

2. Threshold Calculation

The Threshold Calculation subsystem calculates the signal energy and applies a scaling factor to
create a threshold for preamble detection. Moving Average Filter is a serial FIR filter architecture
with 32 coefficients that operates on the magnitude values. The coefficients of the FIR filter are
selected to find the average energy of the received signal. This example scales the signal energy by 5
to detect valid ADS-B preambles. For details on FIR filter, see Discrete FIR Filter (Simulink).

3. Correlation with Preamble

The Correlation with Preamble subsystem correlates the received signal with the ADS-B reference/
preamble sequence [1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0] using a peak detection filter. The peak detection
filter is a serial FIR Filter architecture, configured with coefficients that match the preamble
sequence. Preamble correlation identifies potential ADS-B transmissions and aligns our bit detection
algorithm with the first message bit. The preamble is detected if the peak amplitude exceeds the
scaled threshold value. Once the preamble is detected, the correlation value is passed on as
input(SyncCorr) to the Timing Control block.

6 HDL Coder Featured Examples

6-4

4. Timing Control

The Timing Control block is a state machine that detects the preamble and generates the control
signals ActivateBP and Reset, that indicate the start of frame, end of frame and reset status to the Bit
Process and Compute CRC and Frame Validation blocks.

5. Bit Process

The Bit Process subsystem demodulates and down converts the 4 MHz received signal to a 1 MHz
bit sequence. Each data bit is represented by four PPM bits. To demodulate, the block finds the sum
of the first two bits and the last two bits of each quadruplet. Then, it compares the sums to determine
the original bit value. The output valid signal is asserted every fourth cycle to align with 1 MHz bit
sequence.

6. Compute CRC and Frame Validation

This subsystem checks for mismatches in the 24-bit checksum of each 88-bit message. The CRC block
needs an indication of the frame boundaries to determine which bits are the checksum. The rising
edge of the ActivateBP signal generated from the Timing Control block indicates the start of frame,
and the falling edge indicates the end of the frame. The start signal is delayed to match the demod
latency. When the block output err signal is zero, the frame is a valid ADS-B message. The subsystem
buffers the message bits until the message is confirmed to have no CRC error.

 Airplane Tracking with ADS-B Captured Data

6-5

Launch Map and Log Data

You can launch the map and start text file logging using the two slider switches (Launch Map and
Data Logging).

Launch Map - Launch the map where the tracked flights can be viewed. NOTE: You must have a
Mapping Toolbox™ license to use this feature.

Data Logging - Save the captured data in a TXT file. You can use the saved data for later for post
processing.

Results and Displays

The HDLRx subsystem demodulates and decodes the ADS-B data and the output is streamed through
Deserializer1D block and MapResults MATLAB function, which produces hexadecimal output
information about the aircraft. Each extended squitter Mode S packet contains partial information
(any of Aircraft ID, Flight ID, Altitude, Speed, and Location) about the aircraft and the table is built
up from multiple messages. The output is obtained as shown in the following diagram. The packet
statistics include the number of detected packets, the number of correctly decoded packets, and
packet error rate (PER). These aircraft details match the transmitted values from the “HW/SW Co-
Design Implementation of ADS-B Receiver Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zynq-Based Radio) example.

6 HDL Coder Featured Examples

6-6

HDL Code Generation and Synthesis Results

Pipeline registers have been added to the model to make sure that HDLRx subsystem does not have a
long critical path. The HDL code generated from the HDLRx subsystem was synthesized using
Xilinx® Vivado® on a Zynq FPGA with the device 7z045ffg900-2, and the design achieves 264.2
MHz clock frequency, which is sufficient to decode the real-time ADS-B signals. The generated HDL
code is tested and verified in the real-time example “HW/SW Co-Design Implementation of ADS-B
Receiver Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for
Xilinx Zynq-Based Radio). To check and generate the HDL code referenced in this example, you must
have an HDL Coder™ license. The following table shows the synthesis results of this example.

You can use the commands makehdl and makehdltb to generate HDL code and a test bench for the
HDLRx subsystem. To generate the HDL code, use the following command:

makehdl('commadsbrxhdl/HDLRx')

To generate a test bench, use the following command:

makehdltb('commadsbrxhdl/HDLRx')

 Airplane Tracking with ADS-B Captured Data

6-7

References

1 International Civil Aviation Organization, Annex 10, Volume 4. Surveillance and Collision
Avoidance Systems.

2 Marvin E. Frerking, Digital Signal Processing in Communication Systems, Springer Science
Business Media, New York,1994.

6 HDL Coder Featured Examples

6-8

HDL QAM Transmitter and Receiver

This example shows how to use Simulink® blocks that support HDL code generation to implement a
64-QAM transmitter and receiver for HDL code generation and hardware implementation.

The HDL QAM Tx subsystem generates a complex valued, 64-QAM modulated constellation. A
floating-point channel model, Channel, is used to add attenuation, channel noise, carrier frequency
offset, and fractional delay in order to demonstrate the operation of the receiver subsystem. The HDL
QAM Rx subsystem implements a practical digital receiver to mitigate the channel impairments using
coarse frequency recovery, timing recovery, frame synchronization, and magnitude and phase
recovery. The Text Message Decoding subsystem then receives the data packets, decodes the
packets, and prints them to the MATLAB® Command Window.

Structure of the Example

To open the model, enter:

modelname = 'commqamtxrxhdl';
open_system(modelname);
set_param(modelname,'Open','on');

This image shows the top-level structure of the QAM receiver model. The QAM Tx HDL and QAM Rx
HDL subsystems are optimized for HDL code generation.

To open the QAM Tx HDL subsystem, enter:

set_param(modelname,'Open','off');
set_param([modelname '/QAM Tx HDL'],'Open','on');

This image shows the detailed structure of the QAM Tx HDL subsystem.

 HDL QAM Transmitter and Receiver

6-9

The QAM Tx HDL subsystem contains these components, which are described in more detail in the
HDL QAM Transmitter section.

• Data Generation & Packetization - Generates the packets to be transmitted, grouping the bits
for mapping to symbols

• Symbol Mapping - Maps the bits output from the Data Generation & Packetization subsystem
to QAM symbols

• Pulse Shaping - Performs pulse shaping and upsampling of the symbols using an interpolating
RRC (Root Raised Cosine) filter prior to transmission

set_param([modelname '/QAM Tx HDL'],'Open','off');
set_param([modelname '/Channel'],'Open','on');

The structure of the Channel subsystem can be seen below. As the Channel subsystem is intended
to be a rough approximation of a AWGN channel with attenuation and frequency offset it is intended
to be run in software. As a result blocks which are not supported for HDL code generation can be
used here, such as the Phase/Frequency Offset block. The Phase/Frequency Offset block does not
support fixed point data types, hence the conversion to double at the input of the Channel
subsystem. The signal is converted back to fixed point before being output from the Channel
subsystem. A fractional delay and AWGN are applied to the transmitted signal and the Gain block
attenuates the signal.

set_param([modelname '/Channel'],'Open','off');
set_param([modelname '/QAM Rx HDL'],'Open','on');

This image shows the detailed structure of the QAM Rx HDL subsystem.

6 HDL Coder Featured Examples

6-10

The QAM Rx HDL subsystem contains these components:

• Automatic Gain Control - Normalizes the received signal power.
• Coarse Frequency Offset Correction - Estimates the approximate frequency offset and corrects.

The subsystem also contains the Root Raised Cosine Receive Filter block which downsamples
by two.

• Timing Recovery - Resamples the input signal according to a recovered timing strobe so that
symbol decisions are made at the optimum sampling instants.

• Magnitude & Phase Recovery - Performs packet detection, fine-grained phase and amplitude
correction.

• Demodulate - Demodulates the signal and demaps symbols to bits.

set_param([modelname '/QAM Rx HDL'],'Open','off');
set_param([modelname '/Text Message Decoding'],'Open','on');

This image shows the structure of the Text Message Decoding subsystem.

 HDL QAM Transmitter and Receiver

6-11

This subsystem is designed to be run in software, therefore,the subsystem uses frame-based signals
to speed up the computation. The Text Message Decoding subsystem has eight sample-based
Boolean input signals: dValid, packetStart and signals bit1 to bit6. The dataframer MATLAB
Function block converts the sample-based signals to frame-based signals. The demodulated bits are
valid only when dValid is set high. The dataframer block uses the dValid signal to fill up a delay
line with the received bits and the newPacket signal to forward the data stored in the delay line to
the output and reset the delay line.

The Descramble and Print subsystem processes the received data only when its enable signal
goes high. This occurs when either the delay line accumulates 336 valid demodulated bits or the
newPacket signal is high. This will cause the dataframer block to set the RxGo signal high. While
the simulation is running, the Descramble and Print subsystem outputs the string "Hello world!
~64QAM test string~ ###" to the MATLAB Command Window, where '###' is a repeating sequence
of '000', '001, '002', ..., '099'. Every 50 packets the subsystem outputs the the bit error rate of the
data in the last 50 successfully received packets to the MATLAB Command Window.

HDL QAM Transmitter

The HDL QAM Tx contains the Data Generation & Packetization, Symbol Mapping, and
Pulse Shaping blocks.

Data Generation & Packetization

The Controller FSM and Data Source subsystems generate the preamble bits, data bits,
performs scrambling and builds the packets. Each packet consists of an 84-bit Barker code preamble
and 252 bits of scrambled data. The Group Bits block converts the input data bit stream into a six-
bit integer at 1/6th of the input sampling rate, as required by the symbol mapper.

6 HDL Coder Featured Examples

6-12

The Data Source subsystem has a pipeline delay of two samples. In addition, there is a pipeline
delay between the data source and the bit pairing subsystem. The valid signal is therefore delayed to
match the pipeline delay of the data path. The Group Bits subsystem reduces the sample rate by a
factor of six. Placing a downsample by six in the valid control path ensures that the sample rate
matches that of the signal path.

set_param([modelname '/Text Message Decoding'],'Open','off');
set_param([modelname '/QAM Tx HDL/Data Generation & Packetization'],'Open','on');

Controller FSM - The Controller FSM block is a MATLAB Function block that implements a
control state machine. The FSM has two states, Pack_Preamble and Append_Data. The
Pack_Preamble state asserts the load_preamble signal and de-asserts the reset_preamble and
the load_data signals. The FSM remains in this state for 84 clock cycles. Then the FSM moves into
the Append_Data state, asserts the load_data signal and the reset_preamble signal while
releasing the load_preamble signal. The FSM remains in this state for 252 clock cycles. The
load_preamble and reset_preamble are Boolean and are used to control the Preamble
Address Counter which manages the load of the preamble at the start of each packet. The
load_data signal is Boolean and enables the Data Address Counter which controls the loading
of data into the packet.

Data Source - The Data Source subsystem contains two lookup tables (LUTs), storing the
preamble and data bits. The Preamble Address Counter subsystem, which is controlled by the
reset_preamble and load_preamble signals generated by the Controller FSM block, addresses
the preamble lookup LUT.The Data Access Counter, which is enabled by the load_data signal
generated by the Controller FSM block, addresses the data lookup LUT. The Preamble
Address Counter subsystem has a reset signal, generated by the Controller FSM block, as the
same preamble is inserted at the start of each packet. The Data Address Counter subsystem does
not have a reset signal as the data address sequence is much longer and varies for each packet as
different data bits are placed within each packet. In addition to enabling the counter for the data LUT,
the load data input controls when the HDL Data Scrambler component enables selection of
preamble or data bits via the Preamble Data Mux block.

set_param([modelname '/QAM Tx HDL/Data Generation & Packetization'],'Open','off');
set_param([modelname '/QAM Tx HDL/Data Generation & Packetization/Data Source'],'Open','on');

 HDL QAM Transmitter and Receiver

6-13

HDL Data Scrambler - To view the HDL Data Scrambler block, enter:

set_param([modelname '/QAM Tx HDL/Data Generation & Packetization/Data Source'],'Open','off');
set_param([modelname '/QAM Tx HDL/Data Generation & Packetization/Data Source/HDL Data Scrambler'],'Open','on');

This image shows the HDL Data Scrambler subsystem. The subsystem uses XOR gates (for modulo
2 addition) and registers. The enabled subsystem ensures that the scrambler is only enabled when
there is new input data to be processed.

Group Bits - The Group Bits subsystem groups six individual bits into a six-bit unsigned integer
output which is the format expected by the symbol mapping component. The delays are used to align

6 HDL Coder Featured Examples

6-14

six bits at the input of the Bit Concat block, which concatenates into a six-bit unsigned output. This
output is then downsampled to select the correct grouping of bits.

set_param([modelname '/QAM Tx HDL/Data Generation & Packetization/Data Source/HDL Data Scrambler'],'Open','off');
set_param([modelname '/QAM Tx HDL/Data Generation & Packetization/Group Bits'],'Open','on');

Symbol Mapping

The Symbol Mapping subsystem uses the Rectangular QAM Modulator Baseband block to map
the integer input value onto the appropriate 64-QAM complex valued symbol. The block uses a Gray
mapping scheme.

set_param([modelname '/QAM Tx HDL/Data Generation & Packetization/Group Bits'],'Open','off');
set_param([modelname '/QAM Tx HDL/Symbol Mapping'],'Open','on');

 HDL QAM Transmitter and Receiver

6-15

Pulse Shaping

The Pulse Shaping subsystem uses the RRC Interpolation Filter block with an upsampling factor
of four. A matched filter is implemented in the receiver. The filter is pipelined.

set_param([modelname '/QAM Tx HDL/Symbol Mapping'],'Open','off');
set_param([modelname '/QAM Tx HDL/Pulse Shaping'],'Open','on');

HDL QAM Receiver

The HDL QAM Rx contains the Automatic Gain Control, Coarse Frequency Offset
Correction, Timing Recovery, Magnitude & Phase Recovery, and Demodulate blocks.

Automatic Gain Control

The Automatic Gain Control subsystem ensures that the amplitude of the input of the Coarse
Frequency Compensation is normalized to the range 1 to -1.

set_param([modelname '/QAM Tx HDL/Pulse Shaping'],'Open','off');
set_param([modelname '/QAM Rx HDL/Automatic Gain Control'],'Open','on');

6 HDL Coder Featured Examples

6-16

This image shows the Automatic Gain Control subsystem structure with pipeline registers in
green throughout the model.

Coarse Frequency Offset Correction

The Coarse Frequency Offset Correction subsystem estimates and corrects for the frequency
offset by using the Luise-Reggiannini algorithm [1 on page 6-28]. The Frequency Offset
Estimation subsystem makes an estimate based on the output of the Root Raised Cosine Receive
Filter block, then frequency offset correction based on this estimate is applied at the input to the
Root Raised Cosine Receive Filter. This ensures that the desired portion of the received signal
bandwidth is better aligned with the receiver filter frequency response, which improves the SNR
compared to correcting at the output of the Root Raised Cosine Receive Filter block.

Because the estimation and correction algorithm is operating in a closed loop, and makes iterative
updates to the previous estimates of the frequency offset, the system gradually converges towards a
result. The Loop Gain averages the estimates. This architecture is described in [1 on page 6-28].
The Root Raised Cosine Receive Filter block implements a downsampling operation so it is
necessary to upsample the feedback signal, using the repeat block, to match the rate at the input to
the filter.

Note that there is a residual frequency offset at the output of the Coarse Frequency Offset
Correction subsystem that varies over time, even if the frequency offset at the input to the
subsystem remains the same as the Coarse Frequency Offset Correction subsystem makes
new estimates. The Magnitude and Phase Recovery subsystem makes fine-grained correction of
the residual offset.

set_param([modelname '/QAM Rx HDL/Automatic Gain Control'],'Open','off');
set_param([modelname '/QAM Rx HDL/Coarse Frequency Offset Correction'],'Open','on');

 HDL QAM Transmitter and Receiver

6-17

Frequency Offset Estimation: The Frequency Offset Estimation subsystem implements the
Luise-Regiannini algorithm, described in [1 on page 6-28]. The subsystem raises the signal to the
power four to implement a fourth power phase estimator as described in [2 on page 6-28]. Two
cascaded product blocks, with pipelining added to improve hardware performance implement the
estimator. The Discrete FIR Filter implements the filter with rectangular weights, made up of all
ones, described in [1 on page 6-28]. The FIR Scale scales the FIR output to account for the filter
gain. The Complex To Magnitude-Angle HDL Optimized block is used to implement the angle
function, as required by the Luise-Reggiannini algorithm. This block computes the phase using the
hardware friendly CORDIC algorithm. For more information, see the Complex to Magnitude-Angle
(DSP HDL Toolbox) block. Before the Frequency Offset Estimation subsystem output, the signal is
scaled as required by the Luise-Regiannini algorithm and, in addition, is scaled to match the word
length of the NCO.

set_param([modelname '/QAM Rx HDL/Coarse Frequency Offset Correction'],'Open','off');
set_param([modelname '/QAM Rx HDL/Coarse Frequency Offset Correction/Frequency Offset Estimation'],'Open','on');

Timing Recovery

To open the Timing Recovery subsystem, enter:.

6 HDL Coder Featured Examples

6-18

set_param([modelname '/QAM Rx HDL/Coarse Frequency Offset Correction/Frequency Offset Estimation'],'Open','off');
set_param([modelname '/QAM Rx HDL/Timing Recovery'],'Open','on');

This image shows the Timing Recovery subsystem.

The Timing Recovery subsystem implements a PLL, described in Chapter 8 of [3 on page 6-28], to
correct the timing error in the received signal. On average, the Timing Recovery subsystem
generates one output sample for every two input samples.

The Interpolation Control block implements a decrementing modulo-1 counter, described in
Chapter 8.4.3 of [3 on page 6-28], to generate the control signal to facilitate the selection of the
interpolants of the Interpolation Filter. This control signal also enables the Timing Error
Detector (TED), so that it calculates the timing errors at the correct timing instants. The
Interpolation Control subsystem updates the timing difference, mu, for the Interpolation Filter,
generating interpolants at optimum sampling instants.

The Interpolation Filter is a Farrow parabolic filter with α = 0 . 5 as described in Chapter 8.4.2 of [3
on page 6-28]. The filter uses an α of 0.5 so that all the filter coefficients become 1, -1/2 and 3/2,
which significantly simplifies the interpolator structure. Based on the interpolants the Timing Error
Detector, generates timing errors during a zero crossing as described in Chapter 8.4.1 of [3 on page
6-28].

The Interpolation Filter introduces a fractional delay to the signal in order to compensate for the
timing error. The fractional delay is controlled by the mu input signal. When the timing error (delay)
reaches symbol boundaries, there is one extra or missing interpolant in the output. The Timing
Error Detector implements bit stuffing or skipping to handle the extra or missing interpolants.

Refer to Chapter 8.4.4 of [3 on page 6-28] for details of bit stuffing and skipping. The timing
recovery loop normally generates one output symbol for every two input samples. It also outputs a

 HDL QAM Transmitter and Receiver

6-19

timing strobe (validOut signal) that runs at the input sample rate. Under normal circumstances, the
strobe value is simply a sequence of alternating ones and zeros. However, this occurs only when the
relative delay between transmitter and receiver contains some fractional part of one symbol period
and the integer part of the delay (in symbols) remains constant. If the integer part of the relative
delay changes, the strobe value can have two consecutive zeros or two consecutive ones.

Magnitude & Phase Recovery

The Magnitude & Phase Recovery subsystem performs packet synchronization, fine grained
frequency recovery and fine grained amplitude recovery.

set_param([modelname '/QAM Rx HDL/Timing Recovery'],'Open','off');
set_param([modelname '/QAM Rx HDL/Magnitude & Phase Recovery'],'Open','on');

Packet Synchronization: The Preamble Matched Filter subsystem uses the time-reversed
complex conjugate of the preamble as the filter weights. The modulus of the output of the Preamble
Matched Filter subsystem is calculated using the Modulus subsystem. The output of the Modulus
subsystem is then compared to a threshold to detect the preamble at the start of a packet. The
MATLAB function block generates a signal, isPreamble, which is held high for the duration of the
preamble of each packet. The MATLAB function block also generates the dvalid signal which is set
high for the duration of the packet when a preamble has been detected.

Fine Grained Magnitude and Phase Recovery : The 1-Tap DLMS (Delayed Least Mean Squares)
filter subsystem, adapting over the preamble and using the reference signal generated by Desired
Signal Source, corrects for both phase and magnitude errors. The isPreamble signal, generated by
the MATLAB function block and set high for the 14 preamble symbols once a packet has been
detected, is used to enable the desired signal source and to enable the Adapt input of the 1-Tap
DLMS. When the isPreamble signal is low, the weight in the 1-Tap DLMS is held and the Desired
Signal Source is reset. The Delayed LMS (DLMS) [4 on page 6-28] algorithm is used here to allow
for more pipelining to be introduced and, therefore, reduce the critical path in the filter and increase
the maximum clock rate achievable after being implemented in hardware.

The internal structure of the Desired Signal Source subsystem is shown below. The data lookup
LUT contains the preamble symbols.

set_param([modelname '/QAM Rx HDL/Magnitude & Phase Recovery'],'Open','off');
set_param([modelname '/QAM Rx HDL/Magnitude & Phase Recovery/Desired Signal Source'],'Open','on');

6 HDL Coder Featured Examples

6-20

The internal structure of the 1-Tap DLMS subsystem is shown below.

set_param([modelname '/QAM Rx HDL/Magnitude & Phase Recovery/Desired Signal Source'],'Open','off');
set_param([modelname '/QAM Rx HDL/Magnitude & Phase Recovery/1-Tap DLMS'],'Open','on');

Demodulate

The Demodulate subsystem maps each 64-QAM input symbol to bits, outputting 6 bits for each input
symbol. To generate HDL for the Rectangular QAM Demodulator Baseband block, the minimum
distance between symbols must be set to 2. This is 8 times larger than the distance between the
symbols generated in the transmitter. As a result, the symbols input to the Demodulate subsystem

 HDL QAM Transmitter and Receiver

6-21

must be scaled up appropriately. This is done using the Shift Arithmetic block which shifts the
binary point left by 3 bits to achieve the required multiplication by 8.

set_param([modelname '/QAM Rx HDL/Magnitude & Phase Recovery/1-Tap DLMS'],'Open','off');
set_param([modelname '/QAM Rx HDL/Demodulate'],'Open','on');

Results and Displays

During the simulation, the model displays successfully received packets in the MATLAB Command
Window. At every 50 packets, the MATLAB Command Windows displays the bit error rate of the data
in the last 50 successfully received packets.

After running the simulation, the model displays six different figures that illustrate different aspects
of the receiver performance. These are shown below, along with an explanation of each plot. The first
five plots show the adaption, over the simulation duration, of the Automatic Gain Control,
Frequency Offset Estimation, Timing Recovery position estimate, the real part of the
constellation at the output of the Timing Recovery subsystem, and at the output of the Magnitude
& Phase Recover subsystem. The last plot shows the constellation diagram at the output of
Magnitude & Phase Recovery subsystem after any adaption has taken place.

set_param([modelname '/QAM Rx HDL/Demodulate'],'Open','off');
print_cap = evalc('sim(modelname)'); %#ok<NASGU>
clear print_cap;
tscope1.hide;
tscope2.hide;
tscope3.hide;
constDiag1.hide;
constDiag2.hide;
constDiag3.hide;

Automatic Gain Control Plot

This plot illustrates the Automatic Gain Control subsystem adapting over time to normalize the
output. A balance must be struck between how quickly the automatic gain control adapts and how

6 HDL Coder Featured Examples

6-22

much ripple there is after the gain has reached a relatively constant level. Using a larger automatic
gain control loop gain adapts faster, but the amplitude after adaption varies more. Using a smaller
loop gain slows the adaption of the automatic gain control, smooths the level after adaption but takes
longer to adapt.

tscope1.show;

Frequency Offset Estimate Plot

This plot illustrates how the coarse frequency offset gradually adapts towards the frequency offset
introduced by the system, as indicated by the blue horizontal line. This image shows that while the
estimate comes close to the actual frequency offset, there is still a residual error that must be
addressed later in the system.

tscope1.hide;
tscope2.show;

 HDL QAM Transmitter and Receiver

6-23

Timing Recovery Position Plot

This plot shows the mu input to the Interpolation Filter. Note that mu converges to a steady state,
with some ripple over time as the channel delay does not vary during the simulation.

tscope2.hide;
tscope3.show;

6 HDL Coder Featured Examples

6-24

Real Part of Timing Recovery Output Plot

This plot illustrates how the real part of the Timing Recovery subsystem output is beginning to
converge towards the eight distinct amplitude levels expected for 64QAM. However, as the residual
frequency offset remaining after the coarse frequency recovery has not yet been corrected at this
point in the receiver, the quality of the signal varies with the distinct amplitude levels more clearly
visible at some points than at others. The constellation still has some rotation at this point in the
receiver.

tscope3.hide;
constDiag1.show;

 HDL QAM Transmitter and Receiver

6-25

Real Part of Symbol Estimates Plot

This plot shows how the real part of output of the Magnitude & Phase Recovery subsystem adapts
over time. Unlike the previous plot, this diagram is generated after the fine frequency recovery,
therefore the constellation should not be rotating. There are no samples initially as the output from
the block is not valid, and then eight clear amplitude levels should be seen - representing the eight
real amplitude levels of the 64-QAM constellation.

constDiag1.hide;
constDiag2.show;

6 HDL Coder Featured Examples

6-26

Recovered Constellation Plot

This plot shows the constellation at the output of the Magnitude & Phase Recovery subsystem after
the system has had time to adapt to the channel. Reducing the channel noise should reduce the size
of each of the constellation points; increasing the channel noise begins to merge the distinct
constellation points together. If the system has not successfully corrected for the frequency offset,
then rotation of the constellation is visible here.

constDiag2.hide;
constDiag3.show;

 HDL QAM Transmitter and Receiver

6-27

References

1. Luise, M., and R. Reggiannini. “Carrier Frequency Recovery in All-Digital Modems for Burst-Mode
Transmissions.” IEEE Transactions on Communications 43, no. 2/3/4 (February 1995): 1169–78.
https://doi.org/10.1109/26.380149.

2. Moeneclaey, M., and G. de Jonghe. “ML-Oriented NDA Carrier Synchronization for General
Rotationally Symmetric Signal Constellations.” IEEE Transactions on Communications 42, no. 8
(August 1994): 2531–33. https://doi.org/10.1109/26.310611.

3. Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle River, N.J:
Pearson/Prentice Hall, 2009.

4. Long, G., F. Ling, and J.G. Proakis. “The LMS Algorithm with Delayed Coefficient Adaptation.” IEEE
Transactions on Acoustics, Speech, and Signal Processing 37, no. 9 (September 1989): 1397–1405.
https://doi.org/10.1109/29.31293..

constDiag3.hide;
close_system(modelname);
clear modelname;

6 HDL Coder Featured Examples

6-28

HDL QPSK Transmitter and Receiver

This example shows how to implement a QPSK transmitter and receiver in Simulink® that is
optimized for HDL code generation and hardware implementation.

The model shown in this example modulates data based on quadrature phase shift keying (QPSK).
The goal of this example is to model an HDL QPSK communication system that can transmit and
recover information for a real-time system. The receiver implements symbol timing synchronization
and carrier frequency and phase synchronization, which are essential in a single-carrier
communication system.

System Specifications

This section explains the specifications of the transmitter and receiver used in this example. The
frame format is packet based. Each packet has a preamble of length 26 bits. Each bit of the 13 bit
Barker sequence is repeated twice to generate a preamble sequence such that the same bit is
modulated in the in phase and quadrature phase by the QPSK Modulator. The preamble sequence is
followed by 2240 bits of payload data. The transmitter runs using a root raised cosine (RRC) pulse-
shaping filter with a roll-off factor of 0.5, resulting in a bandwidth of 1.5 times the symbol rate and
four samples per symbol (sample rate of four times the symbol rate). The RRC impulse response
spans over four adjacent symbols. The bit rate is twice the symbol rate. The effective average bit rate
is the bit rate times the frame efficiency. The frame efficiency is (2240/(2240+26)) = 0.9885.

The default symbol rate is set to 1.92 Mbaud, which results in a bandwidth of 1.5 times 1.92e6, which
equals 2.88 MHz, and a sample rate of 4 times 1.92e6, which equals 7.68 Msps, bit rate of 2 times
1.92e6, which equals 3.84 Mbps. The effective average bit rate supported by this system is 0.9885
times 3.84e6, which equals 3.7959 Mbps. These specifications change with a change in the symbol
rate.

Model Architecture

This section explains the high-level architecture of the QPSK transmitter and receiver as in the block
diagram. The QPSK transmitter samples the input at a bit rate of twice the symbol rate. The Data
Generator & Packetizer collects the data bits, generates the preamble bits, and forms the packet bits.
The HDL Data Scrambler scrambles the data bits of each packet to increase bit transitions and avoid
long running sequences of the same bit. The QPSK Modulator modulates the packet bits to generate
QPSK symbols. The RRC Transmit Filter upsamples and pulse-shapes the QPSK symbols to generate
the Tx Waveform at a sample rate of four times that of the symbol rate. The QPSK receiver samples
the input at the transmission rate. The Digital AGC performs gain control to the desired amplitude
level of the received waveform. The RRC Receive Filter performs matched filtering on the AGC
output. The Frequency and Time Synchronizer performs synchronization operations and generates
QPSK symbols for each packet. The QPSK Demodulator demodulates the QPSK symbols to generate
packet bits. The HDL Data Descrambler descrambles the packet data bits that stream out of the
receiver.

 HDL QPSK Transmitter and Receiver

6-29

File Structure

One Simulink model and three MATLAB® files construct this example.

• commhdlQPSKTxRx.slx — Top-level Simulink model
• commhdlQPSKTxRxParameters.m — Generates parameters for QPSK Tx and QPSK Rx required

for initialization
• commhdlQPSKTxRxModelInit.m — Initializes the model commhdlQPSKTxRx.slx
• generateHelloworldMsgBits.m — Generates "Hello world xxx " message bits. xxx refers to

values from 000 to 100

System Interface

This figure shows the top-level model of the QPSK transmitter and receiver system.

6 HDL Coder Featured Examples

6-30

Transmitter Inputs

• dataIn — Input data, specified as a Boolean scalar.
• validIn — Control signal to validate the dataIn, specified as a Boolean scalar.

Transmitter Outputs

• dataOut — Output transmitted waveform, returned as 16-bit complex data at a sample rate four
times that of the symbol rate.

• validOut — Control signal to validate the dataOut, returned as a Boolean scalar.
• txDiagBus — Status signal with diagnostic outputs, returned as a Bus signal.
• dataReady — Signal to indicate a ready for the input signals, returned as a Boolean scalar.

The transmitter enables the dataReady signal to indicate that it is ready to accept input bits. The
transmitter constructs a packet after it accepts all the data bits corresponding to that packet. If all
the data bits corresponding to that packet are not received, the transmitter generates dummy
packets. For a dummy packet, the Barker sequence is not used for the preamble and the data bits are
generated randomly internally. As long as the input bit rate is less than or equal to the effective bit

 HDL QPSK Transmitter and Receiver

6-31

rate, the dataReady signal remains high so that the input does not get any back pressure from
dataReady.

Receiver Inputs

• dataIn — Input data, specified as a 16-bit complex data with sample rate as the transmitter
output.

• validIn — Control signal to validate the dataIn, specified as a Boolean scalar.

Receiver Outputs

• dataOut — Decoded output data bits, returned as a Boolean scalar.
• ctrlOut — Bus signal with start, end, and valid signals, returned as a bus signal.
• rxDiagBus — Status signal with diagnostic outputs, returned as a bus signal.

Transmitter Structure

This figure shows the top-level model of the QPSK Tx subsystem.

Bit Packetizer

The Bit Packetizer subsystem consists of a Packet Controller MATLAB function, a Bits Store, and a
Multiplexer subsystem. The preamble sequence is stored in an look up table (LUT) inside the
Preamble Bits Store subsystem. The data bits stream into the Bits Store subsystem and are stored in
a RAM inside the Data Bits Store subsystem. The Packet Controller MATLAB function reads the
preamble sequence followed by the data bits stored in the RAM for each packet. The Multiplexer
subsystem streamlines the preamble bits and the data bits.

6 HDL Coder Featured Examples

6-32

 HDL QPSK Transmitter and Receiver

6-33

The Data Bits Store subsystem consists of a RAM that can store two packets. This RAM provides the
flexibility to operate the transmitter with a discrete valid input. The Packet Controller MATLAB
function reads data from the RAM only if the RAM contains a minimum of one packet of the data bits.
The read and write logic is designed in such a way that the RAM does not overflows. When the RAM
does not contain a minimum of one packet of the data bits, the transmitter generates a dummy
packet. The Preamble does not use the Barker sequence for a dummy packet so that preamble
detection does not detect it.

6 HDL Coder Featured Examples

6-34

HDL Data Scrambler

The HDL Data Scrambler subsystem scrambles the data bits in each packet by using the control
signals generated by the Bits Generator subsystem.

QPSK Modulator

The QPSK Modulator subsystem uses the QPSK Modulator Baseband block to modulate the preamble
and data bits to generate QPSK symbols. It uses a gray mapping as described in this table.

 Bits Mapping
 ____ _________________

 00 0.70711+0.70711i

 HDL QPSK Transmitter and Receiver

6-35

 01 -0.70711+0.70711i
 11 -0.70711-0.70711i
 10 0.70711-0.70711i

RRC Transmit Filter

The RRC Transmit Filter subsystem upsamples the input by a factor of four and uses the Discrete FIR
Filter (DSP HDL Toolbox) block with an RRC impulse response to pulse-shape the transmitter
waveform. The receive filter in the QPSK Receiver forms a matched filter to this transmit filter.

Receiver Structure

This figure shows the top-level model of the QPSK Rx subsystem.

Automatic Gain Control

6 HDL Coder Featured Examples

6-36

As the input signal amplitude affects the symbol and carrier synchronizer phase-locked loop (PLL)
performance, the Automatic Gain Control subsystem is placed ahead of them. The magnitude squared
output is compared with the AGC reference to generate an amplitude error. This error is multiplied
with the loop gain and passed through an integrator to calculate the required gain. The resulted gain
is multiplied with the AGC input to generate the AGC output. For more information, see Chapter 9.5
of [1].

RRC Receive Filter

The RRC Receive Filter is a Discrete FIR Filter (DSP HDL Toolbox) block with matched filter
coefficients of the filter used for pulse-shaping in the transmitter. The RRC matched filtering
generates an RC pulse-shaped waveform, which has zero ISI characteristics at maximum eye opening
in the eye diagram of the waveform. Also, the matched filtering process maximizes the signal to noise
power ratio (SNR) of the filter output.

Frequency and Time Synchronizer

The Frequency and Time Synchronizer subsystem performs symbol synchronization, coarse frequency
compensation, carrier synchronization, and preamble detection for packet synchronization. It also
estimates and resolves the phase ambiguity that is left uncorrected in carrier synchronization.

 HDL QPSK Transmitter and Receiver

6-37

The Symbol Synchronizer subsystem is a PLL-based implementation. It generates samples at the
optimum time instant (maximum eye opening instant) as described in Chapter 8.5 of [1]. The
subsystem generates one output sample for every four input samples. The Interpolation Filter
subsystem implements a piecewise parabolic interpolator with a hardware resource efficient farrow
structure as described in Chapter 8.4.2, and the farrow coefficients are tabulated in Table 8.4.1 (the
free parameter of the coefficients is taken as 0.5) of [1]. This filter introduces fractional delays in
the input waveform. The Gardner TED subsystem implements a Gardner timing error detector. The
timing error detector is described in Chapter 8.4.1 of [1]. The loop filter filters the timing error and
the timing error is passed on to the Interpolation Control MATLAB function block. This block
implements a mod-1 decrementing counter to calculate fractional delays based on the loop filtered
timing error as described in Chapter 8.4.3 of [1] to generate interpolants at optimum sampling
instants. The Rate Handle subsystem selects the required interpolant indicated by the strobe. This
sample corresponds to the maximum eye opening of the eye diagram before symbol synchronization.

The Coarse Frequency Compensator subsystem raises the input sequence to a power of 4 in the Raise
Power to 4 subsystem. This eliminates the QPSK phase mapping dependency in the input sequence
but reduces the estimation range by a factor of 4. This sequence streams into the Coarse Frequency
Estimator subsystem. The estimate obtained from the Coarse Frequency Estimator subsystem is
divided by 4 to remove the factor 4 due to raising to power 4 and get the normalized coarse
frequency estimate. This estimate drives the NCO (DSP HDL Toolbox) block to generate complex
exponential phase that is conjugated and multiplied with the input sequence to correct the frequency
offset.

6 HDL Coder Featured Examples

6-38

The Coarse Frequency Estimator subsystem differentially detect the input sequence and extract the
complex frequency offset estimate in the input. This estimate is averaged for 2^15 consecutive
estimates in the Integrator subsystem to get the final complex estimate. The Complex to Magnitude-
Angle (DSP HDL Toolbox) block extracts the frequency from the complex estimate in the Extract
Frequency subsystem.

The frequency estimator estimates a normalized frequency (with respect to symbol rate) range of
-0.125 to 0.125 which corresponds to a frequency offset range of -240 KHz to 240 KHz for a symbol
rate of 1.92 Mbaud. The estimation accuracy is such that the residual frequency offset after coarse
frequency offset correction is with in the normalized frequency range of -0.0016 to 0.0016 which
corresponds to a frequency offset range of -3 KHz to 3 KHz for a symbol rate of 1.92 Mbaud that the
Carrier Synchronizer PLL converge.

The Carrier Synchronizer subsystem is a TYPE II PLL with a sinusoidal phase error detector, which
operates at a 45 degrees operating point. The phase error detector is described in Chapter 7.2.2, and
the design equations are described in the Appendix C of [1]. A detailed analysis of TYPE II PLL with
a zero operating point sinusoidal phase detector is described in Chapter 4 of [2]. The sign function
of the phase detector in the real and imaginary parts converts all of the angles in the 4 quadrants into
a first-quadrant angle (0 to 90 degrees), which creates an ambiguity of 90,180,270 degrees for
second (90 to 180 degrees), third (-180 to -90 degrees) and fourth (-90 to 0 degrees) quadrant angles,
respectively. The phase error is calculated as a deviation from the operating point (45 degrees) of the
phase detector. The proportional plus integrator filter in the Loop Filter subsystem filters the phase
error. The loop filter sets the normalized loop bandwidth (normalized by the sample rate) and the loop
damping factor. The default normalized loop bandwidth is set to 0.005, and the default damping
factor is set to 0.7071. The filtered error is given as a phase increment source to the Direct Digital
Synthesis subsystem, which uses the NCO (DSP HDL Toolbox) block for complex exponential phase
generation. The complex exponential phase is used to correct the frequency and phase of the input. A
detailed analysis of direct digital synthesis is described in Chapter 9.2.2 of [1].

 HDL QPSK Transmitter and Receiver

6-39

The Preamble Detector subsystem performs continuous correlation for the input with the Barker
sequence. The correlation is implemented as convolution with the reversed Barker sequence as
coefficients for the Discrete FIR Filter (DSP HDL Toolbox) block, and the magnitude of the correlated
output is found using the Complex to Magnitude-Angle (DSP HDL Toolbox) block inside the Correlator
subsystem. The magnitude of the correlation is compared with a threshold. The Peak Search
subsystem begins searching for the maximum correlation peak that exceeded the threshold for every
one frame duration and records the timing offset. The Timing Adjust subsystem synchronizes packet
timing based on the timing offset to generate syncPulse signal, which indicates a packet
synchronized sample to the subsequent subsystem.

The Phase Ambiguity Estimation and Correction subsystem works based on the unique word method
for phase ambiguity resolution described in Chapter 7.7.1 of [1]. This method uses the preamble
sequence as the reference sequence. The reference sequence is conjugated and multiplied with the
preamble sequence in the input, and the residual phase is extracted as the phase ambiguity estimate.
This estimate is used to correct the ambiguity by rotating the constellation in the opposite direction
of ambiguity.

6 HDL Coder Featured Examples

6-40

The Packet Controller subsystem generates control signals for the packet boundaries.

QPSK Demodulator

The QPSK Demodulator subsystem uses the QPSK Demodulator Baseband block to demodulate the
packet synchronized symbols and generate bits.

HDL Data Descrambler

The HDL Data Descrambler subsystem descrambles the demodulated bits to generate the user bits.
This subsystem is same as the scrambler used at the transmitter side.

Run the Model

Run the commhdlQPSKTxRx.slx Model to simulate it. You can set custom data on the Input Data
subsystem Mask and set channel configuration on the Channel subsystem Mask. The
QPSKTxRxVerification.m script describes a procedure to verify the commhdlQPSKTxRx.slx
model. This verification script generates a reference waveform within the script, compares the

 HDL QPSK Transmitter and Receiver

6-41

reference waveform with the transmitter output, and compares the transmitted bits with the receiver
decoded user bits.

Verification and Results

Run sim commhdlQPSKTxRx to run the model.

>> sim commhdlQPSKTxRx;

Simulation completed
Running the verification script

QPSK Tx:
Maximum absolute symbol error: Real:1.4496e-05 Imaginary:1.4496e-05

Maximum absolute RRC output error: Real:7.8708e-05 Imaginary:7.8708e-05

QPSK Rx:
Initial frames not compared : 29

Number of packets missed = 0 out of 30

Number of packets false detected = 0 out of 30

Number of bits errored = 0 out of 67200

6 HDL Coder Featured Examples

6-42

 HDL QPSK Transmitter and Receiver

6-43

6 HDL Coder Featured Examples

6-44

HDL Code Generation

Pipeline registers (shown in cyan) are added throughout the model to make sure the transmitter and
receiver subsystems do not have a long critical path.

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product.

To generate the HDL code for transmitter and receiver subsystems, update the models and use the
following command:

 makehdl('commhdlQPSKTxRx/QPSK Tx') and makehdl('commhdlQPSKTxRx/QPSK Rx')

To generate test bench, use the following command:

 makehdltb('commhdlQPSKTxRx/QPSK Tx') and makehdltb('commhdlQPSKTxRx/QPSK Rx')

Test bench generation time depends on the simulation time.

The resulting HDL code is synthesized for the Xilinx® Zynq®-7000 ZC706 evaluation board. The post
place and route resource utilization is shown in this table. The maximum frequency of operation is
276 MHz for the transmitter and 198 MHz for the receiver.

 Resources Tx Usage Rx Usage
 _______________ ________ ________

 HDL QPSK Transmitter and Receiver

6-45

 Slice Registers 321 10496
 Slice LUT 160 7483
 RAMB36 0 10
 RAMB18 1 1
 DSP48 18 118

Further Exploration

You can modify the channel conditions by tuning the variables listed in this table on the Channel
subsystem mask in the commhdlQPSKTxRx.slx model and run the model.

 Variable Name Description
 ______________________ ___

 dataBits Data bits to the transmitter
 Rsym Symbol rate specified in symbols per second
 fractionalTimingOffset Normalized timing phase offset specified in the range >= 0 and < 1
 timingFrequencyOffset Timing frequency offset specified in PPM
 EbN0dB Energy per information bit to single sided noise power spectral density specified in dB
 CFO Carrier frequency offset specified in Hz
 CPO Carrier phase offset specified in degrees

References

1. Michael Rice, Digital Communications - A Discrete-Time Approach, Prentice Hall, April 2008.

2. Floyd M.Gardner, Phaselock Techniques, Third Edition, John Wiley & Sons, Inc., 2005

See Also
Blocks
QPSK Modulator Baseband | QPSK Demodulator Baseband

6 HDL Coder Featured Examples

6-46

Communications Toolbox Library for
ZigBee and UWB - Featured Examples

7

HRP UWB IEEE 802.15.4a/z Waveform Generation

This example shows how to generate standard-compliant high rate pulse repetition frequency (HRP)
ultra wideband (UWB) waveforms of the IEEE® 802.15.4a/z standard ([1], [2]), using the
Communications Toolbox™ Library for ZigBee® and UWB add-on.

Background

The IEEE 802.15.4 standard specifies the PHY and MAC layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [1]. The IEEE 802.15.4 PHY and MAC layers are used by higher-layer
standards, such as ZigBee®, WirelessHart®, 6LoWPAN and MiWi.

Multiple PHY schemes are specified in different amendments of the IEEE 802.15.4 standard:

• IEEE 802.15.4a introduced a high rate pulse repetition frequency (HRP) UWB PHY used for
ranging (i.e., localization) [1].

• IEEE 802.15.4f introduced a low rate pulse repetition frequency (LRP) UWB PHY used for RFID,
ranging, and reduced energy consumption [1].

• IEEE 802.15.4z introduced new enhanced modes for both the HRP and LRP UWB IEEE
802.15.4a/f PHYs [2].

The HRP UWB PHY specifies a channel bandwidth of 0.5-1.3 GHz and a pulse duration of 2 ns. Since
the calculations used for ranging techniques rely on the time duration of packet transmission, the
extra short pulse duration makes UWB PHYs suitable for ranging applications. A finer granularity in
the time domain translates to smaller errors in distance estimation.

This example generates standard-compliant HRP UWB 802.15.4a/z waveforms for three pulse
repetition frequency (PRF) transmission modes (802.15.4a, and 802.15.4z BPRF and HPRF). For IEEE
802.15.4a, the valid mean PRF values are 3.9, 15.6 or 62.4 MHz. The IEEE 802.15.4z amendment
defines these two PRF modes:

• Base pulse repetition frequency (BPRF), where the mean PRF is 62.4 MHz and the payload data
rate is 6.81 Mbps

• Higher pulse repetition frequency (HPRF), where the mean PRF is either 124.8 or 249.6 MHz.

The scrambled timestamp sequence (STS) field is another key feature introduced by 802.15.4z to
enhance data integrity. Transmission of the STS field is optional for the BRPF and HPRF modes.

Configuration for HRP Waveform Generation

The lrwpanHRPConfig object configures the waveform of each transmission mode. The
lrwpanWaveformGenerator function generates HRP UWB IEEE 802.15.4a/z waveforms using
lrwpanHRPConfig objects and the PHY service data unit (PSDU) as inputs.

HPRF Mode in IEEE 802.15.4z

In the higher pulse repetition frequency (HPRF) mode of IEEE 802.15.4z, the mean PRF is either
124.8 or 249.6 MHz. Since HPRF mode uses higher PRFs than BPRF or IEEE 802.15.4a, the HPRF
mode can estimate range more accurately. The default mean PRF of the lrwpanHRPConfig object is
249.6 MHz.

% This code confirms the Communications Toolbox Library for ZigBee
% and UWB add-on is installed.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-2

commSupportPackageCheck('ZIGBEE');

msg = randi([0 1], 1000, 1);
cfgHPRF = lrwpanHRPConfig(Mode='HPRF', PSDULength=length(msg)/8) %#ok<NOPTS>
waveHPRF = lrwpanWaveformGenerator(msg, cfgHPRF);

lrwpanPlotFrame(waveHPRF, cfgHPRF);

cfgHPRF =

 lrwpanHRPConfig with properties:

 Channel: 0
 Mode: 'HPRF'
 MeanPRF: 249.6000
 SamplesPerPulse: 4
 CodeIndex: 25
 PreambleDuration: 64
 SFDNumber: 0
 Ranging: 0
 ConstraintLength: 3
 PSDULength: 125

 STS:
 STSPacketConfiguration: 1
 NumSTSSegments: 1
 STSSegmentLength: 64

 Read-only properties:
 SampleRate: 1.9968e+09

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-3

The HPRF frame consists of the following fields:

Synchronization (SYNC) field: The SYNC field contains the specified number of repetitions (Nsync) of
a 91-symbol long code spread according to the PreambleSpreadingFactor property. The
CodeIndex property determines which code is used. (Nsync) is specified by the PreambleDuration
property.

Start-of-frame delimiter (SFD) field: The SFD field is a 4-, 8-, 16- or 32-symbol sequence spread with
the SYNC code corresponding to the CodeIndex property. The length of the starting SFD sequence is
determined by the SFDNumber property.

Scrambled timestamp sequence (STS) field: The STS field is explained in the next section.

PHY Header (PHR) field: The PHR field is a 19 bit sequence that contains 6 parity bits generated by a
single error correction, double error detection (SECDED) Hamming block code. The Ranging
property determines one of the 13 systematic PHR bits. Subsequently, the PHR is convolutionally
encoded with a rate 1/2 convolutional code. The ConstraintLength property (3 or 7) chooses
between two rate 1/2 convolutional encoders.

For the HPRF modulation scheme (Sec. 15.3.4 in [2]), each PHR convolutional codeword is mapped
to a sequence of 16 or 32 pulses (for mean PRF 249.6 and 124.8 MHz, respectively). Pulse sequences
are separated by guard intervals. The first element of the ChipsPerSymbol property conveys the
number of pulses in each PHR symbol.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-4

Payload: The PSDU is encoded with a (63, 55) Reed-Solomon code. Subsequently, it is convolutionally
encoded (together with the PHR) with a rate 1/2 convolutional code. The ConstraintLength
property (3 or 7) chooses between two rate 1/2 convolutional encoders.

For the HPRF modulation scheme (Sec. 15.3.4 in [2]), each convolutional codeword of the payload is
mapped to a sequence of 8 or 16 pulses (for mean PRF 249.6 and 124.8 MHz, respectively). Pulse
sequences are separated by guard intervals. The last element of the ChipsPerSymbol property
conveys the number of pulses in each payload symbol. This figure illustrates a single payload symbol
at a 249.6 MHz Mean PRF.

fig = lrwpanPlotFrame(waveHPRF, cfgHPRF);
hZoomTo1stHPRFPayloadSymbol(fig, cfgHPRF)

The second and the fourth quarter of the symbol are guard intervals. The first and third quarter
contain 4 chip transmissions each.

Scrambled Timestamp Sequence (STS)

The STS field can be used to ensure the authenticity of the ranging estimates. This field is optional
for the HPRF and BPRF modes. The STSPacketConfiguration property specifies the initial
configuration of the STS field. To omit the STS field, specify 0 for the STSPacketConfiguration
property. The other values determine the STS and PHR/payload placement within the PHY frame.

The STS field consists of multiple segments separated by a gap. The NumSTSSegments property
determines the number of segments (1 to 4) and the STSSegmentLength property determines the
length of each segment (16, 32, 64, 128 or 256 in multiples of 512 chips).

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-5

This code configures, generates, and visualizes a waveform containing 2 STS segments with gaps
before and after each segment. A portion of the preceding SFD field is included.

msg = randi([0 1], 2000, 1);
cfgSTS = lrwpanHRPConfig(...
 Mode='HPRF', ...
 NumSTSSegments=2, ...
 STSSegmentLength=16, ...
 PSDULength=length(msg)/8);
waveSTS = lrwpanWaveformGenerator(msg,cfgSTS);

lrwpanPlotFrame(waveSTS, cfgSTS);
ind = lrwpanHRPFieldIndices(cfgSTS);
set(gca,'XLim',ind.STS - [5e3 0]) % portion of preceding field (SFD)
title('STS field with 2 segments')

The STS generation in this example creates the STS structure (including number of segments, gaps,
segment length, STS spreading, and pulse polarity), but does not perform AES-128 encryption.
Random bits are used in place of the AES-128 output. To implement AES-128, incorporate the
aes128Placeholder subfunction of lrwpan.internal.lrwpanHRPWaveformGenerator. The
aes128Placeholder subfunction includes the counter and the 128-bit V value.

BPRF Mode in IEEE 802.15.4a/z

In the base pulse repetition frequency (BPRF) mode, mean PRF is 62.4 MHz and data rate is 6.81
Mbps.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-6

The key difference between the BPRF and the HPRF mode is that in BPRF the PHR and the payload
are modulated with the burst position modulation (BPM) BPSK technique.

msg = randi([0 1],1016,1);
cfgBPRF = lrwpanHRPConfig(Mode='BPRF',CodeIndex=9, PSDULength=length(msg)/8) %#ok<NOPTS>
waveBPRF = lrwpanWaveformGenerator(msg,cfgBPRF);
lrwpanPlotFrame(waveBPRF,cfgBPRF);

cfgBPRF =

 lrwpanHRPConfig with properties:

 Channel: 0
 Mode: 'BPRF'
 PHRDataRate: 0.8500
 SamplesPerPulse: 4
 CodeIndex: 9
 PreambleDuration: 64
 SFDNumber: 0
 Ranging: 0
 PSDULength: 127

 STS:
 STSPacketConfiguration: 1

 Read-only properties:
 SampleRate: 1.9968e+09

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-7

BPRF frames include the SYNC and SFD fields and are BPM-BPSK modulated.

• The SYNC field is constructed similar to HPRF mode, but the selected code can be 127 symbols
long, so the CodeIndex property setting can be as low as 9.

• The SFD field is always 8 symbols long.

• Sec. 15.3 of [1] specifies the BPM-BPSK modulation scheme. As shown by this code, a single PHR
and a single payload symbol appear together under BPM-BPSK modulation for the BPRF mode.

fig = lrwpanPlotFrame(waveBPRF,cfgBPRF);
hZoomToBPMBPSKSymbols(fig,cfgBPRF);

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-8

In the plot, a solid black vertical line separates the PHR and payload symbol durations, and dashed
lines separate different candidate burst positions. In BPM-BPSK modulation, each symbol duration is
divided in 4 quarters, and transmission can occur either in the 1st or the 3rd quarter. The systematic
bit of the convolutional codeword determines when transmissions occur. Each quarter is divided into
2, 8, or 32 candidate bursts as specified by the NumHopBursts property and determined by the mean
PRF. When the mean PRF is 62.4 MHz (BPRF), the number of candidate active bursts in a quarter
symbol is 2, which corresponds to a total of 8 burst durations per symbol. In the plotted PHR and
payload symbols, the active transmissions occupy 1/8 of their symbol durations. A PN sequence
determines the location of the single burst transmissions in the quarter symbol determined by the
systematic bit. Specifically, where the burst hopping occurs over time. Within the selected burst
position, Ncpb chips are transmitted, as specified by the ChipsPerBurst property. The first element
contains the PHR and the last element contains the payload. The number of chips per burst is
determined by the mean PRF and data rate combination.

PHR: The PHR data rate is either 850 kbps or 6.81 Mbps, as determined by the PHRDataRate
property. A PHR data rate of 850 kbps corresponds to 64 chips per burst and 512 chips per symbol. A
PHR data rate of 6.81 Mbps corresponds to 8 chips per burst and 64 chips per symbol. The PHR field
has the same length (19 bits) and encoding (SECDED and convolutional) as the HPRF mode.

Payload: As shown in Table 15-9a of [2], for BPRF mode the payload data rate is 6.81 Mbps, which
corresponds to 8 chips per burst and 64 chips per symbol duration. Similar to HPRF mode, the
payload field uses rate 1/2 convolutional encoding, but for BPRF the constraint length can only be 3.

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-9

IEEE 802.15.4a

Similar to BPRF mode, IEEE 802.15.4a uses the BPM-BPSK modulation scheme. These are the key
differences between legacy 15.4a and the BPRF mode.

• IEEE 802.15.4a has no STS field.
• The mean PRF of the payload can be 3.9, 15.6, or 62.4 MHz. For mean PRF values of 3.9 or 15.6

MHz, the spreading factor of the SYNC codes (PreambleSpreadingFactor) is configurable by
the PreambleMeanPRF property.

• The payload data rate is dependent on the mean PRF and is not limited 6.81 Mbps. The data rate
and mean PRF values can enable different values for the number of hop bursts (NumHopBursts
can be 2, 8, or 32) and chips per burst (ChipsPerBurst can be 1, 2, 4, 8, 16, 32, 64, 128, or 512).

• The data rate of the PHR equals the minimum of 850 kbps and the data rate of the payload. The
data rate can be either 110 or 850 kbps.

• Convolutional coding is disabled for the highest data rates (6.81 and 27.24 Mbps) of the 3.9 and
15.6 MHz mean PRF, respectively.

In an 802.15.4a configuration, you can set the mean PRF to 62.4 MHz only when the data rate is not
6.81 Mbps. A data rate of 6.82 MHz corresponds to BPRF mode. When the mean PRF is 3.9 or 15.6
MHz, the code index must be in the range [1, 6]. When the mean PRF is 62.4 MHz, the code index
must be in the range [9, 16] or [21, 24].

msg = randi([0 1],800,1);
cfg4a = lrwpanHRPConfig(...
 Mode='802.15.4a', ...
 MeanPRF=15.6, ...
 Channel=3, ...
 CodeIndex=6, ...
 PSDULength=length(msg)/8) %#ok<NOPTS>
wave4a = lrwpanWaveformGenerator(msg,cfg4a);

lrwpanPlotFrame(wave4a,cfg4a);

cfg4a =

 lrwpanHRPConfig with properties:

 Channel: 3
 Mode: '802.15.4a'
 MeanPRF: 15.6000
 DataRate: 0.8500
 SamplesPerPulse: 4
 CodeIndex: 6
 PreambleMeanPRF: 16.1000
 PreambleDuration: 64
 Ranging: 0
 PSDULength: 100

 Read-only properties:
 SampleRate: 1.9968e+09

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-10

RF Conformance

All IEEE 802.15.4a/z waveforms generated in this example are repetitions of Butterworth pulses.
Such pulses are obtained by passing a sequence of ternary symbols (-1, 0, or 1) to a Butterworth
filter.

The IEEE 802.15.4a/z HRP standard specifies a compliance check for HRP pulses (see Sec. 15.4.4 in
[1]). Specifically, the cross-correlation between the used pulse and a root raised cosine pulse with a
roll-off factor of 0.5, must be higher than 0.8 for 0.5 ns in the main (central) lobe, and all other side
lobes must have cross-correlation lower than 0.3.

The IEEE 802.15.4z amendment specifies that transmitted pulses conform to the time-domain mask
shown in Fig. 15-13a of [2]. The Butterworth pulses used in this example comply with the transmit
mask recommendation.

lrwpanHRPPulseConformance(cfgHPRF);

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-11

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-12

The IEEE 802.15.4 standard specifies a mask for the transmit power spectral density PSD (see Sec.
15.4.5 in [1]). The lrwpanHRPTxPSDMask helper function displays the spectral density of the
generated waveform and examines the conformance to the spectral mask.

lrwpanHRPTxPSDMask(waveHPRF,cfgHPRF)

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-13

Similar results can be attained for the other generated waveforms, using these commands.

% lrwpanHRPTxPSDMask(waveBPRF,cfgBPRF)
% lrwpanHRPTxPSDMask(wave4a,cfg4a)

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following object and
functions:

• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform
• lrwpanHRPFieldIndices: Find starting and ending index for each field of PHY frame
• lrwpanPlotFrame: Visualize HRP UWB IEEE 802.15.4a/z waveform

Some of these utilities are undocumented and their API or functionality may change in the future. To
view the help text for any of these utilities, use the help function. For example, enter:

help lrwpanHRPConfig

at the MATLAB® command line to see the help text of lrwpanHRPConfig.

Selected Bibliography
1 "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE

Std 802.15.4-2015), pp.1-800, 23 July 2020, doi: 10.1109/IEEESTD.2020.9144691.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-14

2 "IEEE Standard for Low-Rate Wireless Networks--Amendment 1: Enhanced Ultra Wideband
(UWB) Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1-174, 25 Aug. 2020, doi: 10.1109/
IEEESTD.2020.9179124.

See Also

Related Examples
• “End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY” on page 7-16
• “Recovery of IEEE 802.15.4 OQPSK Signals” on page 7-64
• “UWB Channel Models” on page 7-49

 HRP UWB IEEE 802.15.4a/z Waveform Generation

7-15

End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY

This example performs end-to-end simulation over an additive white Gaussian noise (AWGN) channel
for the high rate pulse repetition frequency (HRP) ultra wideband (UWB) PHY of the IEEE®
802.15.4a/z standard ([1], [2]), using the Communications Toolbox™ Library for ZigBee® and UWB
add-on.

Background

The IEEE 802.15.4 standard specifies the PHY and MAC layers of low-rate wireless personal area
networks (LR-WPANs) [1]. The IEEE 802.15.4 PHY and MAC layers are used by other higher-layer
standards, such as ZigBee, WirelessHart®, 6LoWPAN, and MiWi.

These PHY schemes are specified in different amendments of the IEEE 802.15.4 standard:

• IEEE 802.15.4a introduced a high rate pulse repetition frequency (HRP) UWB PHY used for
ranging and localization [1].

• IEEE 802.15.4f introduced a low rate pulse repetition frequency (LRP) UWB PHY used for RFID,
ranging, and reduced energy consumption [1].

• IEEE 802.15.4z introduced new enhanced modes for both the HRP and LRP UWB IEEE
802.15.4a/f PHYs [2].

The HRP UWB PHY has a channel bandwidth of 0.5-1.3 GHz and a pulse duration of 2 ns. The extra
short pulse duration makes UWB PHYs suitable for ranging applications, because several ranging
techniques rely on calculating the time duration of packet transmission. A finer granularity in the
time domain translates to smaller errors in distance estimation.

This example performs end-to-end simulation, computes bit error rate (BER) curves, and
demonstrates a tradeoff between reliability and bit rate for these HRP IEEE 802.15.4a/z PHY modes:

1 Higher pulse repetition frequency (HPRF) mode, which was introduced in IEEE 802.15.4z [2].
2 Base pulse repetition frequency (BPRF) mode, which was introduced in IEEE 802.15.4z [2] (but

can reduce to IEEE 802.15.4a [1]).
3 IEEE 802.15.4a [1], which has a lower mean pulse repetition frequency (PRF) and lower data

rate than the HPRF and BPRF modes.

This table shows the different modulation schemes, data rates, and number of chips per payload
symbol used by these operational modes.

Common Processing Steps

As shown in this PHY chain, the various HRP modes share certain common components.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-16

The IEEE 802.15.4 and IEEE 802.15.4z standards only specify the transmitter operation ([1], [2]).
The receiver performs the inverse operations of the transmitter. The receiver implementation does
not perform frequency or timing recovery.

SECDED Coding: The PHY header (PHR) is encoded with a single-error-correction, double-error
detection (SECDED) Hamming block code. The BER calculation in this example does not use the PHR
bits.

RS Coding: The payload is encoded/decoded with a (63, 55) Reed-Solomon code.

Convolutional coding: The payload and the PHR are encoded/decoded with a rate 1/2 convolutional
code and a constraint length of 3. An optional rate 1/2 convolutional code with a constraint length 7 is
offered for the HPRF mode, but it is not used in this example.

Preamble insertion/removal: A selected code sequence is spread and repeated. The SYNC field
consists of this preamble with a start-of-frame delimiter (SFD) appended at the end. The receiver
expects the input waveform to begin with the preamble, without any delay that would necessitate
preamble detection.

Pulse shaper: The output of symbol mapping and preamble insertion are ternary symbols (-1,0,1). The
IEEE 802.15.4a/z standard allows multiple pulse shapes to represent the symbol sequence in the
analog domain. Section 15.4 in [1], [2] specify RF conformance specifications. In this example, the
ternary symbol sequence is passed to a Butterworth filter to create Butterworth pulses. On the
receiver side, an integrate-and-dump operation converts the pulses back to ternary symbols.

The main difference between the 3 different modes lies in the symbol mapper component (and the
respective demodulator). Other differences lie in the PHR format, as well as the length and value of
the preamble code sequence and SFD.

HPRF Mode

In the HPRF mode, the mean PRF is either 249.6 MHz or 124.8 MHz, with data rates of 27.24 Mbps
or 6.81 Mbps, respectively. In both cases, each symbol duration consists of alternating segments of

 End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY

7-17

transmitted chip sequences and guard bands. This code segment generates a plot to show a payload
symbol for the 249.6 MHz HPRF mode.

% Ensure Communications Toolbox(TM) Library for ZigBee(R) and UWB add-on is
% installed:
commSupportPackageCheck('ZIGBEE');

msg = randi([0 1], 1000, 1);
cfgHPRF = lrwpanHRPConfig(Mode='HPRF',PSDULength=length(msg)/8);
waveHPRF = lrwpanWaveformGenerator(msg,cfgHPRF);
fig = lrwpanPlotFrame(waveHPRF,cfgHPRF);
hZoomTo1stHPRFPayloadSymbol(fig,cfgHPRF)

Each convolutional codeword is 2 bits long (one parity bit for each systematic). These 2 bits map to 8
payload and 16 PHR bits for the 249.6 MHz mean PRF (see 8 pulses in above plot), and map to 16
payload and 32 PHR bits for the 124.8 MHz mean PRF.

BPRF Mode

The BPRF mode uses burst-position BPSK modulation (BPM-BPSK). The symbol duration is split into a
set of candidate burst positions. Each burst contains a specified number of chips per burst (Ncpb).
One candidate burst contains a pattern. All other candidate bursts transmit zeros.

cfgBPRF = lrwpanHRPConfig(Mode='BPRF',CodeIndex=9);
waveBPRF = lrwpanWaveformGenerator(repmat([0; 1],508,1),cfgBPRF);
fig = lrwpanPlotFrame(waveBPRF,cfgBPRF);
hZoomToBPMBPSKSymbols(fig,cfgBPRF);

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-18

In the BPRF mode, the mean PRF is 62.4 MHz and the payload data rate is 6.81 Mbps. The Ncpb for
each burst within a symbol is 8 chips, and the number candidate burst positions (Nhop) is 4. The
systematic bit reduces the set of candidate positions by 50%, and the active burst is selected among
the remaining 2 Nhop based on a spreading (burst-hopping) sequence.

IEEE 802.15.4a

The IEEE 802.15.4a HRP PHY also uses BPM-BPSK modulation, similar to the BPRF mode. The only
difference is that more values are allowed for the mean PRF and data rate combination.

Specifically, mean PRF can be 3.9, 15.6 or 62.4 MHz, while data rate can be 0.11, 0.85, 1.7, 6.81, or
27.24 Mbps. Ncpb can be 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 4096. Nhop is 2, 8 or 32. The range
of Ncpb values enables transmissions that can be either more aggressive or more conservative than
the BPRF mode.

BER Curve Calculation

For each of the three HRP PHY modes, the example calculates BER over the EcNo range [6,32] in dB
(mapped to equivalent SNR values) using end-to-end simulations over an AWGN channel.

For IEEE 802.15.4a, a 15.6 MHz mean PRF is used with a 0.11 Mbps data rate. This combination
enables Ncpb equal to 128 and Nhop equal to 8.

msgLen = 2^10 - 8;
msg = randi([0 1],msgLen,1);
EcNo = 9:2:35;
numSNR = length(EcNo);

 End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY

7-19

[berHPRF,berBPRF,ber4a] = deal(zeros(1,numSNR));

% Construct fixed configurations and waveforms for each mode:
cfgHPRF = lrwpanHRPConfig(Mode='HPRF',PSDULength=msgLen/8);
waveHPRF = lrwpanWaveformGenerator(msg,cfgHPRF);

cfgBPRF = lrwpanHRPConfig(Mode='BPRF',CodeIndex=9,PSDULength=msgLen/8);
waveBPRF = lrwpanWaveformGenerator(msg,cfgBPRF);

cfg4a = lrwpanHRPConfig(...
 Mode='802.15.4a', ...
 MeanPRF=15.6, ...
 DataRate=0.11, ...
 CodeIndex=1, ...
 PSDULength=msgLen/8);
wave4a = lrwpanWaveformGenerator(msg,cfg4a);

% Compute BER curve until required number of errors have been found or
% maximum number of bits have been simulated.
MAXBITS = msgLen*5;
MINERRORS = 10;
for idx = 1:numSNR
 fprintf('Calculating BER for EcNo=%d dB\n',EcNo(idx));
 errCnt = 0;
 bitCnt = 0;
 errHPRF = 0;
 errBPRF = 0;
 err4a = 0;
 while errCnt < MINERRORS && bitCnt < MAXBITS
 % HPRF mode
 SNR = EcNo(idx) - 10*log10(cfgHPRF.SamplesPerPulse);
 noisyHPRF = awgn(waveHPRF,SNR);
 psduHPRF = lrwpanWaveformDecoder(noisyHPRF,cfgHPRF);
 errHPRF = biterr(msg, psduHPRF)+errHPRF;

 % BPRF mode
 SNR = EcNo(idx) - 10*log10(cfgBPRF.SamplesPerPulse);
 noisyBPRF = awgn(waveBPRF,SNR);
 psduBPRF = lrwpanWaveformDecoder(noisyBPRF,cfgBPRF);
 errBPRF = biterr(msg,psduBPRF)+errBPRF;

 % Legacy 802.15.4a
 SNR = EcNo(idx) - 10*log10(cfg4a.SamplesPerPulse);
 noisy4a = awgn(wave4a,SNR);
 psdu4a = lrwpanWaveformDecoder(noisy4a,cfg4a);
 err4a = biterr(msg,psdu4a)+err4a;

 bitCnt = bitCnt + msgLen;
 errCnt = min([errHPRF errBPRF err4a]);
 end
 berHPRF(idx) = errHPRF/bitCnt;
 berBPRF(idx) = errBPRF/bitCnt;
 ber4a(idx) = err4a/bitCnt;
end

% Plot BER curve
figure

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-20

semilogy(EcNo,berHPRF,'-o',EcNo,berBPRF,'-*',EcNo,ber4a,'-+')
legend('HPRF, 27.24 Mbps','BPRF, 6.81 Mbps', ...
 '15.4a, 0.11 Mbps','Location','southwest')
title('BER Curves for UWB IEEE 802.15.4a/z PHY')
xlabel('EcNo (dB)')
ylabel('BER')
grid on

Calculating BER for EcNo=9 dB
Calculating BER for EcNo=11 dB
Calculating BER for EcNo=13 dB
Calculating BER for EcNo=15 dB
Calculating BER for EcNo=17 dB
Calculating BER for EcNo=19 dB
Calculating BER for EcNo=21 dB
Calculating BER for EcNo=23 dB
Calculating BER for EcNo=25 dB
Calculating BER for EcNo=27 dB
Calculating BER for EcNo=29 dB
Calculating BER for EcNo=31 dB
Calculating BER for EcNo=33 dB
Calculating BER for EcNo=35 dB

The BER curve results demonstrate higher bit error rate for more aggressive modulation schemes
and lower BER for more conservative modulation schemes. Lower data rates use more chips for each
transmitted convolutional codeword. A higher number of transmitted chips provide more opportunity
for error correction, which is similar in concept to using more parity bits in channel coding.

 End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY

7-21

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following object and
functions:

• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform
• lrwpanWaveformDecoder: Decode HRP IEEE 802.15.4a/z UWB waveform

Some of these utilities are undocumented and their API or functionality may change in the future. To
view the help text for any of these utilities, use the help function. For example, enter:

help lrwpanHRPConfig

at the MATLAB® command line to open lrwpanHRPConfig.

Selected Bibliography

1 "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
Std 802.15.4-2015), pp.1-800, 23 July 2020, doi: 10.1109/IEEESTD.2020.9144691.

2 "IEEE Standard for Low-Rate Wireless Networks--Amendment 1: Enhanced Ultra Wideband
(UWB) Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1-174, 25 Aug. 2020, doi: 10.1109/
IEEESTD.2020.9179124.

See Also

Related Examples
• “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-2

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-22

UWB Localization Using IEEE 802.15.4z

This example shows how to estimate the location of a single device as per the IEEE® 802.15.4z™
standard [2] on page 7-29, using the Communications Toolbox™ Library for ZigBee® and UWB
add-on.

Overview

The IEEE 802.15.4z amendment [2] on page 7-29 of the IEEE® 802.15.4 standard [1] on page 7-
29 is a MAC and PHY specification designed for ranging and localization using ultra wideband
(UWB) communication. The very short pulse durations of UWB allow a finer granularity in the time
domain and therefore more accurate estimates in the spatial domain.

The key ranging and localization functionality of the 802.15.4z amendment includes 3 MAC-level
techniques:

• Single-sided two-way ranging (SS-TWR) - One device estimates the distance between two devices
by using frame transmission in both directions of a wireless 802.15.4z link. This technique is
demonstrated in the “UWB Ranging Using IEEE 802.15.4z” on page 7-31 example.

• Double-sided two-way ranging (DS-TWR) - Both devices estimate the distance between the two
devices by using frame transmission in both directions of a wireless 802.15.4z link.

• One-way ranging / time-difference of arrival (OWR/TDOA) - Network-assisted localization whereby
one device communicates with a set of synchronized nodes to estimate the position of the device.

This example demonstrates the OWR/TDOA technique for uplink transmissions, by using MAC and
PHY frames are compatible with the IEEE 802.15.4 standard [1] on page 7-29 and the IEEE
802.15.4z amendment [2] on page 7-29. For more information on generating PHY-level IEEE
802.15.4z waveforms, see the “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-2
example. For more information on generating IEEE 802.15.4 MAC frames, see the “IEEE 802.15.4 -
MAC Frame Generation and Decoding” on page 7-72 example.

One-Way Ranging / Time-Difference of Arrival (OWR/TDOA)

One-way ranging (OWR) involves frame transmission either in the uplink or in the downlink direction.
In the uplink case, the device to be localized periodically broadcasts short messages referred to as
blinks. The IEEE 802.15.4z amendment [2] on page 7-29 does not stipulate a specific frame format
for the blinks, however it states that blinks should be as short as possible. These blink messages are
received by a set of infrastructure nodes that are synchronized either through a wired backbone or
via an UWB wireless communications link. In the downlink case, the synchronized nodes periodically
transmit broadcast messages with a known time offset.

The time-difference of arrival (TDOA) between the periodic messages places the device in one
hyperbolic surface for each pair of synchronized nodes [3] on page 7-29. The intersection of all
hyperbolic surfaces (for every pair of synchronized nodes) gives the location estimate for the device.

This example demonstrates the uplink OWR case.

Setup

Confirm installation of the Communications Toolbox™ Library for ZigBee® and UWB add-on.

commSupportPackageCheck('ZIGBEE');

 UWB Localization Using IEEE 802.15.4z

7-23

Configure Network

Set up a network with 3 synchronized nodes and 1 device, in a 100x100 plane:

numNodes = 3;
deviceLoc = [50 50]; % place device at the center
nodeLoc = [40 41;
 62 83;
 87 24];
TDOA = nan(numNodes);
helperShowLocations(deviceLoc,nodeLoc);

Calculate the actual distance and time of flight (TOF) between nodes and the device.

actualDistances = sqrt(sum((nodeLoc - deviceLoc).^2, 2));
c = physconst('LightSpeed'); % speed of light (m/s)
actualTOF = actualDistances/c;

SNR = 30; % in dB

Configure Blinks

Use a short (IEEE 802.15.4 MAC) data frame as a blink.

numBlinks = 1;

% MAC layer:
payload = '00';

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-24

cfg = lrwpan.MACFrameConfig(...
 FrameType='Data', ...
 SourceAddressing='Short address', ...
 SourcePANIdentifier='AB12', ...
 SourceAddress='CD77');
blinkMAC = lrwpan.MACFrameGenerator(cfg,payload);

% PHY layer:
% Ensure the Ranging field is enabled.
% Also set the proper PSDU length.
blinkPHYConfig = lrwpanHRPConfig(...
 Mode='HPRF', ...
 STSPacketConfiguration=1, ...
 PSDULength=length(blinkMAC)/8, ...
 Ranging=true);
blinkPHY = lrwpanWaveformGenerator(...
 blinkMAC, ...
 blinkPHYConfig);

% Cache preamble, to use in preamble detection.
% Get the 1st instance out of the Nsync=PreambleDuration repetitions.
indices = lrwpanHRPFieldIndices(blinkPHYConfig); % length (start/end) of each field
blinkPreamble = blinkPHY(...
 1:indices.SYNC(end)/blinkPHYConfig.PreambleDuration); % 1 of the Nsync repetitions

Run Simulation

In the simulation loop, a blink propagates to each node with a propagation delay that is determined
by their distinct distance. Next, each pair of nodes calculates the difference of their blink arrival
times. As a result, the position of the device is estimated within a hyperbolic surface for each pair of
nodes. The intersection of all surfaces gives the position estimate for the device. Here, a plot of 2D
curves shows the intersection point to indicate the position estimate for the device.

vfd = dsp.VariableFractionalDelay;
arrivalTime = zeros(1,numNodes);

plotStr = {'r--','b--','g--'};
[x, y] = deal(cell(1, 3));

for idx = 1:numBlinks
 for node = 1:numNodes
 % Transmission and reception of blink
 % Each node receives a specifically delayed version of the blink
 tof = actualTOF(node);
 samplesToDelay = tof * blinkPHYConfig.SampleRate;
 reset(vfd);
 release(vfd);
 vfd.MaximumDelay = ceil(1.1*samplesToDelay);
 delayedBlink = vfd(...
 [blinkPHY; zeros(ceil(samplesToDelay), 1)], ...
 samplesToDelay);

 % Add white Gaussian noise
 receivedBlink = awgn(delayedBlink,SNR);

 % Node receiver detection of preamble
 preamPos = helperFindFirstHRPPreamble(...
 receivedBlink,blinkPreamble,blinkPHYConfig);

 UWB Localization Using IEEE 802.15.4z

7-25

 % Transmit each blink at t=0 of each period. The blink arrives
 % at different instances at each node, due to their dissimilar
 % distance to the device.
 arrivalTime(node) = (...
 preamPos - indices.SYNC(end) / ...
 blinkPHYConfig.PreambleDuration)/blinkPHYConfig.SampleRate;
 end

 % Localization: Estimate position at the synchronized backbone for
 % each pair of nodes.
 pairCnt = 1;
 for node1 = 1:numNodes
 for node2 = (node1+1):numNodes
 % Calculate Time Difference of Arrival (TDOA)
 TDOA(node1, node2) = arrivalTime(node1)-arrivalTime(node2);

 % Get hyperbolic surface for the TDOA between node1 and node2
 [x{pairCnt}, y{pairCnt}] = helperGetHyperbolicSurface(...
 nodeLoc(node1,:), ...
 nodeLoc(node2,:), ...
 TDOA(node1,node2));

 plot(x{pairCnt},y{pairCnt},plotStr{pairCnt});
 pairCnt = pairCnt + 1;
 end
 end
 % Find intersection points between hyperbolic surfaces
 [xC,yC] = helperFindHyperbolicIntersection(x,y);
 % Estimate location as the center of intersection triangle
 xO = mean(xC, 2);
 yO = mean(yC, 2);

 plot(xO, yO, 'ro')
 plot(xC',yC','rx')
end
leg = legend(...
 'Device', ...
 'Synchronized nodes', ...
 'A-B', ...
 'A-C', ...
 'B-C', ...
 'Estimation', ...
 'Intersections', ...
 'location','northwest');

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-26

Zoom in to estimation area:

zoomInToEstimationArea(deviceLoc,xC,yC,xO,yO,leg);

 UWB Localization Using IEEE 802.15.4z

7-27

The IEEE 802.15.4z localization algorithm allows for multiple intersection points between 2
hyperbolic surfaces, thus either one or two possible localization answers exist. Calculate the
localization error for each answer:

for idx = 1:numel(xO)
 locError = sqrt(sum([xO(idx) yO(idx)]-deviceLoc).^2);
 fprintf('Localization error #%d = %0.3f m.\n',idx,locError);
end

Localization error #1 = 0.044 m.

For localization methods that rely on estimating the time of arrival, errors in the distance estimate
are primarily caused when the arrival time is not an integer multiple of the sample time. The largest
distance error for such localization methods occurs when the arrival time lasts half a sample time
more than an integer multiple of sample time. The smallest distance error occurs when the arrival
time is an integer multiple of sample time. For the higher pulse repetition frequency (HRPF) mode of
the high rate pulse repetition frequency (HRP) PHY used in this example, the symbol rate is 499.2
MHz and the number of samples per symbol is 10. The maximum distance estimation error is
0 . 5 × c/ 499 . 2 × 10 , which is approximately 3 cm.

In general, the larger channel bandwidth in UWB corresponds to shorter symbol duration and smaller
ranging error as compared to narrowband communication. For the narrowband communication as
specified in IEEE 802.11az, the channel bandwidth ranges from 20 MHz to 160 MHz. Considering the
maximum distance error for narrowband communication, estimates for the localization error lie
between 0 and 10 cm for 160 MHz and between 0 and 75 cm for 20 MHz. For more information

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-28

regarding positioning with IEEE 802.11az, see the “802.11az Positioning Using Super-Resolution
Time of Arrival Estimation” (WLAN Toolbox) example.

Further Exploration

This example uses these objects and functions from the Communications Toolbox™ Library for
ZigBee® and UWB add-on.

• lrwpan.MACFrameConfig: Create configuration for 802.15.4 MAC frames
• lrwpan.MACFrameGenerator: Generate 802.15.4 MAC frames
• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform

Some of these utilities are undocumented and their API or functionality may change in the future. To
view the source code for any of these utilities, use the edit function. For example, enter:

edit lrwpan.MACFrameConfig

at the MATLAB® command line to open lrwpan.MACFrameConfig.

function zoomInToEstimationArea(deviceLoc,xC,yC,xO,yO,leg)
% Zoom 2D plane into region around device location

 allX = [deviceLoc(1); xO(:); xC(:)];
 allY = [deviceLoc(2); yO(:); yC(:)];
 minX = min(allX);
 maxX = max(allX);
 minY = min(allY);
 maxY = max(allY);
 axis([...
 minX-0.1*(maxX-minX), ...
 maxX+0.1*(maxX-minX), ...
 minY-0.1*(maxY-minY), ...
 maxY+0.1*(maxY-minY)])
 leg.Location = 'NorthEast';
end

Selected Bibliography

1 - "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
Std 802.15.4-2015), pp.1-800, 23 July 2020, doi: 10.1109/IEEESTD.2020.9144691.

2 - "IEEE Standard for Low-Rate Wireless Networks – Amendment 1: Enhanced Ultra Wideband
(UWB) Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1-174, 25 Aug. 2020, doi: 10.1109/
IEEESTD.2020.9179124.

 UWB Localization Using IEEE 802.15.4z

7-29

3 - Wong, S.; Zargani, R. Jassemi; Brookes, D. & Kim, B. "Passive target localization using a geometric
approach to the time-difference-of-arrival method", Defence Research and Development Canada
Scientific Report, DRDC-RDDC-2017-R079, June 2017, pp. 1-77.

See Also

Related Examples
• “UWB Ranging Using IEEE 802.15.4z” on page 7-31

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-30

UWB Ranging Using IEEE 802.15.4z

This example shows how to estimate distance between two devices as per the IEEE® 802.15.4z™
standard [2] on page 7-37 by using features in the Communications Toolbox™ Library for ZigBee®
and UWB add-on.

Overview

The IEEE 802.15.4z amendment [2] on page 7-37 of the IEEE® 802.15.4 standard [1] on page 7-
37 specifies the MAC and PHY layers, and associated ranging and localization using ultra wideband
(UWB) communication. The very short pulse durations of UWB allow a finer granularity in the time
domain and therefore more accurate estimates in the spatial domain.

The key ranging and localization functionality of the 802.15.4z amendment includes three MAC-level
techniques:

• Single-sided two-way ranging (SS-TWR) - One device estimates the distance between two devices
by using frame transmission in both directions of a wireless 802.15.4z link.

• Double-sided two-way ranging (DS-TWR) - Both devices estimate the distance between the two
devices by using frame transmission in both directions of a wireless 802.15.4z link.

• One-way ranging / time-difference of arrival (OWR/TDOA) - Network-assisted localization whereby
one device communicates with a set of synchronized nodes to estimate the position of the device.
This technique is demonstrated in the “UWB Localization Using IEEE 802.15.4z” on page 7-23
example.

This example demonstrates the SS-TWR technique by using PHY frames that are compatible with the
IEEE 802.15.4 standard [1] on page 7-37 and the IEEE 802.15.4z amendment [2] on page 7-37.
For more information on generating PHY-level IEEE 802.15.4z waveforms, see the “HRP UWB IEEE
802.15.4a/z Waveform Generation” on page 7-2 example.

Single-Sided Two-Way Ranging (SS-TWR)

Two-way ranging involves frame transmission in both directions of a wireless 802.15.4z link. Single-
sided ranging means that only one of the two devices estimates the distance between them.

Each frame is timed at its ranging marker (RMARKER), which is the time of the first symbol following
the start-of-frame delimiter (SFD). For more information on the fields in the transmitted frame, see
the “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-2 example. The ranging responder
device, transmits the response frame after a certain reply time (Treply). The ranging initiator device
computes the round-trip time (Tround) as the time-distance between the RMARKERs of the
transmitted and the response frames. Treply is communicated from the ranging responder device to

 UWB Ranging Using IEEE 802.15.4z

7-31

the ranging initiator device, so that the latter estimates the propagation time (Tprop) as Tprop =
(Tround - Treply)/2.

The IEEE 802.15.4z amendment [2] on page 7-37 specifies multiple possibilities for sharing Treply:

• Communication of Treply from the responder to the initiator is deferred, and performed with
another message following the response frame.

• Embed Treply in the response frame.
• Set Treply to a fixed value known between the initiator and the responder.

This example considers the fixed reply time scenario between the two devices.

IEEE 802.15.4 [1] on page 7-37 specifies that the exchanged frames must be a Data frame and its
acknowledgement. The IEEE 802.15.4z amendment [2] on page 7-37 relaxes this specification and
allows the ranging measurement to be performed over any pair of transmitted and response frames.
However, for the fixed reply time scenario, the 802.15.4z amendment specifies exchange of scrambled
timestamp sequence packet configuration option three (SP3) frames. SP3 frames contain a scrambled
timestamp sequence (STS) and no PHY header (PHR) or payload.

This example focuses on the basic ranging exchange without demonstrating the preceding set-up and
following finish-up activities associated with the ranging procedure.

Setup

Confirm installation of the Communications Toolbox™ Library for ZigBee® and UWB add-on.

commSupportPackageCheck('ZIGBEE');

Determine the actual distance and Tprop, and initialize visualizations. Configure a timescope object
to plot the initiator and responder signals.

c = physconst('LightSpeed'); % Speed of light (m/s)
actualDistance = 5; % In meters
actualTprop = actualDistance/c; % In seconds
SNR = 30; % Signal-to-Noise ratio
symbolrate = 499.2e6; % Symbol rate for HRP PHY
sps = 10; % Samples per symbol
ts = timescope(...
 SampleRate=sps*symbolrate, ...
 ChannelNames={'Initiator','Responder'}, ...
 LayoutDimensions=[2 1], ...
 Name='SS-TWR');
ts.YLimits = [-0.25 0.25];
ts.ActiveDisplay = 2;
ts.YLimits = [-0.25 0.25];

Transmitted Frame

Transmission from Initiator

Generate the waveform containing SP3 PHY frames (with no MAC frame/PSDU) to be transmitted
between the devices. Register the transmitted frame on the timeline of the initiator.

sp3Config = lrwpanHRPConfig(...
 Mode='HPRF', ...
 STSPacketConfiguration=3, ...

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-32

 PSDULength=0, ...
 Ranging=true);
sp3Wave = lrwpanWaveformGenerator(zeros(0,1), sp3Config);
[transmitFrame,responseFrame] = deal(sp3Wave);

% start initiator time at the start of transmission
initiatorView = transmitFrame;

Wireless Channel

Filter the transmission frame through an AWGN channel and add propagation delay. Then, update
timeline for both link endpoints.

samplesToDelay = actualTprop*sp3Config.SampleRate;
receivedTransmitted = lclDelayWithNoise(...
 transmitFrame,samplesToDelay,SNR);

initiatorView = [initiatorView; zeros(ceil(samplesToDelay),1)];
responderView = receivedTransmitted;

Reception at Responder

At the responder side, detect the preamble of the 802.15.4z PHY frame, and then process the
transmitted frame. Preamble detection consists of determining the first instance of the preamble out
of Nsync = PreambleDuration. Plot the initiator and responder views on a timescope.

ind = lrwpanHRPFieldIndices(sp3Config); % length (start/end) of each field

sp3Preamble = sp3Wave(1:ind.SYNC(end)/sp3Config.PreambleDuration);
preamPos = helperFindFirstHRPPreamble(...
 receivedTransmitted,sp3Preamble,sp3Config);

ts(initiatorView,responderView);

 UWB Ranging Using IEEE 802.15.4z

7-33

Response Frame

Transmission from Responder

Set the Treply time to the length of three SP3 frames to specify when to transmit the response frame.
Set the first and last RMARKER sample indices on the responder side to be the beginning of first
post-SFD symbol and Treply samples later. After Treply samples, transmit the response frame from
the responder device.

Treply = 3*length(sp3Wave); % in samples

% Find RMARKERs at responder side
frameStart = 1+preamPos-ind.SYNC(end)/sp3Config.PreambleDuration;
sfdEnd = frameStart + ind.SYNC(end) + diff(ind.SFD);
RMARKER_R1 = sfdEnd+1;
RMARKER_R2 = RMARKER_R1 + Treply;

% Transmit after Treply. Find how long the responder needs
% to remain idle.
idleResponderTime = Treply - diff(ind.STS)-1 - diff(ind.SHR)-1;
responderView = ...
 [responderView; zeros(idleResponderTime,1); ...
 responseFrame; zeros(ceil(samplesToDelay),1)];

initiatorView = [initiatorView; zeros(idleResponderTime,1)];

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-34

Wireless Channel

Filter the transmission frame through an AWGN channel and add propagation delay. Then, update
timeline for both link endpoints.

receivedResponse = lclDelayWithNoise(...
 responseFrame,samplesToDelay,SNR);
initiatorView = [initiatorView; receivedResponse];

Reception at Initiator

Back at the initiator side, detect the preamble of the 802.15.4z PHY frame, and then process the
transmitted frame.

txFrameEnd = ind.STS(end);
preamPos = helperFindFirstHRPPreamble(...
 initiatorView(txFrameEnd+1:end),sp3Preamble,sp3Config);

Range Estimation

Estimate the propagation delay and the distance between two devices. Set the first and last
RMARKER sample indices on the initiator side to be the start of transmission (which is known at t=0)
and the beginning of first post-SFD symbol. Use the RMARKERs, Tround, and Tprop to estimate the
distance between initiator and responder.

RMARKER_I1 = 1+ind.SFD(end);
frameStart = 1+preamPos-ind.SYNC(end)/sp3Config.PreambleDuration;
sfdEnd = txFrameEnd + frameStart + ind.SYNC(end) + diff(ind.SFD);
RMARKER_I2 = sfdEnd+1;

Tround = RMARKER_I2 - RMARKER_I1; % In samples
Tprop = (Tround-Treply)/(2*sp3Config.SampleRate); % In seconds
estimatedDistance = c*Tprop; % In meters

This timescope illustrates the frame exchange as in Fig. 6-47a in [2] on page 7-37 with X-axis
limit zoomed in to see the propagation delay between the transmitted and response frames.

reset(ts);
ts([initiatorView; zeros(ceil(samplesToDelay),1)],responderView);
release(ts);

 UWB Ranging Using IEEE 802.15.4z

7-35

The estimated distance is a few centimeters different than the actual distance.

fprintf(['Actual distance = %d m.' ...
 '\nEstimated Distance = %0.2f m' ...
 '\nError = %0.3f m (%0.2f%%)\n'], ...
 actualDistance,estimatedDistance, ...
 estimatedDistance-actualDistance, ...
 100*(estimatedDistance-actualDistance)/actualDistance)

Actual distance = 5 m.
Estimated Distance = 5.03 m
Error = 0.030 m (0.59%)

For ranging methods that rely on estimating the time of flight (TOF), errors in the distance estimate
are primarily caused when the propagation time (Tprop) is not an integer multiple of the sample time.
The largest distance error for such ranging methods occurs when Tprop lasts half a sample time more
than an integer multiple of sample time. The smallest distance error occurs when Tprop is an integer
multiple of sample time. For the higher pulse repetition frequency (HRPF) mode of the high rate
pulse repetition frequency (HRP) PHY used in this example, the symbol rate is 499.2 MHz and the
number of samples per symbol is 10, which results in a maximum error in Tprop estimation of
0 . 5 × c/ 499 . 2 × 10 . So, the default ranging error lies between 0 and 3 cm.

In general, the larger channel bandwidth in UWB corresponds to shorter symbol duration and smaller
ranging error as compared to narrowband communication. For the narrowband communication as
specified in IEEE 802.11az, the channel bandwidth ranges from 20 MHz to 160 MHz. Considering the
maximum Tprop error for narrowband communication, estimates for the ranging error lie between 0

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-36

and 10 cm for 160 MHz and between 0 and 75 cm for 20 MHz. For more information regarding
ranging with IEEE 802.11az, see the “802.11az Positioning Using Super-Resolution Time of Arrival
Estimation” (WLAN Toolbox) example.

Further Exploration

This example uses these objects and functions from the Communications Toolbox™ Library for
ZigBee® and UWB add-on.

• lrwpanHRPConfig: HRP waveform configuration
• lrwpanWaveformGenerator: Create an IEEE 802.15.4a/z HRP UWB waveform

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit lrwpanHRPConfig

at the MATLAB® command line to open lrwpanHRPConfig.

function received = lclDelayWithNoise(transmitted, samplesToDelay, SNR)
% lclDelayWithNoise Operations of wireless channel (propagation delay, AWGN)

 vfd = dsp.VariableFractionalDelay;
 % zero pad @ end, to get entire frame out of VFD
 delayedTransmitted = vfd(...
 [transmitted; zeros(ceil(samplesToDelay), 1)],samplesToDelay);
 % add white gaussian noise:
 received = awgn(delayedTransmitted,SNR);
end

Selected Bibliography

1 - "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
Std 802.15.4-2015), pp.1-800, 23 July 2020, doi: 10.1109/IEEESTD.2020.9144691.

2 - "IEEE Standard for Low-Rate Wireless Networks – Amendment 1: Enhanced Ultra Wideband
(UWB) Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1-174, 25 Aug. 2020, doi: 10.1109/
IEEESTD.2020.9179124.

See Also

Related Examples
• “UWB Localization Using IEEE 802.15.4z” on page 7-23

 UWB Ranging Using IEEE 802.15.4z

7-37

Recovery of IEEE 802.15.4z UWB Signals

This example shows how to implement a practical IEEE® 802.15.4z™ PHY receiver that recovers and
decodes UWB waveforms captured over the air by using the Communications Toolbox™ Library for
ZigBee® and UWB.

IEEE 802.15.4z [2] on page 7-48 specifies an amendment to the high rate pulse repetition frequency
(HRP) UWB PHY from IEEE 802.15.4 [1] on page 7-48. This amendment introduces a new, higher
pulse repetition frequency (HPRF) operational mode that uses PRF as high as 249.6 MHz.

Setup

This example decodes a repeated version of an HPRF (higher pulse repetition frequency) UWB
802.15.4z signal that is transmitted over the air. You can create the transmitted UWB signal as
follows:

rng(7);
psduTx = randi([0, 1], 1016, 1);
cfgTx = lrwpanHRPConfig(Mode='HPRF', PSDULength=length(psduTx)/8, SamplesPerPulse=2);
waveTx = lrwpanWaveformGenerator(psduTx, cfgTx);

For the transmission, the example uses an NI™ PXI chassis together with two NI PXIe-5840 vector
signal transceivers (VST). The vector signal generator (VSG) of one VST transmits the UWB
waveform, and the vector signal analyzer (VSA) of the other VST receives the UWB waveform. Each
VST uses an FXUWB10 Taoglas UWB antenna. The transmission occurs at channel 3, with a center
frequency of 4.9928 GHz and a bandwidth of 499.2 MHz. The VSTs can operate at a 1 GHz sample
rate, so the Nyquist sampling theorem is marginally satisfied (2 x 499.2 = 998.4 MHz).

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-38

The two VSTs use different clocks (one uses the onboard clock and the other uses the PXI clock). This
configuration is representative of most wireless links, where the two end points do not have
synchronized clocks.

The following MAT file contains the received signal, which contains a single HPRF frame in its
entirety.

load uwbCapture.mat
plot(real(capturedHPRF), 'b-o')

 Recovery of IEEE 802.15.4z UWB Signals

7-39

Overview

The IEEE 802.15.4z receiver in this example comprises two parts: a signal recovery compenent and a
signal decoding component.

The signal recovery component performs frequency compensation (both coarse and fine), as well as
timing recovery.

The signal decoding component detects the preamble start, identifies the STS packet configuration
(presence and position of scrambled timestamp sequence), and decodes the PHY header (PHR) and
the payload.

Finally, the decoded PSDU is compared with the known transmitted PSDU, to calculate BER over the
UWB channel.

This 15.4z receiver is expected to work for signals that:

• Follow the HPRF mode of 802.15.4z.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-40

• Use a 91-symbol preamble code (i.e., code index greater than 25).
• Contain a payload whose length is unequal from the length of STS segments.

Frequency Compensation

Because the transmitter and receiver are not synchronized, a frequency offset is present in the
received frame. A scatter plot shows this effect, as the constellation rotates.

scatterplot(capturedHPRF)

Compensation for frequency offset is a two-step process: first, coarse frequency compensation is
performed and then fine frequency compensation follows.

Coarse Frequency Compensation

To coarsely compensate for frequency offset, this example uses the
comm.CoarseFrequencyCompensator System object™ for PAM modulation, as the HPRF signal
uses ternary symbols (-1, 0, 1).

rxSPC = 2; % Samples Per Chip/Pulse, given receive-side A/D
Fs = 499.2e6 * rxSPC;
coarseFC = comm.CoarseFrequencyCompensator(Modulation='PAM', SampleRate=Fs, FrequencyResolution=1e3);
[coarseFCsignal, freqEst] = coarseFC(capturedHPRF);
fprintf('Coarse frequency offset: %.2f MHz\n', freqEst/1e6)

Coarse frequency offset: 2.73 MHz

 Recovery of IEEE 802.15.4z UWB Signals

7-41

The effect of coarse frequency compensation is clearly visible in the constellation diagram, as the
extent of signal rotations is reduced dramatically.

scatterplot(coarseFCsignal)

Fine Frequency Compensation

The second step is to use comm.CarrierSynchronizer (for PAM modulation) for fine frequency
compensation.

fineFC = comm.CarrierSynchronizer(Modulation='PAM', SamplesPerSymbol=rxSPC);
[fineFCsignal, phaseEst] = fineFC(coarseFCsignal);
scatterplot(fineFCsignal)

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-42

Indeed, the compensated signal converges to the x-axes, as the HPRF signal is real. Some complex
noise is present.

Timing Recovery

Another consequence of the lack of synchronization between the transmitter and the receiver is
sample rate offset, which causes symbols to be sampled suboptimally and at instances that vary
relatively to the symbol duration.

Timing recovery compensates for this effect. The "early-late" synchronization algorithm is selected, as
it does apply for ternary symbols (-1, 0, 1) that are pulse-shaped with an Buttterworth filter (IIR).

fineFCsignalReal = real(fineFCsignal);
symbolSync = comm.SymbolSynchronizer(Modulation='PAM/PSK/QAM', SamplesPerSymbol=rxSPC, TimingErrorDetector='Early-Late (non-data-aided)');
recoveredHPRF = symbolSync(fineFCsignalReal);

Due to the substantial amount of noise, the constellation is essentially continuous along the x-axis
instead of forming three distinct clouds around the ternary symbols.

scatterplot(recoveredHPRF)

 Recovery of IEEE 802.15.4z UWB Signals

7-43

At this stage, signal recovery is complete and the rest of this example focuses on decoding the
recovered waveform.

Preamble Detection

The received UWB waveform begins at an unknown instance. A practical receiver performs preamble
detection to find the beginning of the PHY frame. Toward this end, the example uses
comm.PreambleDetector to locate the synchronization (SYNC) field.

However, the SYNC field may be composed from one out of many possible code sequences. The
receiver does not use any transmit-side information and considers all possible codes until it detects
the SYNC field.

Moreover, frequency compensation may introduce phase ambiguity. That is, the polarity of the ternary
UWB signal may be inverted. As a result, preamble detection also resolves phase ambiguity by
considering all possible phase combinations.

Tpream = 5; % manual, iterative specification; threshold can increase until only 1 code detected
Tnoise = 0.01; % used for energy detection, toward specification of the Preamble Detector threshold
Tzero = 25/100; % amplitude threshold for zero symbols, as percentage of highest amplitude - should be higher than noise

cfgRcv = lrwpanHRPConfig(Mode='HPRF', SamplesPerPulse=rxSPC); % create an object to keep track of the received-frame properties
preambleCodesHPRF = 25:32;
preambleDet = comm.PreambleDetector;
syncFound = false;
codeIdx = preambleCodesHPRF(1)-1;
hprfPreambleDurations = [16, 24, 32, 48, 64, 96, 128, 256];

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-44

while ~syncFound && codeIdx < max(preambleCodesHPRF) % consider all codes until detection
 codeIdx = codeIdx+1;
 for polarity = [-1 1] % consider all polarities until detection
 % create SYNC from spread code:
 code = polarity * lrwpan.internal.HRPCodes(codeIdx);
 spreadingFactorHPRF = cfgRcv.PreambleSpreadingFactor; % spreading factor, L (always 4 for HPRF mode)
 preamble = zeros(length(code) * spreadingFactorHPRF, 1);
 preamble(1:spreadingFactorHPRF:end) = code;

 release(preambleDet);
 preambleDet.Preamble = preamble;
 meanCorr = mean(abs(filter(flipud(preamble), 1, recoveredHPRF(recoveredHPRF>Tnoise))));
 preambleDet.Threshold = Tpream*meanCorr;
 [preamPos, corrMat] = preambleDet(recoveredHPRF);
 durationIdx = find(numel(preamPos) > hprfPreambleDurations, 1, 'last');
 if ~isempty(durationIdx)
 cfgRcv.PreambleDuration = hprfPreambleDurations(durationIdx);
 syncFound = true;
 break; % preamble found, no need to explore other polarity
 end
 end
end
if syncFound
 fprintf('Found SYNC for code #%d.', codeIdx);
 cfgRcv.CodeIndex = codeIdx; % keep track of identified frame characteristics
else
 error('No SYNC field found in the input data.');
end

Found SYNC for code #25.

% Slice remaining capture with integrate and dump (frame length is unknown for now, it is in the PHR)
recoveredHPRF = recoveredHPRF/max(abs(recoveredHPRF)); % normalize amplitude
frameStart = preamPos(1)-length(preamble)+1;
ternarySymbols = polarity*recoveredHPRF(frameStart:end);
ternarySymbols(abs(ternarySymbols)<Tzero) = 0;
ternarySymbols(ternarySymbols>Tzero) = 1;
ternarySymbols(ternarySymbols<-Tzero) = -1;

Start-of-Frame Delimiter

The start-of-frame delimiter (SFD) follows the synchronization (SYNC) field. For the HPRF mode, the
length of the SFD field may be 4, 8, 16, or 32 symbols. The receiver does not use any transmit-side
information and searches for all possible SFDs.

% Detect SFD by identifying 95% match on a chip-by-chip basis
berThr = 1 - 95/100;

sfdFound = false;
sfdStart = 1+length(preamble)*cfgRcv.PreambleDuration;
for sfdNum = 0:4 % SFD values from Table 15-7c
 cfgRcv.SFDNumber = sfdNum;
 sfd = lrwpan.internal.getSFD(cfgRcv);
 spreadedSFD = sfd.*preamble * polarity;
 spreadedSFD = spreadedSFD(:);

 bitErrs = sum(spreadedSFD ~= ternarySymbols(sfdStart:sfdStart+length(spreadedSFD)-1));
 sfdBER = bitErrs/length(spreadedSFD);

 Recovery of IEEE 802.15.4z UWB Signals

7-45

 if sfdBER < berThr
 sfdFound = true;
 break;
 end
end
if sfdFound
 fprintf('Found SFD #%d.', sfdNum);
else
 warning('No SFD was found after SYNC.')
end

Found SFD #0.

STS

The scrambled timestamp sequence (STS) packet configuration is also unknown at the receiver. That
is, it is not known whether STS and payload exist and in what order. Similarly, it is unknown how
many STS segments exist and what their length is.

The receiver infers the answer to these questions by identifying STS gaps.

numChipsPerGap = 512; % Section 15.2.9 in [2].
sfdEnd = sfdStart + length(spreadedSFD) - 1;
gapStarts = [];
idx = sfdEnd+1;
while idx <= length(ternarySymbols)-numChipsPerGap+1
 if ~any(ternarySymbols(idx:idx+numChipsPerGap-1)) % 512 chips long gap found
 if ~isempty(gapStarts) && idx == gapStarts(end)+512 % end of frame found, do not treat as STS gap
 gapStarts(end) = [];
 ternarySymbols = ternarySymbols(1:idx);
 break;
 end
 gapStarts = [gapStarts idx]; %#ok<AGROW>
 idx = idx + numChipsPerGap; % go to the end of the gap
 continue;
 end

 % go to the last non-zero, to avoid pointless comparisons
 nextIncr = find(ternarySymbols(idx+1 : idx+numChipsPerGap), 1, 'last');
 if isempty(nextIncr)
 nextIncr = numChipsPerGap;
 end
 idx = idx + nextIncr+1;
end
stsAfterSFD = ~isempty(gapStarts) && gapStarts(1) == sfdEnd+1;
if isempty(gapStarts)
 cfgRcv.STSPacketConfiguration = 0;
else
 cfgRcv.NumSTSSegments = max(1, numel(gapStarts)-1); % 1 segment if frame finishes with gap
 cfgRcv.STSPacketConfiguration = 0 + (cfgRcv.NumSTSSegments>0) + ~stsAfterSFD; % STSPacketConfiguration = 3 not supported
end

% Last gap does not start at end of symbol because the last L-1 symbols are zeros
if stsAfterSFD
 cfgRcv.STSSegmentLength = (diff(gapStarts(1:2))-numChipsPerGap + spreadingFactorHPRF-1)/numChipsPerGap; % in units of 512 chips
elseif ~isempty(gapStarts)
 cfgRcv.STSSegmentLength = (length(ternarySymbols)-gapStarts -numChipsPerGap + spreadingFactorHPRF-1)/numChipsPerGap; % in units of 512 chips
end

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-46

if cfgRcv.STSPacketConfiguration
 fprintf('Found %d STS segment(s) of length %d; STS packet configuration is %d.\n', cfgRcv.NumSTSSegments, cfgRcv.STSSegmentLength, cfgRcv.STSPacketConfiguration)
 stsLen = numChipsPerGap*(cfgRcv.NumSTSSegments+1) + cfgRcv.NumSTSSegments * cfgRcv.STSSegmentLength * 512;
else
 fprintf('Found no STS.\n');
 stsLen = 0;
end

Found 1 STS segment(s) of length 64; STS packet configuration is 1.

PHR

The PHY header (PHR) contains information such as the length of the PHY service data unit (PSDU).
For the HPRF mode, both the header and the payload may follow one of two modulation variants,
depending on the mean pulse repetition frequency (PRF), which can be either 124.8 or 249.6 MHz.
Each modulation variant uses symbols of different lengths and with different guardband format (see
Figure 15-11b-e in [2] on page 7-48).

Moreover, the symbol length in the PHR is also determined by the constraint length of the
convolutional coding, which is either 3 or 7 (see Tables 15-10c-f in [2] on page 7-48).

if ~stsAfterSFD
 phrStart = sfdEnd+1;
else
 phrStart = sfdEnd + 1 + stsLen;
end

% Need to find modulation type (124.8 vs 249.6 MHz)
% Guarbands are the distinguishing factor (75% vs 50% of symbols, respectively)
numPHRBits = 19;
minSymbolDuration = 16; % in chips, out of all the data-rate, coding combinations
% The PHR will span at least 19x16 chips. Check within that range for
% guarband statistics:
numZeros = sum(0 == ternarySymbols(phrStart: phrStart+numPHRBits*minSymbolDuration-1));
zerosPct = numZeros/(numPHRBits*minSymbolDuration);
mode249MHz = zerosPct< (50 + (75-50)/2)/100;
if mode249MHz
 cfgRcv.MeanPRF = 249.6;
else
 cfgRcv.MeanPRF = 124.8;
end

% Next, determine if convolutional coding uses constraint
% length 3 or 7, as different symbol mapping is used (Tables 15-10c-f in [2]).
for CL = [3 7]
 cfgRcv.ConstraintLength = CL;
 isPHR = true;
 [cwPHR, phrEnd] = helperUWBHPRFDemod(isPHR, ternarySymbols, phrStart, cfgRcv);
 [secdedPass, PSDULength] = helperUWBPHRDecode(cwPHR, cfgRcv, CL);
 if secdedPass
 cfgRcv.PSDULength = PSDULength;
 break;
 end
end

 Recovery of IEEE 802.15.4z UWB Signals

7-47

Payload

The PHR decoding identifies the mean PRF and the constraint length. Therefore, the payload can be
decoded and compared with the known transmitted PSDU.

payloadStart = phrEnd+1;
decodedPSDU = helperUWBPayloadDecode(ternarySymbols, payloadStart, cwPHR, cfgRcv);

[~, ber] = biterr(psduTx, decodedPSDU);
fprintf('Bit error rate: %0.2f\n', ber)

Bit error rate: 0.00

The bit error rate is zero, even though the chip error rate was higher (1%) during the SFD
identification. These chip errors are corrected by the spreading and repetition performed by the
HPRF modulation scheme, as well as by the convolutional and Reed-Solomon encoding of the HRP
PHY.

References

1. "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
Std 802.15.4-2015), pp.1–800, 23 July 2020, DOI: 10.1109/IEEESTD.2020.9144691.

2. "IEEE Standard for Low-Rate Wireless Networks—Amendment 1: Enhanced Ultra Wideband (UWB)
Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1–174, 25 August 2020, DOI: 10.1109/
IEEESTD.2020.9179124.

See Also

Related Examples
• “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-2
• “UWB Channel Models” on page 7-49

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-48

UWB Channel Models

This example shows how to implement UWB channel models for a variety of propagation
environments. The implementation is based on recommendations from the channel modeling
subgroup of IEEE® 802.15.4a™ [1] on page 7-58. You can reuse these UWB channel models for the
IEEE 802.15.4z amendment [3] on page 7-59, which enhances the HRP PHY introduced by IEEE
802.15.4a.

Overview

The recommended UWB channel models comprise the following parts:

1 Application of distance- and frequency-dependent path loss
2 A modified Saleh-Valenzuela model [4] on page 7-59, which contains multipath components that

are grouped in distinct clusters
3 Determination of path amplitudes with distinct Nakagami distributions (small-scale fading)
4 Environment-specific parameterization of the above steps

First, this example sequentially illustrates each component of the UWB channel model. Next, in the
end of this example on page 7-56, an aggregate uwbChannel object is used to implement all aspects
of the UWB channel model with a single command.

Environment Parameterization

The IEEE 802.15.4a channel modeling subgroup recommends multiple UWB models for the 2 to 10
GHz range, which cover a wide range of environments:

• Residential (indoor)
• Indoor office
• Outdoor (suburban-like)
• Open outdoor (agricultural)
• Industrial (indoor)

The subgroup recommends two distinct models for each environment type (except for open outdoor),
depending on the presence or absence of a line-of-sight (LOS) component. Thus, this example
implements a total of nine combinations (type x LOS) for the 2 to 10 GHz range.

To create a channel-model parameterization for a specific scenario, construct a uwbChannelModel
object accordingly.

environmentType = ;

LOS = ;
env = uwbChannelConfig(environmentType, LOS)

env =
 uwbChannelConfig with properties:

 Type: 'Indoor office'
 HasLOS: 1

 UWB Channel Models

7-49

 ReferencePathLoss: 35.4000
 PathLossExponent: 1.6300
 ShadowingDeviation: 1.9000
 AntennaLoss: 3
 FrequencyExponent: 0.0300
 AverageNumClusters: 5.4000
 ClusterArrivalRate: 0.0160
 PathArrivalRate1: 0.1900
 PathArrivalRate2: 2.9700
 MixtureProbability: 0.0184
 ClusterEnergyDecayConstant: 14.6000
 PathDecaySlope: 0
 PathDecayOffset: 6.4000
 NakagamiMeanOffset: 0.4200
 NakagamiMeanSlope: 0
 NakagamiDeviationOffset: 0.3100
 NakagamiDeviationSlope: 0

You can create custom environment scenarios by modifying the configuration presets above.

Propagation and Path Loss

The received signal experiences path loss and suffers a reduction in power. The model in [1] on page
7-58 recommends that path loss PL depends on the distance d between the transmitter and the
receiver, and also that path loss manifests nonuniformly for the different frequencies f of the
received signal.

PL f , d = PL f * PL d

Distance and frequency affect path loss in a manner specific to each environment type.

Transmitted Signal

First, create a transmitted signal that experiences path loss. Here, an IEEE 802.15.4a/z signal is
created, but the example can also be used with signals of different types.

Ptx = ; % Transmit power, in Watts

% Create IEEE 802.15.4a/z signal:
psduLen = 10; % bytes
psdu = randi([0, 1], psduLen*8, 1);
cfgBPRF = lrwpanHRPConfig(Mode='BPRF', ...
 STSPacketConfiguration=0, ...
 PHRDataRate=6.81, ... % PHR at 6.81 Mbps (BPRF payload always at 6.81 Mbps)
 CodeIndex=9, ... % One of the 127-symbols long SYNC codes
 PreambleDuration=16, ...
 PSDULength=psduLen);
waveBPRF = lrwpanWaveformGenerator(psdu, cfgBPRF);

waveBPRF = waveBPRF*sqrt(Ptx)/(sqrt(mean(waveBPRF.^2)));

Distance Dependence

Establish the path loss dependence on distance with the classic log-distance propagation model. A
path loss exponent n (PathLossExponent in uwbChannelConfig, specific to environment)

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-50

determines how quickly power dissipates as a function of distance d. A zero-mean Gaussian random
variable models shadowing (as seen in large-scale fading, denoted by S).

PLdB d = PL0 + 10 * n * log10
d
d0

+ S

PL0 is the reference path loss at the reference distance d0 (1 m).

d = ; % distance between transmitter and receiver, in meters
rxSignal = helperDistancePathLoss(waveBPRF, env.ReferencePathLoss, d, env.PathLossExponent, env.ShadowingDeviation);

Frequency Dependence

Model frequency dependence by amplifying frequencies smaller than the center frequency fc and
reducing the power of higher frequencies. The power differences within the same bandwidth
decrease with the center frequency fc. A path loss exponent κ (FrequencyExponent in
uwbChannelConfig, specific to environment) determines how quickly power is lost as a function of
frequency.

PL f = f
fc

2κ + 1

To apply frequency-dependent path loss, select an IEEE 802.15.4a/z channel number, to determine
the center frequency fc and the channel bandwidth (see Table 15-11 in [2] on page 7-59).

channelSpec = ;
channelNum = channelSpec(1);
Fc = channelSpec(2);
bw = channelSpec(3);
fprintf('Channel #%d: Center frequency = %.1f MHz, Bandwidth = %.1f MHz.\n', channelNum, Fc/1e6, bw/1e6);

Channel #0: Center frequency = 499.2 MHz, Bandwidth = 499.2 MHz.

Next, create an arbitrary-magnitude filter to enable the frequency-dependent profile described above.

rxSignal = helperFrequencyPathLoss(rxSignal, Fc, bw, env.FrequencyExponent);

Antenna Effects

Finally, the recommended model describes two antenna-related effects. First, the presence of people
close to antennas is modeled as a static "antenna attenuation factor". Second, the environment
parameterization contains an "antenna loss" factor (AntennaLoss in uwbChannelConfig), which
presumably models the overall effect of both the transmit and receive antennas.

rxSignal = rxSignal/2; % presence of people ("antenna attenuation factor"), see Section II.B.4 in [1]
rxSignal = rxSignal * 10^(-env.AntennaLoss/20); % apply antenna loss (convert from dB to V)

Power Delay Profile

The recommended UWB channel model is based on the Saleh-Valenzuela model [4] on page 7-59 and
contains multipath components that are grouped into L clusters.

h t = ∑
l = 0

L
∑

k = 0

K
ak, l * e jφk, lδ t − Tl− τk, l

 UWB Channel Models

7-51

The amplitude, phase and delay of the kth path in the lth cluster are denoted by ak, l, φk, l and τk, l
respectively.

Clusterization

• Number of clusters: The number of clusters (L) follows a Poisson distribution, and its average
number is environment-specific.

• Cluster arrival times: Each of these clusters has an arrival time Tl, which is determined by a
Poisson process that has a (cluster) arrival rate Λ. The interarrival times in a Poisson process are
exponentially distributed and their mean is 1/Λ (where Λ is ClusterArrivalRate in
uwbChannelConfig). Exponential random variables can be created from a uniform random
variable, with the Inverse Transform Method.

One exception is the case for non-line-of-sight indoor office and industrial environments, where a
dense and continuous arrival of multipath components is observed, so this case uses a single cluster
with regular tap spacings.

• Cluster energies: The mean (averaged over small-scale fading) energy Ωl for each cluster l decays
exponentially with the cluster arrival time Tl. The exponential decay factor Γ
(ClusterEnergyDecayConstant in uwbChannelConfig) is also environment-specific.

10log Ωl = 10log exp − Tl/Γ + Mcluster

A normal random variable Mcluster (ClusterShadowingDeviation in uwbChannelConfig) is
added to the mean cluster energy, for certain environments, to represent "cluster shadowing".

[L, clusterArrivalTimes, clusterEnergies] = helperClusterization(environmentType, LOS, env.AverageNumClusters, env.ClusterArrivalRate, env.ClusterShadowingDeviation, env.ClusterEnergyDecayConstant);

fprintf(['UWB channel has %d clusters.\n' ...
 'Cluster arrival times (in ns): %s\n', ...
 'Cluster energies: %s\n'], L, mat2str(clusterArrivalTimes), mat2str(clusterEnergies));

UWB channel has 9 clusters.
Cluster arrival times (in ns): [182.480961732126 222.066873390902 237.662472351032 241.929184951106 369.488095088147 404.749645305753 452.01964117194 728.959827816783 796.916608121109]
Cluster energies: [3.73151586385388e-06 2.47944768983767e-07 8.52010967200756e-08 6.36101925043102e-08 1.02125498634872e-11 9.1250900081162e-13 3.58207380049055e-14 2.07117631906428e-22 1.97133880523251e-24]

Path Modeling

• Path arrivals: For most environments, paths arrive within each cluster according to the mixture of
two separate Poisson processes. For the environments where a dense continuous arrival of
multipath components is observed (such as industrial environments), paths are modeled with
regular tap spacings.

• Average path power: For most environments, the average path power ak, l of the kth path in the
lth cluster decays exponentially within the cluster, as a function of the path delay τk, l:

E |ak, l|2 =
Ωl * exp

τk, l
γl

γl 1− β λ1 + β * λ2 + 1

γl is the intra-cluster decay constant and λ1, λ2, β regulate the mixed path-arrival Poisson
process (PathArrivalRate1, PathArrivalRate2 and MixtureProbability in
uwbChannelConfig, respectively).

However, for the non-line-of-sight indoor office and industrial environments, the power delay profile
(PDP) increases up to a maximum and then decays:

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-52

E |ak, l|2 = 1− χ · exp −
τk, l
γrise

· exp −
τk, l
γ1

·
γ1 + γrise

γ1
*

Ωl
γ1 + γrise * 1− χ

Here, χ (FirstPathAttenuation in uwbChannelConfig) describes the attenuation of the first
component and γrise, γ1 (PDPIncreaseFactor, PDPDecayFactor in uwbChannelConfig)
determine how quickly the PDP increases to its maximum and decays, respectively.

• Path phases: Each path is characterized by a phase φk, l, which is modeled as a uniform random
variable within [0 2π]. The phase rotates the path gain in the complex plane, thus the channel
impulse response is complex.

Finally, each cluster contains a certain number of paths (K), but this number is not specified in the
model report [1] on page 7-58. The implementation provided within the report [1] on page 7-58
considers all paths arriving within a duration 10*γ, where γ is the intra-cluster power decay factor.
This example considers all paths whose power is no less than a certain configurable threshold (e.g.,
0.5%) of the first path.

Tend = /100; % Power threshold (%), compared to 1st path, determining end of clusters
[pathArrivalTimes, pathAveragePowers, pathPhases] = helperPathModeling(env, clusterArrivalTimes, clusterEnergies, Tend, cfgBPRF.SampleRate);

Small-Scale Fading

• Nakagami parameters: Now that the average power has been determined for each path, the next
step is to enable small-scale fading by determining the different channel realizations according to
a Nakagami distribution. The channel model recommends that the shape parameter m of the
Nakagami distribution is a lognormal random variable, whose mean and variance are dependent
on the environment and the path delay.

nakagamiM = helperNakagamiParameters(env, pathArrivalTimes);

• Nakagami random variables: You can obtain a Nakagami random variable with shape parameter m
and spread parameter Ω (the average path gain) from the square root of a gamma-distributed
random variable that has shape parameter k = m and scale parameter θ = Ω/m [5] on page 7-
59. This example generates a gamma-distributed random variable with a sequence of steps,
including the Ahrens-Dieter method [6] on page 7-59. The Nakagami random variables are
created within the helperSingleChannelRealization function.

• Simulation: Small-scale (Nakagami) fading is applied throughout the input signal. The timescale of
fading is determined by the following 2 inputs:

sampleDensity = ;

maxDopplerShift = ; % in Hz

New path gains are generated with a rate equal to maxDopplerShift x 2 x sampleDensity. All
the channel realizations occur within helperAllChannelRealizations, and its pathGains output
contains all channel realizations.

[rxSignal, pathGains] = helperApplyChannel(rxSignal, clusterArrivalTimes, ...
 pathArrivalTimes, pathAveragePowers, pathPhases, nakagamiM, cfgBPRF.SampleRate, sampleDensity, maxDopplerShift);

helperVisualizeChannelGains(clusterArrivalTimes, pathArrivalTimes, pathGains);

 UWB Channel Models

7-53

Comparing the scatter plots of the UWB channel input and output demonstrates the effects of the
multipath channel.

scatterplot(waveBPRF);

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-54

The IEEE 802.15.4a/z signal contains ternary symbols at -1, 0, and 1. Other constellation points are
the result of pulse (Butterworth) filtering and frequency-dependent path loss.

scatterplot(rxSignal);

 UWB Channel Models

7-55

The multipath channel introduces complex "noise" as a result of the complex path gains and inter-
symbol interference.

Environment Comparison

You can generate the channel gains for different environments, to illustrate key differences in their
power delay profiles. Towards this end, use the uwbChannel System object™, which encapsulates all
prior components of the UWB channel model, in a single utility.

• Alternate PDP: First, the industrial NLOS environment differs in that it consists of a single cluster
with regular tap spacings. The PDP shape first increases and then decays.

Here, we use a variant of uwbChannel that only generates the path gains and does not filter the
transmitted signal. The default behavior of uwbChannel is to filter the transmitted signal and output
the received one.

industrialUWBChannel = uwbChannel('Industrial', false, ...
 TransmitPower = 1, ...
 Distance = 10, ...
 ChannelNumber = 0, ...
 LastPathThreshold = 0.05, ...
 SampleRate = 499.2*10*1e6, ...
 SampleDensity = 1e5, ...
 MaxDopplerShift = 5, ...
 ChannelFiltering=false);

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-56

% waveTx = lrwpanWaveformGenerator(psdu, cfgBPRF); % start with a clean signal
% [waveRx, pathGains] = industrialUWBChannel(waveTx); % pass Tx signal through the wireless channel, with ChannelFiltering = true (default)
pathGains = industrialUWBChannel(); % only obtain channel realization

s = info(industrialUWBChannel);
helperVisualizeChannelGains(s.ClusterArrivalTimes, s.PathArrivalTimes, pathGains);

• Outdoor environments: The outdoor UWB environment differs in that its average number of
clusters is typically substantially higher.

outdoorUWBChannel = uwbChannel('Outdoor', false, ChannelFiltering=false);
pathGains = outdoorUWBChannel(); % only obtain channel realization

s = info(outdoorUWBChannel);
helperVisualizeChannelGains(s.ClusterArrivalTimes, s.PathArrivalTimes, pathGains);

 UWB Channel Models

7-57

Further Exploration

To further explore this example, you can modify the environment type and the LOS setting. You can
give different values for the transmitted power, the distance between the two link endpoints, the
channel number, and the ratio threshold comparing the powers of the first and the last path within a
cluster.

You can also explore the implementation of the channel configuration and channel filtering objects as
well as the helper functions that implement different components of the UWB channel model:

• uwbChannelConfig.m
• uwbChannel.m
• helperDistancePathLoss.m
• helperFrequencyPathLoss.m
• helperClusterization.m
• helperPathModeling.m
• helperNakagamiParameters.m
• helperUWBFadingRealization.m
• helperVisualizeChannelGains.m

Bibliography

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-58

1. A. F. Molisch et al., “IEEE 802.15.4a Channel Model-Final Report,” Tech. Rep., Document IEEE
802.1504-0062-02-004a, 2005.

2. "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2020 (Revision of IEEE
Std 802.15.4-2015), pp.1–800, 23 July 2020, DOI: 10.1109/IEEESTD.2020.9144691.

3. "IEEE Standard for Low-Rate Wireless Networks--Amendment 1: Enhanced Ultra Wideband (UWB)
Physical Layers (PHYs) and Associated Ranging Techniques," in IEEE Std 802.15.4z-2020
(Amendment to IEEE Std 802.15.4-2020), pp.1–174, 25 August 2020, DOI: 10.1109/
IEEESTD.2020.9179124.

4. A. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J.
Selected Areas Comm., Vol. 5, pp. 138–137, February 1987.

5. https://en.wikipedia.org/wiki/Nakagami_distribution#Generation

6. https://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-
distributed_random_variables

See Also

Related Examples
• “HRP UWB IEEE 802.15.4a/z Waveform Generation” on page 7-2
• “End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY” on page 7-16
• “Recovery of IEEE 802.15.4 OQPSK Signals” on page 7-64

 UWB Channel Models

7-59

End-to-End IEEE 802.15.4 PHY Simulation

This example shows how to generate waveforms, decode waveforms and compute BER curves for
different PHY specifications of the IEEE® 802.15.4™ standard [1 on page 7-63], using the
Communications Toolbox™ Library for ZigBee and UWB.

Background

The IEEE 802.15.4 standard specifies the PHY and MAC layers of low-rate wireless personal area
networks (LR-WPANs) [1 on page 7-63]. The IEEE 802.15.4 PHY and MAC layers provide the basis of
other higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards
find application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

Physical Layer Implementations of IEEE 802.15.4

The original IEEE 802.15.4 standard and its amendments specify multiple PHY layers, which use
different modulation schemes and support different data rates. These physical layers were devised for
specific frequency bands and, to a certain extent, for specific countries. This example provides
functions that generate and decode waveforms for the physical layers proposed in the original IEEE
802.15.4 specification (OQPSK in 2.4 GHz, BPSK in 868/915 MHz), IEEE 802.15.4b (OQPSK in
868/915 MHz), IEEE 802.15.4c (OQPSK in 780 MHz) and IEEE 802.15.4d (GFSK and BPSK in 950
MHz).

These physical layers specify a format for the PHY protocol data unit (PPDU) that includes a
preamble, a start-of-frame delimiter (SFD), and the length and contents of the MAC protocol data unit
(MPDU). The preamble and SFD are used for frame-level synchronization. In the following
description, the term symbol denotes the integer index of a chip sequence (as per the IEEE 802.15.4
standard), not a modulation symbol such as a complex number.

• OQPSK PHY: All OQPSK PHYs map every 4 PPDU bits to one symbol. The 2.4 GHz OQPSK PHY
spreads each symbol to a 32-chip sequence, while the other OQPSK PHYs spread it to a 16-chip
sequence. Then, the chip sequences are OQPSK modulated and passed to a half-sine pulse shaping
filter (or a normal raised cosine filter, in the 780 MHz band). For a detailed description, see Clause
10 in [1 on page 7-63].

• BPSK PHY: The BPSK PHY differentially encodes the PPDU bits. Each resulting bit is spread to a
15-chip sequence. Then, the chip sequences are BPSK modulated and passed to a normal raised
cosine filter. For a detailed description, see Clause 11 in [1 on page 7-63].

• GFSK PHY: The GFSK PHY first whitens the PPDU bits using modulo-2 addition with a PN9
sequence. The whitened bits are then GFSK modulated. For a detailed description, see Clause 15
in [1 on page 7-63].

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-60

Waveform Generation, Decoding and BER Curve Calculation

This code illustrates how to use the waveform generation and decoding functions for different
frequency bands and compares the corresponding BER curves.

EcNo = -25:2.5:17.5; % Ec/No range of BER curves
spc = 4; % samples per chip
msgLen = 8*120; % length in bits
s = rng(54806); % Seed random number generator
message = randi([0 1],msgLen,1); % transmitted message

% Preallocate vectors to store BER results:
[berOQPSK2450, berOQPSK780, berBPSK, ...
 berGFSK] = deal(zeros(1,length(EcNo)));

% Create OQPSK configuration objects:
cfgOQPSK2450 = lrwpanOQPSKConfig(Band=2450, ...
 PSDULength=msgLen/8, SamplesPerChip=spc);
cfgOQPSK780 = lrwpanOQPSKConfig(Band=780, ... % or '868 MHz'/'915 MHz'
 PSDULength=msgLen/8, SamplesPerChip=spc);

for idx = 1:length(EcNo) % loop over the EcNo range

 % O-QPSK PHY, 2450 MHz
 waveform = lrwpanWaveformGenerator(...
 message, cfgOQPSK2450);
 K = 2; % information bits per symbol
 SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
 received = awgn(waveform, SNR);
 bits = lrwpan.PHYDecoderOQPSKNoSync(...
 received,spc,'2450 MHz');
 [~, berOQPSK2450(idx)] = biterr(message, bits);

 % O-QPSK PHY, 780MHz
 waveform = lrwpanWaveformGenerator(...
 message, cfgOQPSK780);
 SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
 received = awgn(waveform, SNR);
 bits = lrwpan.PHYDecoderOQPSKNoSync(...
 received,spc,'780 MHz');
 [~, berOQPSK780(idx)] = biterr(message,bits);

 % BPSK PHY, 868/915/950 MHz
 waveform = lrwpan.PHYGeneratorBPSK(message,spc);
 K = 1; % information bits per symbol
 SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
 received = awgn(waveform, SNR);
 bits = lrwpan.PHYDecoderBPSK(received,spc);
 [~, berBPSK(idx)] = biterr(message,bits);

 % GFSK PHY, 950 MHz
 waveform = lrwpan.PHYGeneratorGFSK(message,spc);

 End-to-End IEEE 802.15.4 PHY Simulation

7-61

 K = 1; % information bits per symbol
 SNR = EcNo(idx) - 10*log10(spc) + 10*log10(K);
 received = awgn(waveform, SNR);
 bits = lrwpan.PHYDecoderGFSK(received,spc);
 [~, berGFSK(idx)] = biterr(message, bits);
end

% plot BER curve
figure
semilogy(EcNo,berOQPSK2450,'-o',EcNo,berOQPSK780,'-*', ...
 EcNo,berBPSK,'-+',EcNo,berGFSK,'-v')
legend('OQPSK, 2450 MHz','OQPSK, 780 MHz', ...
 'BPSK, 868/915/950 MHz','GFSK, 950 MHz', ...
 'Location','southwest')
title('IEEE 802.15.4 PHY BER Curves')
xlabel('Chip Energy to Noise Spectral Density, Ec/No (dB)')
ylabel('BER')
axis([min(EcNo) max(EcNo) 10^-2 1])
grid on

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following objects and
functions:

• lrwpanWaveformGenerator, lrwpan.PHYDecoderOQPSKNoSync, and lrwpan.PHYDecoderOQPSK:
Create and decode an IEEE 802.15.4 OQPSK waveform

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-62

• lrwpan.PHYGeneratorBPSK and lrwpan.PHYDecoderBPSK: Create and decode an IEEE 802.15.4
BPSK waveform

• lrwpan.PHYGeneratorGFSK and lrwpan.PHYDecoderGFSK: Create and decode an IEEE 802.15.4
GFSK waveform

Most of these utilities are undocumented and their API or functionality may change in the future. To
view the source code for any of these utilities, use the edit function. For example, enter:

edit lrwpan.PHYDecoderOQPSK

at the MATLAB® command line to open lrwpan.PHYDecoderOQPSK.

Selected Bibliography

1 - "IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs)," in IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006) , vol.,
no., pp.1-314, 5 Sept. 2011, doi: 10.1109/IEEESTD.2011.6012487.

See Also

Related Examples
• “Recovery of IEEE 802.15.4 OQPSK Signals” on page 7-64
• “IEEE 802.15.4 - MAC Frame Generation and Decoding” on page 7-72

 End-to-End IEEE 802.15.4 PHY Simulation

7-63

Recovery of IEEE 802.15.4 OQPSK Signals

This example shows how to implement a practical IEEE® 802.15.4™ PHY receiver decoding OQPSK
waveforms that may have been received from wireless radios, using the Communications Toolbox™
Library for ZigBee and UWB. This practical receiver has decoded standard-compliant waveforms
received from commercial ZigBee radios enabling home automation in the 2.4 GHz band, using a
USRP® B200-mini radio and the Communications Toolbox Support Package for USRP® radio add-on.

Background

The IEEE 802.15.4 standard specifies the MAC and PHY layers of low-rate wireless personal area
networks (LR-WPANs) [1 on page 7-71]. The IEEE 802.15.4 MAC and PHY layers provide the basis of
other higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards
find application in home automation and sensor networking and are highly relevant to the internet-of-
things (IoT) trend.

Receiver Architecture

Overall, the receiver performs the following operations:

• Matched filtering
• Coarse frequency compensation
• Fine frequency compensation
• Timing Recovery
• Preamble detection
• Phase ambiguity resolution
• Despreading

Between these steps, the signal is visualized to illustrate the signal impairments and the corrections.

Matched Filtering
load lrwpanPHYCaptures % load OQPSK signals from the 2.4 GHz band
spc = 12; % 12 samples per chip
 % the frame was captured at 12x chiprate = 12 MHz

A matched filter improves the SNR of the signal. The 2.4 GHz OQPSK PHY uses half-sine pulses,
therefore the following matched filtering operation is needed.

% Matched filter for captured OQPSK signal:
halfSinePulse = sin(0:pi/spc:(spc)*pi/spc);
decimationFactor = 3; % reduce spc to 4, for faster processing
matchedFilter = dsp.FIRDecimator(decimationFactor,halfSinePulse);
filteredOQPSK = matchedFilter(capturedFrame1); % matched filter output

Frequency Offsets

Decoding a signal under the presence of frequency offsets is a challenge for any wireless receiver.
Frequency offsets up to 30 kHz were measured for signals transmitted from commercial ZigBee
radios and captured using a USRP® B200-mini radio.

Constellation diagrams can illustrate the quality of the received signal, but it is first important to note
that the trajectory of an ideal OQPSK signal follows a circle.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-64

% Plot constellation of ideal OQPSK signal
msgLen = 120; % length in bytes
message = randi([0 1], msgLen, 1); % transmitted message
oqpskConfig = lrwpanOQPSKConfig(SamplesPerChip=spc, PSDULength=msgLen);
idealOQPSK = lrwpanWaveformGenerator(message, oqpskConfig);
constellation = comm.ConstellationDiagram(...
 'Name','Ideal OQPSK Signal', ...
 'ShowTrajectory',true);
constellation.Position = [constellation.Position(1:2) 300 300];
constellation(idealOQPSK);

The above constellation also contains one radius corresponding to the frame start, and one radius
corresponding to the frame end. At the same time, frequency offsets circularly rotate constellations,
resulting in ring-shaped constellations as well. Therefore, it is more meaningful to observe the
constellation of a QPSK-equivalent signal that is obtained by delaying the in-phase component of the
OQPSK signal by half a symbol. When half-sine pulse filtering is used, and the oversampling factor is
greater than one, the ideal QPSK constellation resembles an 'X'-shaped region connecting the four
QPSK symbols (red crosses) with the origin.

% Plot constellation of ideal QPSK-equivalent signal
idealQPSK = complex(real(idealOQPSK(1:end-spc/2)), ...
 imag(idealOQPSK(spc/2+1:end))); % align I and Q
release(constellation);
constellation.Name = 'Ideal QPSK-Equivalent Signal';
constellation.ReferenceConstellation = [1+1i 1-1i 1i-1 -1i-1];
constellation(idealQPSK);

 Recovery of IEEE 802.15.4 OQPSK Signals

7-65

However, the samples of the captured frame are dislocated from this 'X'-shaped region due to
frequency offsets:

% Plot constellation of QPSK-equivalent (impaired)
% received signal
filteredQPSK = complex(...
 real(filteredOQPSK(1:end-spc/(2*decimationFactor))), ...
 imag(filteredOQPSK(spc/(2*decimationFactor)+1:end))); % align I/Q
constellation = comm.ConstellationDiagram(...
 'XLimits',[-7.5 7.5], ...
 'YLimits',[-7.5 7.5], ...
 'ReferenceConstellation',5*qammod(0:3, 4), ...
 'Name','Received QPSK-Equivalent Signal');
constellation.Position = [constellation.Position(1:2) 300 300];
constellation(filteredQPSK);

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-66

Coarse Frequency Compensation

Such frequency offsets are first coarsely corrected using an FFT-based method [2 on page 7-71] that
squares the OQPSK signal and reveals two spectral peaks. The coarse frequency offset is obtained by
averaging and halving the frequencies of the two spectral peaks.

% Coarse frequency compensation of OQPSK signal
coarseFrequencyCompensator = comm.CoarseFrequencyCompensator(...
 'Modulation','OQPSK', ...
 'SampleRate',spc*1e6/decimationFactor, ...
 'FrequencyResolution',1e3);
[coarseCompensatedOQPSK, coarseFrequencyOffset] = ...
 coarseFrequencyCompensator(filteredOQPSK);
fprintf('Estimated frequency offset = %.3f kHz\n', ...
 coarseFrequencyOffset/1000);

Estimated frequency offset = 26.367 kHz

% Plot QPSK-equivalent coarsely compensated signal
coarseCompensatedQPSK = complex(...
 real(coarseCompensatedOQPSK(...
 1:end-spc/(2*decimationFactor))), ...
 imag(coarseCompensatedOQPSK(...
 spc/(2*decimationFactor)+1:end))); % align I and Q
release(constellation);
constellation.Name = ...
 'Coarse frequency compensation (QPSK-Equivalent)';
constellation(coarseCompensatedQPSK);

 Recovery of IEEE 802.15.4 OQPSK Signals

7-67

Some samples still lie outside the 'X'-shaped region connecting the origin with the QPSK symbols (red
crosses), as fine frequency compensation is also needed.

Fine Frequency Compensation

Fine frequency compensation follows the OQPSK carrier-recovery algorithm described in [3 on
page 7-71]. This algorithm is behaviorally different than its QPSK counterpart, which does not apply
to OQPSK signals even if their in-phase signal component is delayed by half a symbol.

% Fine frequency compensation of OQPSK signal
fineFrequencyCompensator = comm.CarrierSynchronizer(...
 'Modulation','OQPSK', ...
 'SamplesPerSymbol',spc/decimationFactor);
fineCompensatedOQPSK = ...
 fineFrequencyCompensator(coarseCompensatedOQPSK);

% Plot QPSK-equivalent finely compensated signal
fineCompensatedQPSK = complex(...
 real(fineCompensatedOQPSK(...
 1:end-spc/(2*decimationFactor))), ...
 imag(fineCompensatedOQPSK(...
 spc/(2*decimationFactor)+1:end))); % align I and Q
release(constellation);
constellation.Name = 'Fine frequency compensation (QPSK-Equivalent)';
constellation(fineCompensatedQPSK);

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-68

The constellation is now closer to its ideal form, but still timing recovery is needed.

Timing Recovery

Symbol synchronization occurs according to the OQPSK timing-recovery algorithm described in [3 on
page 7-71]. In contrast to carrier recovery, the OQPSK timing recovery algorithm is equivalent to its
QPSK counterpart for QPSK-equivalent signals that are obtained by delaying the in-phase component
of the OQPSK signal by half a symbol.

% Timing recovery of OQPSK signal, via its QPSK-equivalent version
symbolSynchronizer = comm.SymbolSynchronizer(...
 'Modulation','OQPSK', ...
 'SamplesPerSymbol',spc/decimationFactor);
syncedQPSK = symbolSynchronizer(fineCompensatedOQPSK);

% Plot QPSK symbols (1 sample per chip)
release(constellation);
constellation.Name = 'Timing Recovery (QPSK-Equivalent)';
constellation(syncedQPSK);

 Recovery of IEEE 802.15.4 OQPSK Signals

7-69

Note that the output of the symbol synchronizer contains one sample per symbol. At this stage, the
constellation truly resembles a QPSK signal. The few symbols that gradually move away from the
origin correspond to the frame start and end.

Preamble Detection, Despreading and Phase Ambiguity Resolution:

Once the signal has been synchronized, the next step is preamble detection, which is more successful
if the signal has been despreaded. It is worth noting that fine frequency compensation results in a
π/2-phase ambiguity, indicating the true constellation may have been rotated by 0, π/2, π, or 3π/2
radians. Preamble detection resolves the phase ambiguity by considering all four possible
constellation rotations. The next function operates on the synchronized OQPSK signal, performs joint
despreading, resolution of phase ambiguity and preamble detection, and then outputs the MAC
protocol data unit (MPDU).

MPDU = lrwpan.PHYDecoderOQPSKAfterSync(syncedQPSK);

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following object and
functions:

• lrwpan.PHYDecoderOQPSKNoSync and lrwpan.PHYDecoderOQPSK: Decode an IEEE 802.15.4
OQPSK waveform

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit lrwpan.PHYDecoderOQPSK

at the MATLAB® command line to open lrwpan.PHYDecoderOQPSK.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-70

Selected Bibliography

1 - "IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs)," in IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006) , vol.,
no., pp.1-314, 5 Sept. 2011, doi: 10.1109/IEEESTD.2011.6012487.

2 - "Designing an OQPSK demodulator", Jonathan Olds.

3 - Rice, Michael. Digital Communications - A Discrete-Time Approach. 1st ed. New York, NY: Prentice
Hall, 2008.

See Also

Related Examples
• “End-to-End IEEE 802.15.4 PHY Simulation” on page 7-60
• “IEEE 802.15.4 - MAC Frame Generation and Decoding” on page 7-72

 Recovery of IEEE 802.15.4 OQPSK Signals

7-71

IEEE 802.15.4 - MAC Frame Generation and Decoding

This example shows how to generate and decode MAC frames of the IEEE® 802.15.4™ standard [1
on page 7-74] using the Communications Toolbox™ Library for ZigBee and UWB add-on.

Background

The IEEE 802.15.4 standard specifies the MAC and PHY layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [1 on page 7-74]. The IEEE 802.15.4 MAC and PHY layers provide the basis
of other higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards
find application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

Architecture

The IEEE 802.15.4 MAC layer inserts a MAC header and a MAC footer before and after a network-
layer frame, respectively. The MAC footer contains a CRC check.

A lrwpan.MACFrameConfig configuration object is used both in generating and decoding IEEE
802.15.4 MAC frames. Such objects describe a MAC frame and specify its frame type and all
applicable properties.

The lrwpan.MACFrameGenerator function accepts an lrwpan.MACFrameConfig object describing
the frame, and optionally a MAC-layer payload (NET-layer frame) in bytes (two-characters), and
outputs the MAC frame in bits.

The lrwpan.MACFrameDecoder function accepts a MAC protocol data unit (MPDU) in bits and
outputs a lrwpan.MACFrameConfig object describing the frame and possibly a NET-layer frame in
bytes. Clause 5 in [1 on page 7-74] describes the MAC frame formats.

Decode MAC Frames of Home Automation ZigBee Radios

This section decodes MAC frames transmitted from commercial ZigBee radios enabling home
automation, and captured using a USRP® B200-mini radio and the Communications Toolbox Support
Package for USRP® radio. The PHY layer of the captured waveforms has been decoded according to
the methodology described in the “Recovery of IEEE 802.15.4 OQPSK Signals” on page 7-64 example.
The resulting MPDUs are stored into a MAT file.

load lrwpanMACCaptures

First, a data frame is decoded.

[dataFrameMACConfig, netFrame] = lrwpan.MACFrameDecoder(MPDU_data);
if ~isempty(dataFrameMACConfig)
 fprintf('CRC check passed for the MAC frame.\n');
 dataFrameMACConfig
end

CRC check passed for the MAC frame.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-72

https://www.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/hardware-support/usrp.html

dataFrameMACConfig =
 MACFrameConfig with properties:

 FrameType: 'Data'

 General MAC properties:
 SequenceNumber: 244
 AcknowledgmentRequest: 1
 DestinationAddressing: 'Short address'
 DestinationPANIdentifier: '1E16'
 DestinationAddress: '35EA'
 SourceAddressing: 'Short address'
 SourceAddress: '0000'
 PANIdentificationCompression: 1
 FramePending: 0
 FrameVersion: '2003'
 Security: 0

 Security properties:
 No properties.

 Beacon properties:
 No properties.

 "MAC Command" properties:
 No properties.

Next, an acknowledgment frame is decoded.

ackFrameMACConfig = lrwpan.MACFrameDecoder(MPDU_ack)

ackFrameMACConfig =
 MACFrameConfig with properties:

 FrameType: 'Acknowledgment'

 General MAC properties:
 SequenceNumber: 165
 DestinationAddressing: 'Not present'
 SourceAddressing: 'Not present'
 FramePending: 0
 FrameVersion: '2003'
 Security: 0

 Security properties:
 No properties.

 Beacon properties:
 No properties.

 "MAC Command" properties:
 No properties.

Generate MAC Frames

The lrwpan.MACFrameGenerator function can generate all MAC frame types from the IEEE
802.15.4 standard [1 on page 7-74], such as 'Beacon', 'Data', 'Acknowledgment', and 'MAC

 IEEE 802.15.4 - MAC Frame Generation and Decoding

7-73

Command' frame types. The MAC Command frame types can be further specified as: 'Association
request', 'Association response', 'Disassociation notification', 'Data request', 'PAN ID conflict
notification', 'Orphan notification', 'Beacon request', and 'GTS request'.

This code illustrates how to generate frames for all frame types.

% Beacon
beaconConfig = lrwpan.MACFrameConfig('FrameType','Beacon');
beaconMACFrame = lrwpan.MACFrameGenerator(beaconConfig);

% Data
dataConfig = lrwpan.MACFrameConfig('FrameType','Data');
numOctets = 50;
payload = dec2hex(randi([0 2^8-1], numOctets, 1), 2);
dataMACFrame = lrwpan.MACFrameGenerator(dataConfig, payload);

% Acknowledgment
ackConfig = lrwpan.MACFrameConfig('FrameType','Acknowledgment');
ackFrame = lrwpan.MACFrameGenerator(ackConfig);

% MAC Command
commandConfig = lrwpan.MACFrameConfig('FrameType','MAC Command');
commandConfig.MACCommand = 'Association request';
% Valid settings for MACCommand also include: 'Association response',
% 'Disassociation notification', 'Data request', 'PAN ID conflict
% notification', 'Orphan notification', 'Beacon request', and 'GTS request'.
commandFrame = lrwpan.MACFrameGenerator(commandConfig);

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following objects and
functions

• lrwpan.MACFrameGenerator and lrwpan.MACFrameDecoder: Create and decode an IEEE
802.15.4 MAC frame.

• lrwpan.MACFrameConfig: Create an IEEE 802.15.4 frame configuration.

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit lrwpan.MACFrameDecoder

at the MATLAB® command line to open lrwpan.MACFrameDecoder.

Selected Bibliography

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-74

1 - "IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs)," in IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006) , vol.,
no., pp.1-314, 5 Sept. 2011, doi: 10.1109/IEEESTD.2011.6012487.

See Also

Related Examples
• “End-to-End IEEE 802.15.4 PHY Simulation” on page 7-60
• “IEEE 802.15.4 - Asynchronous CSMA MAC” on page 7-76
• “ZigBee NET Frame Generation and Decoding” on page 7-90

 IEEE 802.15.4 - MAC Frame Generation and Decoding

7-75

IEEE 802.15.4 - Asynchronous CSMA MAC

This example shows how to simulate the IEEE® 802.15.4™ asynchronous CSMA MAC [1 on page 7-
89] using the Communications Toolbox™ Library for ZigBee® and UWB.

Background

The IEEE 802.15.4 standard specifies the MAC and PHY layers of Low-Rate Wireless Personal Area
Networks (LR-WPANs) [1 on page 7-89]. The IEEE 802.15.4 MAC and PHY layers provide the basis
of other higher-layer standards, such as ZigBee, WirelessHart®, 6LoWPAN and MiWi. Such standards
find application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

The IEEE 802.15.4 MAC [1 on page 7-89] specifies two-basic MAC modes: (i) non-beacon-enabled,
and (ii) beacon-enabled MAC. The non-beacon enabled MAC is an asynchronous carrier-sense
multiple access (CSMA) MAC, which is very similar to the IEEE 802.11 MAC. The beacon-enabled
MAC allows two different MAC periods: (i) a synchronized-CSMA MAC period, and (ii) a time-slotted,
contention-free MAC period. This example provides an extensive simulation of the non-beacon-
enabled, asynchronous, CSMA-based IEEE 802.15.4 MAC.

Network Setup

An IEEE 802.15.4 PAN (personal area network) is set up by a standard process between end devices
and PAN coordinators. First, devices that would like to join a network perform either active or passive
scanning. Active scanning means that a device first transmits a Beacon Request and later on it
performs passive scanning. Passive scanning means that the device sniffs to collect beacon frames
from PAN coordinators (who may have received their Beacon Request in the case of active scanning).
Upon the collection of beacons during passive scanning, the end device chooses the PAN with which
it would like to associate. Then it transmits an Association Request to the coordinator of this PAN and
the coordinator acknowledges it.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-76

In contrast to IEEE 802.11, the coordinator does not follow the acknowledgment of an Association
Request with an immediate transmission of an Association Response. Instead, the IEEE 802.15.4
coordinator first stores the Association Response locally; it is only transmitted when the end device
sends a Data Request and the coordinator acknowledges it. The IEEE 802.15.4 standard uses the
term indirect transmission to refer to this mechanism for transmitting frames. In general, this
mechanism is very useful for battery-powered devices of low-traffic networks (such as sensor
networks). Such devices may periodically activate their radios to check whether any frames are
pending for them, instead of continuously using their radios to receive a frame immediately.

Once the Association response is received and acknowledged, the end device is associated with the
PAN. At that time, data frames can be exchanged between the coordinator and the end device in any
direction. The data frames may be acknowledged, depending on their Acknowledgment Request
indication.

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-77

Asynchronous Medium-Access Control (MAC)

The asynchronous CSMA IEEE 802.15.4 MAC is similar to the generic CSMA operation and the IEEE
802.11 MAC. In this MAC scheme, acknowledgment frames are transmitted immediately, without
using the CSMA method. All other frames are transmitted using CSMA.

Specifically, once a device has a frame to transmit, it randomly chooses a backoff delay (number of
backoff periods) in the range [0 2BE-1], where BE is the backoff exponent. The duration of each
backoff period is 20 symbols. For the OQPSK PHY in 2.4 GHz, this duration corresponds to 640 chips
and 0.32 ms. Once the device has waited for the chosen number of backoff periods, it performs
carrier sensing. If the medium is idle, the device begins transmission of its frame, until it is entirely
transmitted.

If the medium is busy during carrier sense, then the backoff exponent increments by 1 and a new
number of backoff periods is selected from the new [0 2BE-1] range. When the backoff counter
expires again, carrier sensing is performed. If the maximum number of backoff countdowns is
reached without the medium being idle during any carrier sensing instance, then the device
terminates its attempts to transmit the frame.

Network Simulation Capabilities

This example offers an implementation for the described network setup process and the CSMA
method via the lrwpan.MACFullFunctionDevice and the lrwpan.MACReducedFunctionDevice
classes. Specifically, the following capabilities are enabled:

• Active and passive scanning
• Association Request and Association Response exchange

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-78

• Indirect transmissions using Data Requests
• Frame acknowledgments and frame retransmissions if acknowledgments are not timely received
• Short and long interframe spacing (SIFS and LIFS)
• Binary exponential backoff
• Carrier sensing

Network Simulation

In this section, we create an IEEE 802.15.4 network of 3 nodes: one PAN coordinator and two end
devices. The network simulator is configured to process all devices at increments of a single backoff
duration (20 symbols, 0.32 ms).

First, the following code illustrates the association of the first device with the network.

symbolsPerStep = 20;
chipsPerSymbol = 32;
samplesPerChip = 4;
symbolRate = 65.5e3; % symbols/sec
time = 0;
stopTime = 5; % sec

% Create PAN Coordinator
panCoordinator = lrwpan.MACFullFunctionDevice(...
 'PANCoordinator', true, ...
 'SamplesPerChip', 4,
 'PANIdentifier', '7777', ...
 'ExtendedAddress', [repmat('0', 1, 8) repmat('7', 1, 8)], ...
 'ShortAddress', '1234');

% Create first end-device
endDevice1 = lrwpan.MACReducedFunctionDevice(...
 'SamplesPerChip',4, ...
 'ShortAddress','0001', ...
 'ExtendedAddress',[repmat('0', 1, 8) repmat('3', 1, 8)]);

0001: ********* Adding Beacon Request frame to the queue
0001: Passive scanning for 1584 steps

% Initialize device inputs
received1 = zeros(samplesPerChip * chipsPerSymbol * ...
 symbolsPerStep/2, 1);
received2 = zeros(samplesPerChip * chipsPerSymbol * ...
 symbolsPerStep/2, 1);

while time < stopTime
 % Pass the received signals to the nodes for processing. Also,
 % fetch what they have to transmit:
 transmitted1 = panCoordinator(received1);
 transmitted2 = endDevice1(received2);

 % Ideal wireless channel, where both nodes are within range:
 received1 = transmitted2; % half-duplex radios, none receiving
 % while transmitting
 received2 = transmitted1;

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-79

 time = time + symbolsPerStep/symbolRate; % update clock
end

0001: Processing next frame from the queue
0001: Initializing transmission; backoff delay = 1 steps
0001: Backoff delay = 1 steps -> 0 steps
0001: Carrier sensing: Medium is idle.
0001: Clear to transmit
0001: Transmitting Beacon Request
0001: IFS offset = 0 samples
0001: Transmitting 1-1280 of 2050

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

0001: IFS offset = 0 samples
0001: Transmitting 1281-2050 of 2050
0001: Finished transmission
0001: Need to wait for SIFS (12) symbols. Offset = 12, next IFS = 4
0001: Entering passive scanning

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = MAC command
1234: *********** Received MAC Command type = Beacon request
1234: Need to wait for SIFS (12) symbols. Offset = 12, next IFS = 4
1234: ********* Adding Beacon frame to the queue
1234: next IFS = 4
1234: Processing next frame from the queue
1234: Initializing transmission; backoff delay = 7 steps
1234: Backoff delay = 7 steps -> 6 steps
1234: Backoff delay = 6 steps -> 5 steps
1234: Backoff delay = 5 steps -> 4 steps
1234: Backoff delay = 4 steps -> 3 steps
1234: Backoff delay = 3 steps -> 2 steps
1234: Backoff delay = 2 steps -> 1 steps
1234: Backoff delay = 1 steps -> 0 steps
1234: Carrier sensing: Medium is idle.
1234: Clear to transmit
1234: IFS offset = 256 samples
1234: Transmitting 1-1024 of 2562
1234: IFS offset = 0 samples
1234: Transmitting 1025-2304 of 2562

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

1234: IFS offset = 0 samples
1234: Transmitting 2305-2562 of 2562
1234: Finished transmission
1234: Need to wait for LIFS (40) symbols. Offset = 4, next IFS = 24
1234: Decreased wait time by 20 symbols to 4

0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = Beacon
0001: Need to wait for SIFS (12) symbols. Offset = 4, next IFS = -4
0001: next IFS = 0
0001: Scanning finished

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-80

0001: ********* Adding Association request frame to the queue
0001: Processing next frame from the queue
0001: Initializing transmission; backoff delay = 0 steps
0001: Carrier sensing: Medium is idle.
0001: Clear to transmit
0001: IFS offset = 0 samples
0001: Transmitting 1-1280 of 3458

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

0001: IFS offset = 0 samples
0001: Transmitting 1281-2560 of 3458
0001: IFS offset = 0 samples
0001: Transmitting 2561-3458 of 3458
0001: Finished transmission
0001: will wait for ack for 54 symbols additional to IFS = 0

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = MAC command
1234: *********** Received MAC Command type = Association request
1234: Need to wait for LIFS (40) symbols. Offset = 14, next IFS = 34
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: ********* Adding Data response frame to the PENDING queue
1234: next IFS = 34

0001: Decreasing ack wait durations by 20 symbols to 34

1234: IFS offset = 896 samples
1234: Transmitting 1-384 of 1410

0001: Decreasing ack wait durations by 20 symbols to 14

1234: IFS offset = 0 samples
1234: Transmitting 385-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 16, next IFS = 8

0001: Decreasing ack wait durations by 20 symbols to -6
Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = Acknowledgment
0001: Need to wait for SIFS (12) symbols. Offset = 16, next IFS = 8
0001: *********** Adding Data request frame to the queue
0001: next IFS = 1920
0001: Decreased wait time by 20 symbols to 1900
0001: Decreased wait time by 20 symbols to 1880
0001: Decreased wait time by 20 symbols to 1860
0001: Decreased wait time by 20 symbols to 1840
0001: Decreased wait time by 20 symbols to 1820
0001: Decreased wait time by 20 symbols to 1800
0001: Decreased wait time by 20 symbols to 1780
0001: Decreased wait time by 20 symbols to 1760
0001: Decreased wait time by 20 symbols to 1740
0001: Decreased wait time by 20 symbols to 1720
0001: Decreased wait time by 20 symbols to 1700

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-81

0001: Decreased wait time by 20 symbols to 1680
0001: Decreased wait time by 20 symbols to 1660
0001: Decreased wait time by 20 symbols to 1640
0001: Decreased wait time by 20 symbols to 1620
0001: Decreased wait time by 20 symbols to 1600
0001: Decreased wait time by 20 symbols to 1580
0001: Decreased wait time by 20 symbols to 1560
0001: Decreased wait time by 20 symbols to 1540
0001: Decreased wait time by 20 symbols to 1520
0001: Decreased wait time by 20 symbols to 1500
0001: Decreased wait time by 20 symbols to 1480
0001: Decreased wait time by 20 symbols to 1460
0001: Decreased wait time by 20 symbols to 1440
0001: Decreased wait time by 20 symbols to 1420
0001: Decreased wait time by 20 symbols to 1400
0001: Decreased wait time by 20 symbols to 1380
0001: Decreased wait time by 20 symbols to 1360
0001: Decreased wait time by 20 symbols to 1340
0001: Decreased wait time by 20 symbols to 1320
0001: Decreased wait time by 20 symbols to 1300
0001: Decreased wait time by 20 symbols to 1280
0001: Decreased wait time by 20 symbols to 1260
0001: Decreased wait time by 20 symbols to 1240
0001: Decreased wait time by 20 symbols to 1220
0001: Decreased wait time by 20 symbols to 1200
0001: Decreased wait time by 20 symbols to 1180
0001: Decreased wait time by 20 symbols to 1160
0001: Decreased wait time by 20 symbols to 1140
0001: Decreased wait time by 20 symbols to 1120
0001: Decreased wait time by 20 symbols to 1100
0001: Decreased wait time by 20 symbols to 1080
0001: Decreased wait time by 20 symbols to 1060
0001: Decreased wait time by 20 symbols to 1040
0001: Decreased wait time by 20 symbols to 1020
0001: Decreased wait time by 20 symbols to 1000
0001: Decreased wait time by 20 symbols to 980
0001: Decreased wait time by 20 symbols to 960
0001: Decreased wait time by 20 symbols to 940
0001: Decreased wait time by 20 symbols to 920
0001: Decreased wait time by 20 symbols to 900
0001: Decreased wait time by 20 symbols to 880
0001: Decreased wait time by 20 symbols to 860
0001: Decreased wait time by 20 symbols to 840
0001: Decreased wait time by 20 symbols to 820
0001: Decreased wait time by 20 symbols to 800
0001: Decreased wait time by 20 symbols to 780
0001: Decreased wait time by 20 symbols to 760
0001: Decreased wait time by 20 symbols to 740
0001: Decreased wait time by 20 symbols to 720
0001: Decreased wait time by 20 symbols to 700
0001: Decreased wait time by 20 symbols to 680
0001: Decreased wait time by 20 symbols to 660
0001: Decreased wait time by 20 symbols to 640
0001: Decreased wait time by 20 symbols to 620
0001: Decreased wait time by 20 symbols to 600
0001: Decreased wait time by 20 symbols to 580
0001: Decreased wait time by 20 symbols to 560
0001: Decreased wait time by 20 symbols to 540

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-82

0001: Decreased wait time by 20 symbols to 520
0001: Decreased wait time by 20 symbols to 500
0001: Decreased wait time by 20 symbols to 480
0001: Decreased wait time by 20 symbols to 460
0001: Decreased wait time by 20 symbols to 440
0001: Decreased wait time by 20 symbols to 420
0001: Decreased wait time by 20 symbols to 400
0001: Decreased wait time by 20 symbols to 380
0001: Decreased wait time by 20 symbols to 360
0001: Decreased wait time by 20 symbols to 340
0001: Decreased wait time by 20 symbols to 320
0001: Decreased wait time by 20 symbols to 300
0001: Decreased wait time by 20 symbols to 280
0001: Decreased wait time by 20 symbols to 260
0001: Decreased wait time by 20 symbols to 240
0001: Decreased wait time by 20 symbols to 220
0001: Decreased wait time by 20 symbols to 200
0001: Decreased wait time by 20 symbols to 180
0001: Decreased wait time by 20 symbols to 160
0001: Decreased wait time by 20 symbols to 140
0001: Decreased wait time by 20 symbols to 120
0001: Decreased wait time by 20 symbols to 100
0001: Decreased wait time by 20 symbols to 80
0001: Decreased wait time by 20 symbols to 60
0001: Decreased wait time by 20 symbols to 40
0001: Decreased wait time by 20 symbols to 20
0001: Decreased wait time by 20 symbols to 0
0001: Processing next frame from the queue
0001: Initializing transmission; backoff delay = 2 steps
0001: Backoff delay = 2 steps -> 1 steps
0001: Backoff delay = 1 steps -> 0 steps
0001: Carrier sensing: Medium is idle.
0001: Clear to transmit
0001: IFS offset = 0 samples
0001: Transmitting 1-1280 of 3074

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

0001: IFS offset = 0 samples
0001: Transmitting 1281-2560 of 3074
0001: IFS offset = 0 samples
0001: Transmitting 2561-3074 of 3074
0001: Finished transmission
0001: will wait for ack for 54 symbols additional to IFS = 0

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = MAC command
1234: *********** Received MAC Command type = Data request
1234: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: Moving frame for 0000000033333333 from pending queue to the transmission queue
1234: next IFS = 0
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 1410

0001: Decreasing ack wait durations by 20 symbols to 34

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-83

1234: IFS offset = 0 samples
1234: Transmitting 1281-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
0001: Decreasing ack wait durations by 20 symbols to 14

1234: Processing next frame from the queue
1234: Initializing transmission; backoff delay = 5 steps
1234: Backoff delay = 5 steps -> 4 steps

0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = Acknowledgment
0001: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6
0001: next IFS = 0

1234: Backoff delay = 4 steps -> 3 steps
1234: Backoff delay = 3 steps -> 2 steps
1234: Backoff delay = 2 steps -> 1 steps
1234: Backoff delay = 1 steps -> 0 steps
1234: Carrier sensing: Medium is idle.
1234: Clear to transmit
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 4226
1234: IFS offset = 0 samples
1234: Transmitting 1281-2560 of 4226

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

1234: IFS offset = 0 samples
1234: Transmitting 2561-3840 of 4226
1234: IFS offset = 0 samples
1234: Transmitting 3841-4226 of 4226
1234: Finished transmission
1234: will wait for ack for 54 symbols additional to IFS = 0
1234: Decreasing ack wait durations by 20 symbols to 34

0001: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
0001: *********** Received frame type = MAC command
0001: *********** Received MAC Command type = Association response
0001: Need to wait for LIFS (40) symbols. Offset = 6, next IFS = 26
0001: *********** Association successful, changing short address to = 8CEC
8CEC: *********** Association successful, associated to PAN = 7777
8CEC: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
8CEC: next IFS = 26

1234: Decreasing ack wait durations by 20 symbols to 14

8CEC: IFS offset = 384 samples
8CEC: Transmitting 1-896 of 1410

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: Decreasing ack wait durations by 20 symbols to -6

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-84

8CEC: IFS offset = 0 samples
8CEC: Transmitting 897-1410 of 1410
8CEC: Finished transmission
8CEC: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Acknowledgment
1234: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0
1234: next IFS = 0

8CEC: ********* (t=4.079360) Injecting data frame to the queue. From: 8CEC -> To: 1234
8CEC: Processing next frame from the queue
8CEC: Initializing transmission; backoff delay = 6 steps
8CEC: Backoff delay = 6 steps -> 5 steps
8CEC: Backoff delay = 5 steps -> 4 steps
8CEC: Backoff delay = 4 steps -> 3 steps
8CEC: Backoff delay = 3 steps -> 2 steps
8CEC: Backoff delay = 2 steps -> 1 steps
8CEC: Backoff delay = 1 steps -> 0 steps
8CEC: Carrier sensing: Medium is idle.
8CEC: Clear to transmit
8CEC: IFS offset = 0 samples
8CEC: Transmitting 1-1280 of 8578

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

8CEC: IFS offset = 0 samples
8CEC: Transmitting 1281-2560 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 2561-3840 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 3841-5120 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 5121-6400 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 6401-7680 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 7681-8578 of 8578
8CEC: Finished transmission
8CEC: will wait for ack for 54 symbols additional to IFS = 0

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Data
1234: Need to wait for SIFS (12) symbols. Offset = 14, next IFS = 6
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: next IFS = 6
1234: IFS offset = 384 samples
1234: Transmitting 1-896 of 1410

8CEC: Decreasing ack wait durations by 20 symbols to 34

1234: IFS offset = 0 samples
1234: Transmitting 897-1410 of 1410
1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-85

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
8CEC: Decreasing ack wait durations by 20 symbols to 14
8CEC: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
8CEC: *********** Received frame type = Acknowledgment
8CEC: Need to wait for LIFS (40) symbols. Offset = 8, next IFS = 28
8CEC: next IFS = 28
8CEC: Decreased wait time by 20 symbols to 8
8CEC: ********* (t=4.795200) Injecting data frame to the queue. From: 8CEC -> To: 1234
8CEC: Processing next frame from the queue
8CEC: Initializing transmission; backoff delay = 6 steps
8CEC: Backoff delay = 6 steps -> 5 steps
8CEC: Backoff delay = 5 steps -> 4 steps
8CEC: Backoff delay = 4 steps -> 3 steps
8CEC: Backoff delay = 3 steps -> 2 steps
8CEC: Backoff delay = 2 steps -> 1 steps
8CEC: Backoff delay = 1 steps -> 0 steps
8CEC: Carrier sensing: Medium is idle.
8CEC: Clear to transmit
8CEC: IFS offset = 512 samples
8CEC: Transmitting 1-768 of 8578

Found preamble of OQPSK PHY.

8CEC: IFS offset = 0 samples
8CEC: Transmitting 769-2048 of 8578

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

8CEC: IFS offset = 0 samples
8CEC: Transmitting 2049-3328 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 3329-4608 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 4609-5888 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 5889-7168 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 7169-8448 of 8578
8CEC: IFS offset = 0 samples
8CEC: Transmitting 8449-8578 of 8578
8CEC: Finished transmission
8CEC: will wait for ack for 54 symbols additional to IFS = 0

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Data
1234: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6
1234: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
1234: next IFS = 0
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 1410

8CEC: Decreasing ack wait durations by 20 symbols to 34

1234: IFS offset = 0 samples
1234: Transmitting 1281-1410 of 1410

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-86

1234: Finished transmission
1234: Need to wait for SIFS (12) symbols. Offset = 2, next IFS = -6

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
8CEC: Decreasing ack wait durations by 20 symbols to 14
8CEC: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
8CEC: *********** Received frame type = Acknowledgment
8CEC: Need to wait for LIFS (40) symbols. Offset = 2, next IFS = 22
8CEC: next IFS = 22
8CEC: Decreased wait time by 20 symbols to 2

1234: ********* (t=5.001280) Injecting data frame to the queue. From: 1234 -> To: 8CEC
1234: Processing next frame from the queue
1234: Initializing transmission; backoff delay = 1 steps
1234: Backoff delay = 1 steps -> 0 steps
1234: Carrier sensing: Medium is idle.
1234: Clear to transmit
1234: IFS offset = 0 samples
1234: Transmitting 1-1280 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 1281-2560 of 8578

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.

1234: IFS offset = 0 samples
1234: Transmitting 2561-3840 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 3841-5120 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 5121-6400 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 6401-7680 of 8578
1234: IFS offset = 0 samples
1234: Transmitting 7681-8578 of 8578
1234: Finished transmission
1234: will wait for ack for 54 symbols additional to IFS = 0
1234: Decreasing ack wait durations by 20 symbols to 34

8CEC: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
8CEC: *********** Received frame type = Data
8CEC: Need to wait for SIFS (12) symbols. Offset = 14, next IFS = 6
8CEC: ********** Directly transmitting acknowledgement frame (no CSMA/CA)
8CEC: next IFS = 6
8CEC: IFS offset = 384 samples
8CEC: Transmitting 1-896 of 1410

Found preamble of OQPSK PHY.
Found start-of-frame delimiter (SFD) of OQPSK PHY.
1234: Decreasing ack wait durations by 20 symbols to 14

8CEC: IFS offset = 0 samples
8CEC: Transmitting 897-1410 of 1410
8CEC: Finished transmission
8CEC: Need to wait for SIFS (12) symbols. Offset = 8, next IFS = 0

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-87

1234: PHY decoded IEEE 802.15.4 frame
CRC check passed for the MAC frame.
1234: *********** Received frame type = Acknowledgment
1234: Need to wait for LIFS (40) symbols. Offset = 8, next IFS = 28
1234: next IFS = 28
1234: Decreased wait time by 20 symbols to 8

Once the 1st end device has been associated, data frames are randomly injected into the link between
the end device and the PAN Coordinator.

Next, a third device joins the PAN and data frames are subsequently exchanged between the
coordinator and both end devices, in a star topology fashion (end devices must only transmit frames
to coordinators). In this case, the output is suppressed.

% Create second end-device
endDevice2 = lrwpan.MACReducedFunctionDevice(...
 'SamplesPerChip', 4, ...
 'ShortAddress', '0002', ...
 'ExtendedAddress', [repmat('0', 1, 8) repmat('4', 1, 8)], ...
 'Verbosity', false);
% Suppress detailed output
endDevice1.Verbosity = false;
panCoordinator.Verbosity = false;

% Initialize input
received3 = zeros(samplesPerChip * chipsPerSymbol * ...
 symbolsPerStep/2, 1);

stopTime = 10; % sec
while time < stopTime
 % Pass the received signals to the nodes for processing. Also,
 % fetch what they have to transmit
 transmitted1 = panCoordinator(received1);
 transmitted2 = endDevice1(received2);
 transmitted3 = endDevice2(received3);

 % Ideal wireless channel, where all nodes are within range:
 received1 = transmitted2 + transmitted3; % half-duplex radios
 % none receiving while
 % transmitting
 received2 = transmitted1 + transmitted3;
 received3 = transmitted1 + transmitted2;

 time = time + symbolsPerStep/symbolRate; % update clock
end

More nodes can be added to the network, as long as the channel relationship is established
accordingly (for example, the received signals as a function of the transmitted signals).

Further Exploration

The Communications Toolbox Library for ZigBee and UWB add-on contains the following generator
and decoding functions and configuration object:

• lrwpan.MACFullFunctionDevice
• lrwpan.MACReducedFunctionDevice

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-88

• lrwpan.MACDevice

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit lrwpan.MACFullFunctionDevice

at the MATLAB® command line to open lrwpan.MACFullFunctionDevice.

Selected Bibliography

1 - "IEEE Standard for Local and Metropolitan Area Networks – Part 15.4: Low-Rate Wireless
Personal Area Networks (LR-WPANs)," in IEEE Std 802.15.4-2011 (Revision of IEEE Std
802.15.4-2006) , vol., no., pp.1-314, 5 Sept. 2011, doi: 10.1109/IEEESTD.2011.6012487.

See Also

Related Examples
• “IEEE 802.15.4 - MAC Frame Generation and Decoding” on page 7-72

 IEEE 802.15.4 - Asynchronous CSMA MAC

7-89

ZigBee NET Frame Generation and Decoding

This example shows how to use the Communications Toolbox™ Library for ZigBee® and UWB to
generate and decode NET frames of the ZigBee specification [1] on page 7-92.

Background

The ZigBee standard specifies the network (NET or NWK) and application (APP or APL) layers for
low-rate wireless personal area networks. These NET- and APP-layer specifications build upon the
PHY and MAC specifications of IEEE® 802.15.4™ [2] on page 7-92. ZigBee devices find application
in home automation and sensor networking and are highly relevant to the Internet of Things (IoT)
trend.

Architecture

A zigbee.NETFrameConfig configuration object is used both in generating and decoding ZigBee
NET frames. Such objects describe a NET-layer frame and specify its frame type and all applicable
properties. The zigbee.NETFrameGenerator function accepts a zigbee.NETFrameConfig object
describing the frame, and optionally a NET-layer payload (APP-layer frame) in bytes (two-characters),
and outputs the NET frame in bytes. The zigbee.NETFrameDecoder function accepts a NET Protocol
Data Unit (NPDU) in bytes and outputs a zigbee.NETFrameConfig object describing the frame and
possibly a NET-layer frame in bytes. Clause 3.3 in [1] on page 7-92 describes the NET frame
formats.

Decoding NET Frames of Home Automation ZigBee Radios

This section decodes NET frames transmitted from a commercial ZigBee radio enabling home
automation, and captured using a USRP® B200-mini radio and the Communications Toolbox Support
Package for USRP® radio.

The zigbee.NETFrameDecoder function can decode NET-layer ZigBee data frames and the header
of net-command frame types.

load zigbeeNETCaptures % netFrame

[netConfig,netPayload] = zigbee.NETFrameDecoder(netFrame);
netConfig

netConfig =
 NETFrameConfig with properties:

 FrameType: 'Data'
 ProtocolVersion: 'ZigBee 2007'
 SequenceNumber: 212

 Addressing:
 SourceAddress: '0000'
 DestinationAddress: '35EA'
 IEEEAddressing: 'None'

 Security:
 Security: 1
 DataEncryption: 0
 MICLength: 0
 KeyIdentifier: 'Network'

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-90

 ExtendedNonce: 1
 FrameCounter: 193458
 SecuritySourceAddress: '24FD5B00000014B6'
 KeySequence: 0

 Routing:
 Radius: 30
 DiscoverRoute: 1
 SourceRouting: 1
 RelayIndex: 0
 RelayList: [0x4 char]

 Multicast:
 Multicast: 0

Note that NET-layer decoding indicates that the NET-layer payload is encrypted (Security = true).
Security can be used either in the network or the application layer; this frame uses network-layer
security. On the one hand, the DataEncryption field is false in the frame and the message integrity
code (MIC) length is zero, which indicate that security level #0 is used and that the payload is not
encrypted. However, according to the ZigBee standard (Clause 4.4.1.2 in [1] on page 7-92), these
two fields are overwritten with values locally stored during network setup. In this case, this frame
was secured with security level #5, which means that the NET-payload is encrypted and that the MIC
length is 32 bits.

Generating NET Frames

The zigbee.NETFrameGenerator function can generate unsecure NET-layer ZigBee data frames.
The configuration object can be further customized.

netConfig = zigbee.NETFrameConfig(...
 'SequenceNumber',123, ...
 'DestinationAddress','E568');
numOctets = 50;
payload = dec2hex(randi([0 2^8-1],numOctets, 1),2);
netFrame = zigbee.NETFrameGenerator(netConfig,payload);

Further Exploration

You can further explore the following generator and decoding functions, and the associated
configuration object:

• zigbee.NETFrameGenerator
• zigbee.NETFrameDecoder
• zigbee.NETFrameConfig

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit zigbee.NETFrameGenerator

 ZigBee NET Frame Generation and Decoding

7-91

at the MATLAB® command line to open zigbee.NETFrameGenerator.

Selected Bibliography

1 - ZigBee Alliance, ZigBee Specification Document 053474r17, 2007.

2 - IEEE 802.15.4-2011 - IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs).

See Also

Related Examples
• “IEEE 802.15.4 - MAC Frame Generation and Decoding” on page 7-72
• “ZigBee Home Automation Frame Generation and Decoding” on page 7-93

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-92

ZigBee Home Automation Frame Generation and Decoding

This example shows how to generate and decode application-layer frames for the Home Automation
application profile [1] of the ZigBee® specification [2] using the Communications Toolbox™ Library
for ZigBee and UWB.

Background

The ZigBee standard [2] specifies the network (NET or NWK) and application (APP or APL) layers
for low-rate wireless personal area networks. These NET- and APP-layer specifications build upon the
PHY and MAC specifications of IEEE® 802.15.4™ [3]. ZigBee devices find application in home
automation and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the application support sublayer
(APS), and (ii) the ZigBee cluster library (ZCL). The APS sublayer follows a format that is common for
all application profiles and ZigBee clusters (see Clause 2.2.5 in [2]). The ZCL header follows a
format that is common for all clusters (see Clause 2.4 in [4]). The ZCL payload is used only by some
clusters and it follows a cluster-specific format.

Clusters and Frame Captures

Out of all the clusters used in the Home Automation application profile, this example decodes and
generates frames for: (i) the On/Off cluster (used by light devices), and (ii) the intruder alarm system
(IAS) zone cluster (used by motion sensors) [4]. The On/Off cluster does not make use of a ZCL
payload, but the IAS zone cluster does.

Frames of these clusters have been captured from commercial ZigBee radios enabling home
automation, using a USRP® B200-mini radio and the Communications Toolbox Support Package for
USRP® radio. ZigBee can employ security either at the network or the application layer. The
captured frames employed security at the network layer and were later on decrypted. This example
decodes the application layer of the decrypted NET-layer payloads.

load zigbeeAPPCaptures

Decoding APS Frames of Home Automation ZigBee Radios

A zigbee.APSFrameConfig configuration object is used both in generating and decoding ZigBee
APS frames. Such objects describe a APS-layer frame and specify its frame type and all applicable
properties. The zigbee.APSFrameDecoder function accepts a APS protocol data unit (APDU) in
bytes and outputs a zigbee.APSFrameConfig object describing the frame and possibly a ZCL frame
in bytes. Clause 2.2.5.1 in [2] describes the APS frame formats.

Next, the APS sublayer of a captured IAS zone frame is decoded:

[apsConfig,apsPayload] = zigbee.APSFrameDecoder(motionDetectedFrame);
apsConfig

apsConfig =

 ZigBee Home Automation Frame Generation and Decoding

7-93

https://www.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/hardware-support/usrp.html

 APSFrameConfig with properties:

 FrameType: 'Data'
 APSCounter: 230
 AcknowledgmentRequest: 1

 Addressing:
 DeliveryMode: 'Unicast'
 DestinationEndpoint: '01'
 ClusterID: '0500'
 ProfileID: '0104'
 SourceEndpoint: '01'

 Extended header:
 ExtendedHeader: 0

 Security:
 Security: 0

Decoding ZCL Header of Home Automation ZigBee Radios

A zigbee.ZCLFrameConfig configuration object is used both in generating and decoding ZigBee
ZCL headers. Such objects describe a ZCL-layer frame and specify its frame type and all applicable
properties.

The zigbee.ZCLFrameDecoder function accepts a ZCL frame in bytes and outputs a
zigbee.ZCLFrameConfig object describing the header and possibly a ZCL payload in bytes. Clause
2.4.1 in [4] describes the ZCL header frame formats. Note that the ZCL header may either specify a
'Library-wide' or a 'Cluster-specific' command type. In the latter case, the
zigbee.ZCLFrameDecoder also needs the cluster ID, which is present in the APS header, in order to
decode the cluster-specific command ID into a command type. For example, the next command
decodes the ZCL header of a captured IAS zone frame.

[zclConfig,zclPayload] = zigbee.ZCLFrameDecoder(...
 apsPayload, ...
 apsConfig.ClusterID);
zclConfig

zclConfig =

 ZCLFrameConfig with properties:

 FrameType: 'Cluster-specific'
 CommandType: 'Zone Status Change Notification'
 SequenceNumber: 9
 ManufacturerCommand: 0
 Direction: 'Downlink'
 DisableDefaultResponse: 0

Decoding ZCL Payload of IAS Zone Frame from ZigBee Radio

In contrast to the On/Off cluster, the IAS zone cluster specifies a ZCL payload in addition to the ZCL
header. A zigbee.IASZoneFrameConfig configuration object is used both in generating and

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-94

decoding IAS zone ZCL payloads. Such objects describe an IAS zone payload and all applicable
properties. The zigbee.IASZoneFrameDecoder function accepts an IAS zone payload in bytes and
outputs a zigbee.IASZoneFrameConfig object describing the IAS zone payload.

iasZoneConfig = zigbee.IASZoneFrameDecoder(zclPayload)

iasZoneConfig =

 IASZoneFrameConfig with properties:

 CommandType: 'Zone Status Change Notification'
 ZoneID: 0
 Alarm1: 'Not alarmed'
 Alarm2: 'Alarmed'
 Tampered: 0
 LowBattery: 0
 PeriodicReports: 0
 RestoreReports: 1
 Trouble: 0
 ACFault: 0
 BatteryDefect: 0
 TestMode: 0
 Delay: 0

Decoding Motion-Triggered Lighting Automation of ZigBee Radios

A lighting automation has been established for the commercial home-automation ZigBee radios
whose frames have been captured and decoded. Specifically, once a motion sensor detects motion, it
sends a signal to the ZigBee hub, which in turn sends a signal to a light bulb so that it turns on. When
the motion sensor detects that the motion has stopped (e.g., after 10 seconds without motion) it sends
a signal to the ZigBee hub, which in turn wirelessly triggers the light bulb to turn off. The following
video illustrates the lighting automation.

helperPlaybackVideo('LightingAutomation.mp4',2/5);

The following code decodes the actual frames transmitted between the ZigBee radios. These were
captured with a USRP® device (also shown in the video).

apsFrames = ...
{motionDetectedFrame; turnOnFrame; motionStoppedFrame; turnOffFrame};

 ZigBee Home Automation Frame Generation and Decoding

7-95

for idx = 1:length(apsFrames)
 % APS decoding:
 [apsConfig,apsPayload] = zigbee.APSFrameDecoder(apsFrames{idx});
 % ZCL header decoding:
 [zclConfig,zclPayload] = zigbee.ZCLFrameDecoder(apsPayload, ...
 apsConfig.ClusterID);
 zclConfig

 % On-off cluster (does not have ZCL payload)
 onOffClusterID = '0006';
 if strcmp(apsConfig.ClusterID,onOffClusterID)
 fprintf(['Turn light bulb ' lower(zclConfig.CommandType) '.\n']);
 end

 % IAS zone cluster has ZCL payload:
 iasZoneClusterID = '0500';
 if ~isempty(zclPayload) && strcmp(apsConfig.ClusterID,iasZoneClusterID)
 iasConfig = zigbee.IASZoneFrameDecoder(zclPayload)

 if any(strcmp('Alarmed',{iasConfig.Alarm1,iasConfig.Alarm2}))
 fprintf('Motion detected.\n');
 else
 fprintf('Motion stopped.\n');
 end
 end
end

zclConfig =

 ZCLFrameConfig with properties:

 FrameType: 'Cluster-specific'
 CommandType: 'Zone Status Change Notification'
 SequenceNumber: 9
 ManufacturerCommand: 0
 Direction: 'Downlink'
 DisableDefaultResponse: 0

iasConfig =

 IASZoneFrameConfig with properties:

 CommandType: 'Zone Status Change Notification'
 ZoneID: 0
 Alarm1: 'Not alarmed'
 Alarm2: 'Alarmed'
 Tampered: 0
 LowBattery: 0
 PeriodicReports: 0
 RestoreReports: 1
 Trouble: 0
 ACFault: 0
 BatteryDefect: 0
 TestMode: 0
 Delay: 0

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-96

Motion detected.

zclConfig =

 ZCLFrameConfig with properties:

 FrameType: 'Cluster-specific'
 CommandType: 'On'
 SequenceNumber: 64
 ManufacturerCommand: 0
 Direction: 'Uplink'
 DisableDefaultResponse: 0

Turn light bulb on.

zclConfig =

 ZCLFrameConfig with properties:

 FrameType: 'Cluster-specific'
 CommandType: 'Zone Status Change Notification'
 SequenceNumber: 10
 ManufacturerCommand: 0
 Direction: 'Downlink'
 DisableDefaultResponse: 0

iasConfig =

 IASZoneFrameConfig with properties:

 CommandType: 'Zone Status Change Notification'
 ZoneID: 0
 Alarm1: 'Not alarmed'
 Alarm2: 'Not alarmed'
 Tampered: 0
 LowBattery: 0
 PeriodicReports: 0
 RestoreReports: 1
 Trouble: 0
 ACFault: 0
 BatteryDefect: 0
 TestMode: 0
 Delay: 0

Motion stopped.

zclConfig =

 ZCLFrameConfig with properties:

 FrameType: 'Cluster-specific'
 CommandType: 'Off'
 SequenceNumber: 70
 ManufacturerCommand: 0
 Direction: 'Uplink'
 DisableDefaultResponse: 0

 ZigBee Home Automation Frame Generation and Decoding

7-97

Turn light bulb off.

Generating IAS Zone ZCL Payloads

The zigbee.IASZoneFrameGenerator function accepts a zigbee.IASZoneFrameConfig object
describing the IAS zone payload and outputs the payload in bytes. The following code creates two
ZCL payloads for this cluster indicating that intrusion has or has not been detected.

iasConfigIntrusion = zigbee.IASZoneFrameConfig('Alarm2','Alarmed');
zclPayloadIntrusion = zigbee.IASZoneFrameGenerator(iasConfigIntrusion);

iasConfigNoIntrusion = zigbee.IASZoneFrameConfig('Alarm2','Not alarmed');
zclPayloadNoIntrusion = zigbee.IASZoneFrameGenerator(iasConfigNoIntrusion);

Generating ZCL Frames

The zigbee.ZCLFrameGenerator function accepts a zigbee.ZCLFrameConfig object describing
the frame, and optionally a ZCL payload in bytes (two-characters), and outputs the ZCL frame in
bytes. The following code generates ZCL frames for the On/Off cluster (no payload) and the IAS zone
cluster (payload needed).

% IAS Zone Cluster
zclConfigIntrusion = zigbee.ZCLFrameConfig(...
 'FrameType','Cluster-specific', ...
 'CommandType','Zone Status Change Notification', ...
 'SequenceNumber',1,'Direction','Downlink');
zclFrameIntrusion = zigbee.ZCLFrameGenerator(zclConfigIntrusion, ...
 zclPayloadIntrusion);

% On/Off Cluster
zclConfigOn = zigbee.ZCLFrameConfig(...
 'FrameType','Cluster-specific', ...
 'CommandType','On', ...
 'SequenceNumber',2,'Direction','Uplink');
zclFrameOn = zigbee.ZCLFrameGenerator(zclConfigOn);

Generating APS Frames

The zigbee.APSFrameGenerator function accepts a zigbee.APSFrameConfig object describing
the frame, and optionally a APS payload (ZCL-layer frame) in bytes (two-characters), and outputs the
APS frame in bytes. The following code illustrates how to generate APS frames for the ZCL frames
created in the previous section.

% IAS Zone Cluster
apsConfigIntrusion = zigbee.APSFrameConfig(...
 'FrameType','Data', ...
 'ClusterID',iasZoneClusterID, ...
 'ProfileID',zigbee.profileID('Home Automation'), ...
 'APSCounter',1, ...
 'AcknowledgmentRequest',true);
apsFrameIntrusion = zigbee.APSFrameGenerator(apsConfigIntrusion, ...
 zclFrameIntrusion);

% On/Off cluster
apsConfigOn = zigbee.APSFrameConfig('FrameType','Data', ...
 'ClusterID',onOffClusterID, ...
 'ProfileID',zigbee.profileID('Home Automation'), ...

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-98

 'APSCounter',2, ...
 'AcknowledgmentRequest',true);
apsFrameOn = zigbee.APSFrameGenerator(apsConfigOn,zclFrameOn);

Further Exploration

You can further explore the following generator and decoding functions, and the associated
configuration object:

• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder
• zigbee.IASZoneFrameConfig, zigbee.IASZoneFrameGenerator,

zigbee.IASZoneFrameDecoder

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

|edit zigbee.APSFrameConfig|

at the MATLAB® command line to open zigbee.APSFrameConfig.

Selected Bibliography

1 ZigBee Alliance, ZigBee Home Automation Public Application Profile, revision 29, v. 1.2, Jun.
2013.

2 ZigBee Alliance, ZigBee Specification Document 053474r17, 2007
3 IEEE 802.15.4-2011 - IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs)
4 ZigBee Alliance, ZigBee Cluster Library Specification, Revision 6, Jan. 2016.

See Also

Related Examples
• “ZigBee NET Frame Generation and Decoding” on page 7-90

 ZigBee Home Automation Frame Generation and Decoding

7-99

ZigBee Light Link Frame Generation and Decoding

This example shows how to generate and decode frames of the ZigBee® Light Link application profile
[1] using the Communications Toolbox™ Library for ZigBee and UWB.

Background

The ZigBee standard [2] specifies network (NET or NWK) and application (APP or APL) layers of
low-rate wireless personal area networks (LR-WPANs). These NET- and APP-layer specifications build
upon the PHY and MAC specifications of IEEE® 802.15.4™ [3]. ZigBee devices find application in
home automation and sensor networking and are highly relevant to the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL).

The APS and ZCL headers follow a format that is common for all application profiles and ZigBee
clusters (see Clauses 2.2.5 in [2] and 2.4 in [4], respectively). The ZCL payload is used only by
some clusters and it follows a cluster-specific format. The generic APS and ZCL header generation
and decoding is illustrated in the “ZigBee Home Automation Frame Generation and Decoding” on
page 7-93 example. This example illustrates the cluster-specific generation and decoding of ZigBee
light link ZCL payloads.

Clusters and Commands

Out of the 7 clusters specified in the light link application profile [1], this example generates and
decodes frames for the following clusters:

1 Identify cluster: This cluster sets a device into identification mode (such as flashing a light). This
example illustrates frame generation and decoding for the Identify command (described in
Clause 3.5 of [4]).

2 Color control cluster: This cluster changes the color of a lighting device. This example illustrates
frame generation and decoding for the Move to Color command (described in Clause 5.2 of [4]).

3 Level control cluster: This cluster modifies the level of a device (such as the intensity of a light
bulb, how closed a door is, or the intensity of a heater). This example illustrates frame generation
and decoding for the Move to Level command (described in Clause 3.10 of [4]).

4 Scenes cluster: The scenes cluster sets up and recalls scenes (i.e., sets of stored attribute values
for other clusters in the same device). This example illustrates frame generation and decoding
for the View Scene command (described in Clause 3.7 of [4]).

5 Group cluster: This cluster manages groups of devices, e.g., by creating or removing a group, or
by discovering group membership. This example illustrates frame generation and decoding for
the Add group command (described in Clause 3.6 of [4]).

In addition to the illustrated commands, this example provides an implementation for generating and
decoding frames for all commands of the five mentioned clusters (see Further Exploration for a
complete list).

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-100

Generating and Decoding ZCL Payload of Identify Cluster

A zigbee.IdentifyFrameConfig configuration object is used both in generating and decoding
ZCL payloads of the Identify cluster. Such objects describe an Identify cluster payload and all
applicable properties. The zigbee.IdentifyFrameGenerator function accepts a
zigbee.IdentifyFrameConfig object describing the Identify cluster payload and outputs the
generated payload in bytes. The following code creates a ZCL payload for a command asking a device
to identify for 4 seconds.

% Creation of configuration object for Identify cluster
identifyConfigTx = zigbee.IdentifyFrameConfig(...
 'CommandType','Identify', ...
 'IdentifyTime',4);

% Frame generation (ZCL payload) for Identify cluster
identifyPayload = zigbee.IdentifyFrameGenerator(identifyConfigTx);

The zigbee.IdentifyFrameDecoder function accepts the command name and a Identify cluster
payload in bytes and outputs a zigbee.IdentifyFrameConfig object describing the Identify
cluster payload. The command name is retrieved from the decoding of the ZCL header. See section
'Decoding ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame
Generation and Decoding” on page 7-93 example.

identifyConfigRx = zigbee.IdentifyFrameDecoder('Identify',identifyPayload)

identifyConfigRx =

 IdentifyFrameConfig with properties:

 CommandType: 'Identify'
 IdentifyTime: 4

The following code visualizes a "software bulb" that illustrates the identification effect specified in the
received frame.

bulb = plotBulb('white');
zigbeeIdentifyBulb(bulb, identifyConfigRx.IdentifyTime);
close(bulb);

Generating and Decoding ZCL Payload of Color Control Cluster

A zigbee.ColorControlFrameConfig configuration object is used both in generating and
decoding ZCL payloads of the color control cluster. Such objects describe a color control cluster
payload and all applicable properties. The zigbee.ColorControlFrameGenerator function
accepts a zigbee.ColorControlFrameConfig object describing the color control cluster payload
and outputs the generated payload in bytes. The following code generates a color control cluster
payload that instructs a lighting device to progressively change its current color (red) to a different
value (green) within 50 deciseconds (5 seconds). Color is described in terms of x, y values according
to the CIE 1931 color space established by the International Commission on Illumination (CIE) [5].

bulb = plotBulb('red');

 ZigBee Light Link Frame Generation and Decoding

7-101

% Creation of configuration object for color control cluster
colorCtrlConfigTx = zigbee.ColorControlFrameConfig(...
 'CommandType','Move to Color', ...
 'ColorX',16384, ...
 'ColorY',39322, ...
 'Time',50); % Units of deciseconds

% Frame generation (ZCL payload) for color control cluster
colorControlPayload = zigbee.ColorControlFrameGenerator(colorCtrlConfigTx);

The zigbee.ColorControlFrameDecoder function accepts the command name and a color control
cluster payload in bytes and outputs a zigbee.ColorControlFrameConfig object describing the
color control cluster payload. The command name is retrieved from the decoding of the ZCL header.
See section 'Decoding ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home
Automation Frame Generation and Decoding” on page 7-93 example.

colorCtrlConfigRx = zigbee.ColorControlFrameDecoder(...
 'Move to Color',colorControlPayload)

colorCtrlConfigRx =

 ColorControlFrameConfig with properties:

 CommandType: 'Move to Color'
 ColorX: 16384
 ColorY: 39322
 Time: 50

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-102

The following command uses a "software bulb" to visualize the Color Control effect specified in the
received frame. Specifically, the color of a bulb progressively changes from red to green within 5
seconds.

zigbeeMoveBulbColor(...
 bulb, ...
 colorCtrlConfigRx.ColorX, ...
 colorCtrlConfigRx.ColorY, ...
 colorCtrlConfigRx.Time);

Next, the same effect occurs on a different color trajectory (from green to violet).

colorCtrlConfigTx2 = zigbee.ColorControlFrameConfig(...
 'CommandType','Move to Color', ...
 'ColorX',19661, ...
 'ColorY',6554, ...
 'Time',50);
colorControlPayload2 = zigbee.ColorControlFrameGenerator(...
 colorCtrlConfigTx2);
colorCtrlConfigRx2 = zigbee.ColorControlFrameDecoder(...
 'Move to Color',colorControlPayload2);
zigbeeMoveBulbColor(...
 bulb, ...
 colorCtrlConfigRx2.ColorX, ...
 colorCtrlConfigRx2.ColorY, ...
 colorCtrlConfigRx2.Time);

pause(1.5);

 ZigBee Light Link Frame Generation and Decoding

7-103

Generating and Decoding ZCL Payload of Level Control Cluster

A zigbee.LevelControlFrameConfig configuration object is used both in generating and
decoding level control cluster ZCL payloads. Such objects describe a level control cluster payload and
all applicable properties. The zigbee.LevelControlFrameGenerator function accepts a
zigbee.LevelControlFrameConfig object describing the level control cluster payload and
outputs the generated payload in bytes. The following code creates a level control cluster payload
that instructs a device to change its current level to the specified value.

% Creation of level control cluster configuration object
levelCtrlConfigTx = zigbee.LevelControlFrameConfig(...
 'CommandType','Move to Level', ...
 'Level',20, ...
 'TransitionTime',1);

% Level control cluster frame generation (ZCL payload)
levelControlPayload = zigbee.LevelControlFrameGenerator(levelCtrlConfigTx);

The zigbee.LevelControlFrameDecoder function accepts the command name and a level control
cluster payload in bytes and outputs a zigbee.LevelControlFrameConfig object describing the
level control cluster payload. The command name is retrieved from the decoding of the ZCL header.
See section 'Decoding ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home
Automation Frame Generation and Decoding” on page 7-93 example.

levelCtrlConfigRx = zigbee.LevelControlFrameDecoder(...
 'Move to Level',levelControlPayload)

levelCtrlConfigRx =

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-104

 LevelControlFrameConfig with properties:

 CommandType: 'Move to Level'
 Level: 20
 TransitionTime: 1

While the level control cluster can be used to regulate the intensity of a light, the color control cluster
leaves it to the level control cluster to control the luminance of a lighting device's color. The following
example uses the received level control frame to increase the luminance level of a light bulb.

zigbeeMoveBulbColor(...
 bulb, ...
 colorCtrlConfigRx2.ColorX, ...
 colorCtrlConfigRx2.ColorY,1, ...
 levelCtrlConfigRx.Level);

Generating and Decoding ZCL Payload of Scenes Cluster

A zigbee.SceneFrameConfig configuration object is used both in generating and decoding Scenes
cluster ZCL payloads. Such objects describe a Scenes cluster payload and all applicable properties.
The zigbee.ScenesFrameGenerator function accepts a zigbee.ScenesFrameConfig object
describing the Scenes cluster payload and outputs the generated payload in bytes. The following code
generates a Scenes cluster payload that requests a device to transmit a different frame (View Scene
Response) describing a scene.

% Creation of Scenes cluster configuration object
scenesConfigTx = zigbee.ScenesFrameConfig('CommandType','View Scene', ...

 ZigBee Light Link Frame Generation and Decoding

7-105

 'GroupID','1234','SceneID','56');

% Scenes cluster frame generation (ZCL payload)
scenesPayload = zigbee.ScenesFrameGenerator(scenesConfigTx);

The zigbee.SceneFrameDecoder function accepts the command name and a Scenes cluster
payload in bytes and outputs a zigbee.SceneFrameConfig object describing the Scenes cluster
payload. The command name is retrieved from the decoding of the ZCL header. See section 'Decoding
ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation
and Decoding” on page 7-93 example.

scenesConfigRx = zigbee.ScenesFrameDecoder('View Scene',scenesPayload)

scenesConfigRx =

 ScenesFrameConfig with properties:

 CommandType: 'View Scene'
 GroupID: '1234'
 SceneID: '56'

Generating and Decoding ZCL Payload of Groups Cluster

A zigbee.GroupFrameConfig configuration object is used both in generating and decoding Groups
cluster ZCL payloads. Such objects describe a Groups cluster payload and all applicable properties.
The zigbee.GroupsFrameGenerator function accepts a zigbee.GroupsFrameConfig object
describing the Groups cluster payload and outputs the generated payload in bytes. The following
code creates a Groups cluster payload that instructs a device to add the specified group to its Group
table.

% Creation of Groups cluster configuration object
groupsConfigTx = zigbee.GroupsFrameConfig('CommandType','Add group', ...
 'GroupName','Dining Hall','GroupID','1234');

% Groups cluster frame generation (ZCL payload)
groupsPayload = zigbee.GroupsFrameGenerator(groupsConfigTx);

The zigbee.GroupFrameDecoder function accepts the command name and a Groups cluster
payload in bytes and outputs a zigbee.GroupFrameConfig object describing the Groups cluster
payload. The command name is retrieved from the decoding of the ZCL header. See section 'Decoding
ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation
and Decoding” on page 7-93 example.

groupsConfigRx = zigbee.GroupsFrameDecoder('Add group',groupsPayload)

groupsConfigRx =

 GroupsFrameConfig with properties:

 CommandType: 'Add group'
 GroupID: '1234'
 GroupName: 'Dining Hall'

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-106

Wireshark Decoding

The generated frames can be converted to a PCAP format, which can be analyzed and visualized with
Wireshark [6]. This process can serve as an additional verification step advocating that the
Communications Toolbox Library for ZigBee and UWB generates and decodes frames in a standard-
compliant manner.

The PCAP file needs the ZCL payloads to be enclosed with headers from all other layers and
sublayers (MAC, NET, APS, ZCL). The following commands generate a PCAP file, for the ZCL payloads
generated in this example, that can be loaded with Wireshark.

% ZLL profile ID
zllProfileID = zigbee.profileID('Light Link');

payloadsWithInfo(1) = struct(...
 'Payload',identifyPayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',zigbee.clusterID('Identify'), ...
 'CommandType','Identify', ...
 'Direction','Uplink');
payloadsWithInfo(2) = struct(...
 'Payload',colorControlPayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',zigbee.clusterID('Color Control'), ...
 'CommandType','Move to Color', ...
 'Direction','Uplink');
payloadsWithInfo(3) = struct(...
 'Payload',levelControlPayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',zigbee.clusterID('Level Control'), ...
 'CommandType','Move to Level', ...
 'Direction','Uplink');
payloadsWithInfo(4) = struct(...
 'Payload',scenesPayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',zigbee.clusterID('Scenes'), ...
 'CommandType','View Scene', ...
 'Direction','Uplink');
payloadsWithInfo(5) = struct(...
 'Payload',groupsPayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',zigbee.clusterID('Groups'), ...
 'CommandType','Add group', ...
 'Direction','Uplink');

% Add headers from other layers/sublayers:
MPDUs = zigbeeAddProtocolHeaders(payloadsWithInfo);

% Export MPDUs to a PCAP format
zigbeeExportToPcap(MPDUs,'zigbeeLightLink.pcap');

% Open PCAP file with Wireshark

 ZigBee Light Link Frame Generation and Decoding

7-107

Further Exploration

You can further explore the following generator and decoding functions, and associated configuration
object:

• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder>
• zigbee.IdentifyFrameConfig, zigbee.IdentifyFrameGenerator,

zigbee.IdentifyFrameDecoder
• zigbee.ColorControlFrameConfig, zigbee.ColorControlFrameGenerator,

zigbee.ColorControlFrameDecoder
• zigbee.LevelControlFrameConfig, zigbee.LevelControlFrameGenerator,

zigbee.LevelControlFrameDecoder
• zigbee.ScenesFrameConfig, zigbee.ScenesFrameGenerator,

zigbee.ScenesFrameDecoder
• zigbee.GroupsFrameConfig, zigbee.GroupsFrameGenerator,

zigbee.GroupsFrameDecoder

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit zigbee.APSFrameConfig

at the MATLAB® command line to open zigbee.APSFrameConfig.

In addition to the commands illustrated in this example, the offered implementation also supports the
commands listed in the following table. The commands listed in the middle column can be exported to
a PCAP file that can be analyzed with Wireshark.

Selected Bibliography

1 ZigBee Alliance, ZigBee Light Link Standard, v. 1.0, April 5th, 2012.
2 ZigBee Alliance, ZigBee Specification Document 053474r17, 2007

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-108

3 IEEE 802.15.4-2011 - IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs)

4 ZigBee Alliance, ZigBee Cluster Library Specification, Revision 6, Jan. 2016.
5 CIE 1931 Color Space. Commission Internationale de l'Eclairage Proceedings. Cambridge

University Press, Cambridge
6 Wireshark software: https://www.wireshark.org/

See Also

Related Examples
• “ZigBee NET Frame Generation and Decoding” on page 7-90

 ZigBee Light Link Frame Generation and Decoding

7-109

https://www.wireshark.org/

ZigBee Frame Generation and Decoding for General Commands

This example shows how to generate and decode General Command frames of the ZigBee®
specification [1] on page 7-115 using the Communications Toolbox™ Library for ZigBee and UWB.

Background

The ZigBee standard [1] on page 7-115 specifies network (NET or NWK) and application (APP)
layers of low-rate wireless personal area networks. These NET- and APP-layer specifications build
upon the PHY and MAC specifications of IEEE® 802.15.4™ [2] on page 7-115. ZigBee devices find
application in home automation and sensor networking and are highly relevant to the Internet of
Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL).

The APS and ZCL headers follow a format that is common for all application profiles and ZigBee
clusters/commands (see Clauses 2.2.5 in [1] on page 7-115 and 2.4 in [3] on page 7-115,
respectively). The APS header declares the cluster of the frame and the ZCL header declares the
command of the frame. The ZCL payload is present only for some clusters/commands and follows a
command-specific format.

Some commands only apply for a specific cluster, while some other (general) commands can be used
for all clusters. General command frames are used for manipulating attributes and other general
tasks that are not specific to an individual cluster (see Clause 2.5 in [3] on page 7-115). This
example illustrates how to generate and decode ZCL payloads for such general, library-wide ZigBee
commands. The generic APS and ZCL header generation and decoding is illustrated in the “ZigBee
Home Automation Frame Generation and Decoding” on page 7-93 example.

Commands

This examples illustrates frame generation and decoding for the following general commands:

• Read Attributes: This command inquires an attribute value at a different device.
• Read Attributes Response: This command responds with an attribute value.
• Write Attributes: This command modifies an attribute value at a different device.
• Write Attributes Response: This command responds with the result of a Write Attributes

command.

In addition, this example provides an implementation for the following commands (which are not
illustrated):

• Write Attributes Undivided: This command is the same with "Write Attributes" with the only
exception that an attribute is updated only if all other specified attributes can also be updated.

• Write Attributes No Response: This command is the same with "Write Attributes" with the only
exception that a response frame is not required.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-110

• Report Attributes: This command reports all attributes and their values.
• Default Response: This command generates response frames of generic format.

A zigbee.GeneralFrameConfig configuration object is used both in generating and decoding ZCL
payloads of General Commands. Such objects describe a General Commands payload and all
applicable properties.

Generating ZCL Payloads of General Commands

The zigbee.GeneralFrameGenerator function accepts a zigbee.GeneralFrameConfig object
describing the payload of the general command and generates the payload in bytes. The following
code creates the payload of the Read/Write Attribute commands and their responses.

% Read attributes command
readConfigTx = zigbee.GeneralFrameConfig(...
 'CommandType','Read Attributes','AttributeID','0000')

readConfigTx =
 GeneralFrameConfig with properties:

 CommandType: 'Read Attributes'
 AttributeID: '0000'

readPayload = zigbee.GeneralFrameGenerator(readConfigTx);

% Read attributes response command
readResponseConfigTx = zigbee.GeneralFrameConfig(...
 'CommandType','Read Attributes Response', ...
 'AttributeID','0000', ...
 'Status','Success', ...
 'AttributeType','boolean', ...
 'AttributeValue',false)

readResponseConfigTx =
 GeneralFrameConfig with properties:

 CommandType: 'Read Attributes Response'
 AttributeID: '0000'
 Status: 'Success'
 AttributeType: 'Boolean'
 AttributeValue: 0

readResponsePayload = zigbee.GeneralFrameGenerator(readResponseConfigTx);

% Write attributes command
writeConfigTx = zigbee.GeneralFrameConfig(...
 'CommandType','Write Attributes', ...
 'AttributeID','0000', ...
 'AttributeType','boolean', ...
 'AttributeValue',true)

writeConfigTx =
 GeneralFrameConfig with properties:

 CommandType: 'Write Attributes'
 AttributeID: '0000'

 ZigBee Frame Generation and Decoding for General Commands

7-111

 AttributeType: 'Boolean'
 AttributeValue: 1

writePayload = zigbee.GeneralFrameGenerator(writeConfigTx);

% % Write attributes response command:
writeResponseConfigTx = zigbee.GeneralFrameConfig(...
 'CommandType','Write Attributes Response', ...
 'Status','Success')

writeResponseConfigTx =
 GeneralFrameConfig with properties:

 CommandType: 'Write Attributes Response'
 Status: 'Success'

writeResponsePayload = zigbee.GeneralFrameGenerator(writeResponseConfigTx);

Decoding ZCL Payloads of General Commands Captured from ZigBee Radios

This section decodes ZCL payloads of general commands captured from commercial Home-
Automation ZigBee radios> with a USRP® B200-mini radio and the Communications Toolbox Support
Package for USRP® radio. For more information, see section 'Clusters and Frame Captures' in the
“ZigBee Home Automation Frame Generation and Decoding” on page 7-93 example.

load zigbeeGeneralCommandCaptures % Load captured payloads

The zigbee.GeneralFrameDecoder function accepts a general command name and its payload in bytes
and outputs a zigbee.GeneralFrameConfig object describing the payload of the general command.
The command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL
Header of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-93 example.

% Read attributes
readConfigRx = zigbee.GeneralFrameDecoder(...
 'Read Attributes',capturedReadPayload)

readConfigRx =
 GeneralFrameConfig with properties:

 CommandType: 'Read Attributes'
 AttributeID: '0000'

% Read attributes response
readResponseRx = zigbee.GeneralFrameDecoder(...
 'Read Attributes Response',capturedReadResponsePayload)

readResponseRx =
 GeneralFrameConfig with properties:

 CommandType: 'Read Attributes Response'
 AttributeID: '0000'
 Status: 'Success'
 AttributeType: 'Boolean'

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-112

https://www.mathworks.com/hardware-support/usrp.html
https://www.mathworks.com/hardware-support/usrp.html

 AttributeValue: 1

% Default response
defaultResponseRx = zigbee.GeneralFrameDecoder(...
 'Default Response',capturedDefaultResponsePayload)

defaultResponseRx =
 GeneralFrameConfig with properties:

 CommandType: 'Default Response'
 Status: 'Success'
 CommandToRespond: '01'

Decoding Generated ZCL Payloads of General Commands

This section illustrates the decoding of the remaining generated general commands (such as 'Write
Attributes' and 'Write Attributes Response').

% Write attributes
writeConfigRx = zigbee.GeneralFrameDecoder(...
 'Write Attributes',writePayload)

writeConfigRx =
 GeneralFrameConfig with properties:

 CommandType: 'Write Attributes'
 AttributeID: '0000'
 AttributeType: 'Boolean'
 AttributeValue: 1

% Write attributes response
writeResponseRx = zigbee.GeneralFrameDecoder(...
 'Write Attributes Response',writeResponsePayload)

writeResponseRx =
 GeneralFrameConfig with properties:

 CommandType: 'Write Attributes Response'
 Status: 'Success'

Wireshark Decoding

The generated frames can be converted to a PCAP format, which can be analyzed and visualized with
Wireshark [4] on page 7-115. This process can serve as an additional verification step advocating
that the Communications Toolbox Library for ZigBee and UWB generates and decodes frames in a
standard-compliant manner.

The PCAP file needs the ZCL payloads to be enclosed with headers from all other layers and
sublayers (MAC, NET, APS, ZCL). The following commands generate a PCAP file, for the ZCL payloads
generated in this example, that can be loaded with Wireshark.

% Profile ID
profileID = zigbee.profileID('Home Automation');

 ZigBee Frame Generation and Decoding for General Commands

7-113

onOffID = zigbee.clusterID('On/Off');

payloadsWithInfo(1) = struct(...
 'Payload',readPayload, ...
 'ProfileID',profileID, ...
 'ClusterSpecific',false, ...
 'ClusterID',onOffID, ...
 'CommandType','Read Attributes', ...
 'Direction','Downlink');
payloadsWithInfo(2) = struct(...
 'Payload',readResponsePayload, ...
 'ProfileID',profileID, ...
 'ClusterSpecific',false, ...
 'ClusterID',onOffID, ...
 'CommandType','Read Attributes Response', ...
 'Direction','Uplink');
payloadsWithInfo(3) = struct(...
 'Payload',writePayload, ...
 'ProfileID',profileID, ...
 'ClusterSpecific',false, ...
 'ClusterID',onOffID, ...
 'CommandType','Write Attributes', ...
 'Direction','Downlink');
payloadsWithInfo(4) = struct(...
 'Payload',writeResponsePayload, ...
 'ProfileID',profileID, ...
 'ClusterSpecific',false, ...
 'ClusterID',onOffID, ...
 'CommandType','Write Attributes Response', ...
 'Direction','Uplink');

% Add headers from other layers/sublayers
MPDUs = zigbeeAddProtocolHeaders(payloadsWithInfo);

% Export MPDUs to a PCAP format
zigbeeExportToPcap(MPDUs,'zigbeeGeneralCommands.pcap');

% Open PCAP file with Wireshark

Further Exploration

You can further explore the following generator and decoding functions, and the associated
configuration object:

• zigbee.GeneralFrameConfig, zigbee.GeneralFrameGenerator,
zigbee.GeneralFrameDecoder

• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder
• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit zigbee.GeneralFrameConfig

at the MATLAB® command line to open zigbee.GeneralFrameConfig.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-114

Selected Bibliography

1 - ZigBee Alliance, ZigBee Specification Document 053474r17, 2007.

2 - IEEE 802.15.4-2011 - IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs).

3 - ZigBee Alliance, ZigBee Cluster Library Specification, Revision 6, Jan. 2016.

4 - Wireshark software: https://www.wireshark.org/

See Also

Related Examples
• “ZigBee NET Frame Generation and Decoding” on page 7-90

 ZigBee Frame Generation and Decoding for General Commands

7-115

https://www.wireshark.org/

ZigBee Smart Energy Frame Generation and Decoding

This example shows how to generate and decode ZigBee® Smart Energy frames using the
Communications Toolbox™ Library for ZigBee and UWB.

Background

The ZigBee standard [2] on page 7-121 specifies network (NET or NWK) and application (APP or
APL) layers of low-rate wireless personal area networks (LR-WPANs). These NET- and APP-layer
specifications build upon the PHY and MAC specifications of IEEE® 802.15.4™ [3] on page 7-121.
ZigBee devices find application in home automation and sensor networking and are highly relevant to
the Internet of Things (IoT) trend.

The ZigBee application layer consists of multiple sub-layers: (i) the Application Support Sublayer
(APS), and (ii) the ZigBee Cluster Library (ZCL).

The APS and ZCL headers follow a format that is common for all application profiles and ZigBee
clusters (see Clauses 2.2.5 in [2] on page 7-121 and 2.4 in [4] on page 7-121, respectively). The
ZCL payload is used only by some clusters and it follows a cluster-specific format. The generic APS
and ZCL header generation and decoding is illustrated in the “ZigBee Home Automation Frame
Generation and Decoding” on page 7-93 example. This example illustrates the cluster-specific
generation and decoding of ZigBee smart energy ZCL payloads.

Clusters and Commands

Out of the 7 clusters used in the Smart Energy application profile, this example generates and
decodes frames for the following clusters:

1 Demand response and load control (DRLC) cluster: This cluster advertises changes to energy
demand and consumption. This example illustrates frame generation and decoding for the Load
Control Event command (described in Clause 10.3.2.3.1 of [4] on page 7-121).

2 Price cluster: This cluster communicates Energy, Gas or Water pricing information. This example
illustrates frame generation and decoding for the Get Current Price and Publish Price commands
(described in Clause 10.2.2.3.1 of [4] on page 7-121).

3 Messaging cluster: This cluster exchanges text messages between ZigBee devices. This example
illustrates frame generation and decoding for the Display Message command (described in
Clause 10.5.2.3.1 of [4] on page 7-121).

In addition to the illustrated commands, the implementation offered in this example also generates
and decodes frames of the following commands:

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-116

Generating and Decoding ZCL Payload of DRLC Cluster

A zigbee.DRLCFrameConfig configuration object is used both in generating and decoding ZCL
payloads for the demand response and load control (DRLC) cluster. Such objects describe a DRLC
cluster payload and all applicable properties. The zigbee.DRLCFrameGenerator function accepts a
zigbee.DRLCFrameConfig object describing the DRLC cluster payload and outputs the payload in
bytes. The following code creates a ZCL payload for a command that sets the set point of heating
devices to 23.5 C.

% Creation of DRLC cluster configuration object
drlcConfigTx = zigbee.DRLCFrameConfig(...
 'CommandType','Load Control Event', ...
 'EventID','00000001', ...
 'DeviceClass','Strip Heaters/Baseboard Heaters', ...
 'HeatingSetPoint',23.5);

% DRLC cluster frame generation (ZCL payload)
drlcPayload = zigbee.DRLCFrameGenerator(drlcConfigTx);

The zigbee.DRLCFrameDecoder function accepts the command name and a DRLC cluster payload
in bytes and outputs a zigbee.DRLCFrameConfig object describing the DRLC cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-93 example.

drlcConfigRx = zigbee.DRLCFrameDecoder(...
 'Load Control Event',drlcPayload)

drlcConfigRx =
 DRLCFrameConfig with properties:

 CommandType: 'Load Control Event'
 EventID: '00000001'
 DeviceClass: 'Strip Heaters/Baseboard Heaters'
 DeviceGroup: '00'
 Time: 0
 Duration: 0
 CriticalityLevel: 'Green'
 HeatingSetPoint: 23.5000
 RandomStart: 1
 RandomEnd: 1

Generating and Decoding ZCL Payload of Price Cluster

A zigbee.PriceFrameConfig configuration object is used both in generating and decoding ZCL
payloads for the Price cluster. Such objects describe a Price cluster payload and all applicable

 ZigBee Smart Energy Frame Generation and Decoding

7-117

properties. The zigbee.PriceFrameGenerator function accepts a zigbee.PriceFrameConfig
object describing the Price cluster payload and outputs the payload in bytes. The following code
creates a ZCL payload for a command that requests the current price of a commodity.

% Creation of Price cluster configuration object
priceConfigTx = zigbee.PriceFrameConfig(...
 'CommandType','Get Current Price');

% Price cluster frame generation (ZCL payload)
pricePayload = zigbee.PriceFrameGenerator(priceConfigTx);

The zigbee.PriceFrameDecoder function accepts the command name and a Price cluster payload
in bytes and outputs a zigbee.PriceFrameConfig object describing the Price cluster payload. The
command name is retrieved from the decoding of the ZCL header. See section 'Decoding ZCL Header
of Home Automation ZigBee Radios' in the “ZigBee Home Automation Frame Generation and
Decoding” on page 7-93 example.

priceConfigRx = zigbee.PriceFrameDecoder(...
 'Get Current Price',pricePayload)

priceConfigRx =
 PriceFrameConfig with properties:

 CommandType: 'Get Current Price'
 IdleReceiving: 0

Upon receiving a Get Current Price command, a server replies with a Publish Price command.

priceConfigTx = zigbee.PriceFrameConfig(...
 'CommandType','Publish Price', ...
 'Price',0.4899, ...
 'Duration',14400);
pricePayload = zigbee.PriceFrameGenerator(priceConfigTx);

The client device can then decode the published price:

priceConfigRx = zigbee.PriceFrameDecoder(...
 'Publish Price',pricePayload)

priceConfigRx =
 PriceFrameConfig with properties:

 CommandType: 'Publish Price'
 ProviderID: 0
 RateLabel: ''
 EventID: 0
 GenerationTime: 0
 Unit: 'kW'
 UnitFormat: 'Binary'
 Currency: 840
 PriceTier: 1
 RegisterTier: 1
 NumPriceTiers: 0
 StartTime: 0
 Duration: 14400
 Price: 0.4899

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-118

Generating and Decoding ZCL Payload of Messaging Cluster

A zigbee.MessagingFrameConfig configuration object is used both in generating and decoding
ZCL payloads for the Messaging cluster. Such objects describe a Messaging cluster payload and all
applicable properties. The zigbee.MessagingFrameGenerator function accepts a
zigbee.MessagingFrameConfig object describing the Messaging cluster payload and outputs the
payload in bytes. The following code creates a ZCL payload for a command that displays a message.

% Creation of messaging cluster configuration object
messageID = 1234;
messagingConfigTx = zigbee.MessagingFrameConfig(...
 'CommandType','Display Message', ...
 'MessageID',messageID, ...
 'Message','This is a custom message', ...
 'Duration',90);

% Messaging cluster frame generation (ZCL payload)
displayMessagePayload = zigbee.MessagingFrameGenerator(messagingConfigTx);

The zigbee.MessagingFrameDecoder function accepts the command name and a Messaging
cluster payload in bytes and outputs a zigbee.MessagingFrameConfig object describing the
Messaging cluster payload. The command name is retrieved from the decoding of the ZCL header.
See section 'Decoding ZCL Header of Home Automation ZigBee Radios' in the “ZigBee Home
Automation Frame Generation and Decoding” on page 7-93 example.

messagingConfigRx = zigbee.MessagingFrameDecoder(...
 'Display Message',displayMessagePayload)

messagingConfigRx =
 MessagingFrameConfig with properties:

 CommandType: 'Display Message'
 MessageID: 1234
 TransmissionType: 'Normal Transmission Only'
 Priority: 'Low'
 MessageConfirmation: 0
 Duration: 90
 Message: 'This is a custom message'

A server that displays a message also has the ability to cancel the message using the Cancel Message
command:

cancelMsgConfig = zigbee.MessagingFrameConfig(...
 'CommandType','Cancel Message', ...
 'MessageID',messageID);
cancelMessagePayload = zigbee.MessagingFrameGenerator(...
 messagingConfigTx);

Clients can then decode the Cancel Message command:

messagingConfigRx = zigbee.MessagingFrameDecoder(...
 'Cancel Message',cancelMessagePayload)

messagingConfigRx =
 MessagingFrameConfig with properties:

 CommandType: 'Cancel Message'

 ZigBee Smart Energy Frame Generation and Decoding

7-119

 MessageID: 1234
 TransmissionType: 'Normal Transmission Only'
 Priority: 'Low'
 MessageConfirmation: 0

Wireshark Decoding

The generated Messaging frames can be converted to a PCAP-formatted file, and then analyzed and
visualized with Wireshark [5] on page 7-121 to verify of compliance with the ZigBee standards.

The PCAP file needs the ZCL payloads to be enclosed with headers from all other layers and
sublayers (MAC, NET, APS, ZCL). This task is performed by the following commands.

zllProfileID = zigbee.profileID('Smart Energy'); % ZLL profile ID
msgClusterID = zigbee.clusterID('Messaging'); % Messaging cluster ID

payloadsWithInfo(1) = struct(...
 'Payload',displayMessagePayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',msgClusterID, ...
 'CommandType','Display Message', ...
 'Direction','Downlink');
payloadsWithInfo(2) = struct(...
 'Payload',cancelMessagePayload, ...
 'ProfileID',zllProfileID, ...
 'ClusterSpecific',true, ...
 'ClusterID',msgClusterID, ...
 'CommandType','Cancel Message', ...
 'Direction','Downlink');

% Add headers from other layers/sublayers:
MPDUs = zigbeeAddProtocolHeaders(payloadsWithInfo);

% Export MPDUs to a PCAP format
zigbeeExportToPcap(MPDUs,'zigbeeSmartEnergy.pcap');

% Open PCAP file with Wireshark

Further Exploration

You can further explore the following generator and decoding functions, as well as the configuration
object:

• zigbee.DRLCFrameConfig, zigbee.DRLCFrameGenerator, zigbee.DRLCFrameDecoder
• zigbee.PriceFrameConfig, zigbee.PriceFrameGenerator, zigbee.PriceFrameDecoder
• zigbee.MessagingFrameConfig, zigbee.MessagingFrameGenerator,

zigbee.MessagingFrameDecoder
• zigbee.APSFrameConfig, zigbee.APSFrameGenerator, zigbee.APSFrameDecoder
• zigbee.ZCLFrameConfig, zigbee.ZCLFrameGenerator, zigbee.ZCLFrameDecoder

These utilities are undocumented and their API or functionality may change in the future. To view the
source code for any of these utilities, use the edit function. For example, enter:

edit zigbee.DRLCFrameConfig

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-120

at the MATLAB® command line to open zigbee.DRLCFrameConfig.

Selected Bibliography

1- ZigBee Alliance, ZigBee Smart Energy Standard, Revision 19, Version 1.2a, December 3, 2014.

2 - ZigBee Alliance, ZigBee Specification Document 053474r17, 2007.

3 - IEEE 802.15.4-2011 - IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs).

4 - ZigBee Alliance, ZigBee Cluster Library Specification, Revision 6, Jan. 2016.

5 - Wireshark software: https://www.wireshark.org/

See Also

Related Examples
• “ZigBee NET Frame Generation and Decoding” on page 7-90

 ZigBee Smart Energy Frame Generation and Decoding

7-121

https://www.wireshark.org/

Measure EVM for 802.15.4 (ZigBee) System

This example shows how to measure the error vector magnitude (EVM) of a simulated IEEE®
802.15.4 [1 on page 7-124] transmitter by using a comm.EVM System object™. The EVM
measurement quantifies the modulation accuracy of a transmitter by measuring the difference
between an error-free modulated reference waveform and an impaired waveform. IEEE 802.15.4
specifies the protocols to use for ZigBee® wireless personal area networks. Section 6.7.3.1 of IEEE®
802.15.4 [1 on page 7-124] specifies: "... An IEEE 802.15.4 transmitter shall have EVM values of less
than 35% when measured for 1000 chips. The error-vector measurement shall be made on baseband I
and Q chips after recovery through a reference receiver system. The reference receiver shall perform
carrier lock, symbol timing recovery, and amplitude adjustment while making the measurements. ...".
Here, the receiver processing does not require carrier lock, symbol timing recovery, and amplitude
adjustment because the only impairment applied in the simulation is additive white Gaussian noise
(AWGN).

Define System Parameters

Define system parameters for an 802.15.4 system for the 868 MHz band, direct sequence spread
spectrum (DSSS) with binary phase-shift keying (BPSK) for chip modulation, and differential encoding
for data symbol encoding.

The BPSK bit-to-chip mapping spreads each input bit with a 14 chip sequence. Input bits with value 0
are represented by the chipValues parameter and input bits with value 1 are represented by (1-
chipValues). Use an oversampling rate of four for the transmitted signal and a filter span of eight
symbols. To simulate transmitter and test hardware imperfections, use an SNR of 60 dB.

dataRate = 20e3; % Bit rate in Hz
M = 2; % Modulation order (BPSK)
chipValues = ... % Chip values for 0-valued input bits
[1;1;1;1;0;1;0;1;1;0;0;1;0;0;0];

numSymbols = 1000; % Number of symbols required to measure EVM
numFrames = 100; % Number of frames
nSamps = 4; % Oversample rate
filtSpan = 8; % Filter span in symbols
SNR = 60; % Simulated signal-to-noise ratio in dB

Calculate the spreading gain, chip rate, final sampling rate, and the number of bits required to obtain
one EVM measurement value. Include one extra bit in the simulation of the transmitted symbols to
account for filter delays.

gain = length(chipValues); % Spreading gain (chips per symbol)
chipRate = gain*dataRate; % Chip rate
sampleRate = nSamps*chipRate; % Final sampling rate
numBits = ... % Bits for one EVM measurement
 ceil((numSymbols)/gain)+1;

Initialization

Obtain BPSK modulated symbols by using a simple mapping of 0 to +1 and 1 to -1. To allow use of
matrix math and to write efficient MATLAB® code, map the chip values so that modulation can be
applied before bit-to-chip conversion. To apply the pulse shape filtering specified for ZigBee, define a
pair of square-root-raised-cosine filters with a roll-off factor of 1.

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-122

chipValues = 1 - 2*chipValues; % Map chip values
rctFilt = comm.RaisedCosineTransmitFilter(...
 RolloffFactor=1, ...
 OutputSamplesPerSymbol=nSamps, ...
 FilterSpanInSymbols=filtSpan);
rcrFilt = comm.RaisedCosineReceiveFilter(...
 RolloffFactor=1, ...
 InputSamplesPerSymbol=nSamps, ...
 FilterSpanInSymbols=filtSpan, ...
 DecimationFactor=nSamps);

Configure EVM Measurements

As defined in section 6.7.3 of IEEE® 802.15.4, the EVM calculation method normalizes the average
error of the measured I and Q samples by the power of a symbol. Since the power of both
constellation symbols is the same for a BPSK system, configure the EVM measurement object to use
peak constellation power normalization. For more information on EVM calculation methods and
normalization options, see the comm.EVM System object reference page.

evm = comm.EVM(Normalization='Peak constellation power');

Simulate Transmission and Reception

Generate random data bits, differentially encode these bits by using a comm.DifferentialEncoder
System object, and apply BPSK modulation. Spread the modulated symbols by using a matrix
multiplication with the mapped chip values. Pass the spread symbols through a pulse shaping filter.

The EVM object assumes that the received and reference symbols are synchronized and sampled at
the same rate. The received signal must be downsampled and synchronized with the reference signal.

To ensure sufficient averaging, simulate 100 frames with 1000 symbols in each frame. Save the
maximum measured EVM check that satisfies the requirement of EVM ≤ 35%.

Since the transmit and receive filters are identical and the delay from each equals half the filter span,
the total delay equals the span of one filter.

refSigDelay = rctFilt.FilterSpanInSymbols;
diffenc = comm.DifferentialEncoder;

simNumSymbols = numBits*gain; % Number of symbols in a frame
peakRMSEVM = -inf; % Initialize peak RMS EVM value

Use a for-loop to process transmission frames. On the transmit side, generate random data, apply
differential encoding, apply BPSK modulation, spread the chip, apply pulse shaping and add noise to
the transmitted signal. On the receive side, downsample and filter the signal, account for the signal
delay, measure the EVM, update the peak EVM to save the maximum value measured. After
processing all frames of data, display the maximum EVM value.

for p=1:numFrames
 % Transmit side
 b = randi([0 M-1],numBits,1);
 d = diffenc(b);
 x = 1-2*d; % Modulate
 c = reshape(chipValues*x',simNumSymbols,1); % Spread data
 cUp = rctFilt(c);
 r = awgn(cUp,SNR,"measured");
 % Receive side

 Measure EVM for 802.15.4 (ZigBee) System

7-123

 rd = rcrFilt(r); % Downsample and filter
 rmsEVM = evm(...
 complex(rd(refSigDelay+(1:numSymbols))), ...
 complex(c(1:numSymbols)));
 % Update peak RMS EVM calculation
 if (peakRMSEVM < rmsEVM)
 peakRMSEVM = rmsEVM;
 end
end

% Display results
fprintf(' Worst case RMS EVM (%%): %1.2f\n',peakRMSEVM)

 Worst case RMS EVM (%): 0.19

Further Exploration

You can add more impairments to the transmitted signal, such as IQ imbalance, by using the
iqimbal2coef function. For more examples and information, see the “Measure Modulation
Accuracy” on page 22-65 and “Visualize RF Impairments” on page 24-53 topics.

Selected Bibliography

1. IEEE Standard 802.15.4, Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks, 2003.

See Also

Related Examples
• “ZigBee NET Frame Generation and Decoding” on page 7-90

7 Communications Toolbox Library for ZigBee and UWB - Featured Examples

7-124

Communications Toolbox Wireless
Network Simulation Library - Featured
Examples

8

Generate and Visualize FTP Application Traffic Pattern

This example shows how to generate a file transfer protocol (FTP) application traffic pattern based on
the IEEE® 802.11ax™ Evaluation Methodology [1 on page 8-7] and the 3GPP TR 36.814
specification [2 on page 8-7].

FTP Application Traffic Model

Multinode communication systems involve modeling of different application traffic models. Each
application is characterized by parameters such as the data rate, packet inter arrival time, and packet
size. To evaluate various algorithms and protocols, standardization bodies such as IEEE and 3GPP
define certain application traffic patterns such as Voice over Internet Protocol (VoIP), video
conferencing, and FTP. This example generates and visualizes an FTP application traffic pattern.

The FTP application traffic pattern is modeled as a sequence of file transfers separated by reading
time. The reading time specifies the time interval between two successive file transfers. The file is
generated as multiple packets separated by packet inter arrival time. The packet inter arrival time
specifies the time interval between two successive packet transfers.

The 11ax Evaluation Methodology [1 on page 8-7] specifies this FTP application traffic model:

• Local FTP traffic model - This model is characterized by truncated Lognormal file size and
exponential reading time.

The 3GPP TR 36.814 specification [2 on page 8-7] specifies these FTP application traffic models:

• FTP traffic model 2 - This model is characterized by 2/0.5 megabytes file size and exponential
reading time. This figure shows the traffic pattern of this FTP model.

• FTP traffic model 3 - This model is characterized by a 0.5 megabytes file, exponential reading
time, and Poisson packet arrival rate. This figure shows the traffic pattern of this FTP model.

8 Communications Toolbox Wireless Network Simulation Library - Featured Examples

8-2

This example demonstrates the local FTP traffic model specified in 11-ax Evaluation Methodology [1
on page 8-7]. Similarly, you can use the FTP traffic models 2 and 3 specified in 3GPP TR 36.814
specification [2 on page 8-7] using the file size and packet arrival rate properties.

Configure FTP Application Traffic Pattern Object

Check if the 'Communications Toolbox Wireless Network Simulation Library' support package is
installed.

wirelessnetworkSupportPackageCheck

Create a configuration object to generate the FTP application traffic pattern.

% Reset the random number generator
rng('default');

% Create FTP application traffic pattern object with default properties
ftpObj = networkTrafficFTP;

% Set exponential distribution mean value for reading time in milliseconds
ftpObj.ExponentialMean = 50;

% Set truncated Lognormal distribution mu value for file size calculation
ftpObj.LogNormalMu = 10;

% Set truncated Lognormal distribution sigma value for file size calculation
ftpObj.LogNormalSigma = 1;

% Set truncated Lognormal distribution upper limit in Megabytes
ftpObj.UpperLimit = 5;

% Display object
disp(ftpObj);

 Generate and Visualize FTP Application Traffic Pattern

8-3

 networkTrafficFTP with properties:

 LogNormalMu: 10
 LogNormalSigma: 1
 UpperLimit: 5
 ExponentialMean: 50
 PacketInterArrivalTime: 0
 GeneratePacket: 0

Generate and Visualize FTP Application Traffic Pattern

Generate FTP application traffic pattern using the generate object function of the
networkTrafficFTP object.

% Set simulation time in milliseconds
simTime = 10000;

% Set step time in milliseconds
stepTime = 1;

% Validate simTime, simTime must be greater than or equal to stepTime
validateattributes(simTime,{'numeric'}, ...
 {'real','scalar','finite','>=',stepTime});

% Time after which the generate method must be invoked again
nextInvokeTime = 0;

% Generated packet count
packetCount = 0;

% Initialize arrays to store outputs for visualization
% Packet generation times in milliseconds
generationTime = zeros(5000,1);

% Time interval between two consecutive packet transfers in milliseconds
packetIntervals = zeros(5000,1);

% Packet sizes in bytes
packetSizes = zeros(5000,1);

% Loop over the simulation time, generating FTP application traffic
% pattern and saving the dt and packet size values for visualization.
while simTime
 if nextInvokeTime <= 0 % Time to generate the packet
 packetCount = packetCount+1; % Increment packet count
 % Call generate method and store outputs for visualization
 [packetIntervals(packetCount), packetSizes(packetCount)] = ...
 generate(ftpObj);
 % Set next invoke time
 nextInvokeTime = packetIntervals(packetCount);
 % Store packet generation time for visualization
 generationTime(packetCount+1) = ...
 generationTime(packetCount) + packetIntervals(packetCount);
 end

 % Update next invoke time
 nextInvokeTime = nextInvokeTime - stepTime;

8 Communications Toolbox Wireless Network Simulation Library - Featured Examples

8-4

 % Update simulation time
 simTime = simTime - stepTime;
end

Visualize the generated FTP application traffic pattern. In this plot, dt is the time interval between
two successive FTP application packets.

% Packet Number Versus Packet Intervals (dt)
% Stem graph to see packet intervals
pktIntervalsFig = figure(Name='Packet intervals',NumberTitle='off');
pktIntervalsAxes = axes(pktIntervalsFig);
stem(pktIntervalsAxes,packetIntervals(1:packetCount));
title(pktIntervalsAxes,'Packet Number Versus dt');
xlabel(pktIntervalsAxes,'Packet Number');
ylabel(pktIntervalsAxes,'dt in milliseconds');

% Plot to see different packet sizes
pktSizesFig = figure(Name='Packet sizes',NumberTitle='off');
pktSizesAxes = axes(pktSizesFig);
plot(pktSizesAxes,packetSizes(1:packetCount),Marker='o');
title(pktSizesAxes,'Packet Number Versus Packet Size');
xlabel(pktSizesAxes,'Packet Number');
ylabel(pktSizesAxes,'Packet Size in Bytes');

 Generate and Visualize FTP Application Traffic Pattern

8-5

% Stem graph of FTP application traffic pattern (Packet sizes of
% different files at different packet generation times)
ftpPatternFig = figure(Name='FTP application traffic pattern', ...
 NumberTitle='off');
ftpPatternAxes = axes(ftpPatternFig);
stem(ftpPatternAxes,generationTime(1:packetCount), ...
 packetSizes(1:packetCount),Marker='o');
title(ftpPatternAxes,'Packet Generation Time Versus Packet Size');
ylabel(ftpPatternAxes,'Packet Size in Bytes');
xlabel(ftpPatternAxes,'Time in milliseconds');

8 Communications Toolbox Wireless Network Simulation Library - Featured Examples

8-6

Further Exploration

This example generates an FTP traffic pattern as per the 11ax Evaluation Methodology [1 on page 8-
7] and 3GPP specification [2 on page 8-7]. Similarly, you can use networkTrafficVoIP,
networkTrafficOnOff, and networkTrafficVideoConference objects to generate VoIP, On-Off,
video conferencing application traffic patterns, respectively. You can use these different application
traffic patterns in system-level simulations to model the real-world data traffic.

References

[1] IEEE 802.11-14/0571r12 . "11ax Evaluation Methodology". IEEE P802.11. Wireless LANs.

[2] 3GPP TR 36.814. "Evolved Universal Terrestrial Radio Access (E-UTRA). Further advancements
for E-UTRA physical layer aspects". 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network.

See Also
networkTrafficOnOff | networkTrafficVideoConference | networkTrafficVoIP

 Generate and Visualize FTP Application Traffic Pattern

8-7

Input, Output, and Display

Learn how to input, output and display data and signals with Communications Toolbox.

• “Signal Terminology” on page 9-2
• “Export Data to MATLAB” on page 9-3
• “Sources and Sinks” on page 9-7
• “Spreading Sequences” on page 9-21

9

Signal Terminology

This section defines important Communications Toolbox terms related to matrices, vectors, and
scalars, as well as frame-based and sample-based processing.

Matrices, Vectors, and Scalars
This document uses the unqualified words scalar and vector in ways that emphasize the number of
elements in a signal, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a one-dimensional array with one
element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The signal could be a one-
dimensional array, a matrix that has exactly one column, or a matrix that has exactly one row. The
number of elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish among different types of
scalar signals or different types of vector signals, this document mentions the distinctions explicitly.
For example, the terms one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns the matrix has.
The orientation of a two-dimensional vector is its status as either a row vector or column vector. A
one-dimensional array has no orientation – this is sometimes called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full matrix signal.

For more information, see the “Sample- and Frame-Based Concepts” topic.

9 Input, Output, and Display

9-2

Export Data to MATLAB

In this section...
“Use a To Workspace Block” on page 9-3
“Configure the To Workspace Block” on page 9-3
“View Error Rate Data in Workspace” on page 9-4
“Send Signal and Error Data to Workspace” on page 9-4
“View Signal and Error Data in Workspace” on page 9-5
“Analyze Signal and Error Data” on page 9-6

Use a To Workspace Block
This section explains how to send data from a Simulink model to the MATLAB workspace so you can
analyze the results of simulations in greater detail.

You can use a To Workspace block to send data to the MATLAB workspace as a vector. For example,
you can send the error rate data from the Hamming code model, described in the section Reducing
the Error Rate Using a Hamming Code on page 16-63. To insert a To Workspace block into the
model, follow these steps:

1 To add a To Workspace block, begin typing the name 'to workspace' in the model window and
select the To Workspace block. Connect it as shown.

Tip Select the To Workspace block from the DSP System Toolbox / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

Configure the To Workspace Block
To configure the To Workspace block, follow these steps:

1 Double-click the block to display its dialog box.
2 Type hammcode_BER in the Variable name field.

 Export Data to MATLAB

9-3

3 Type 1 in the Limit data points to last field. This limits the output vector to the values at the
final time step of the simulation.

4 Ensure the Save format is set to Array.
5 Click OK.

When you run a simulation, the model sends the output of the Error Rate Calculation block to the
workspace as a vector of size 3, called hamming_BER. The entries of this vector are the same as those
shown by the Error Rate Display block.

View Error Rate Data in Workspace
After running a simulation, you can view the output of the To Workspace block by typing the following
commands at the MATLAB prompt:

format short e
hammcode_BER

The vector output is the following:

hammcode_BER =
5.4066e-003 1.0000e+002 1.8496e+004

The command format short e displays the entries of the vector in exponential form. The entries
are as follows:

• The first entry is the error rate.
• The second entry is the total number of errors.
• The third entry is the total number of comparisons made.

Send Signal and Error Data to Workspace
To analyze the error-correction performance of the Hamming code, send the transmitted signal, the
received signal, and the error vectors, created by the Binary Symmetric Channel block, to the
workspace. An example of this is shown in the following figure.

1 Assemble blocks to build this model.

9 Input, Output, and Display

9-4

2 Double-click the Binary Symmetric Channel block to open its dialog box, and select Output
error vector. This creates an output port for the error data.

3 Move blocks to make room so that you can insert Hamming Encoder and Hamming Decoder
blocks. To find them, start typing Hamming in the model window. Select them from the options
presented. These Hamming Encoder and Hamming Decoder blocks are in the Communications
Toolbox/Error Detection and Correction /Block sublibrary.

4 Add three To Workspace blocks into the model window and connect them as shown in the
preceding figure.

Tip Select the To Workspace block from the DSP System Toolbox / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

5 Double-click the left To Workspace block.

• Set the Variable name parameter to Tx. The block sends the transmitted signal to the
workspace as an array called Tx.

• To save each frame as a separate column in the Tx array, set the Save 2-D signals as
parameter to 3-D array (concatenate along third dimension).

• Click OK.
6 Double-click the middle To Workspace block:

• Set the Variable name parameter to errors.
• To save each frame as a separate column in the errors array, set the Save 2-D signals as

parameter to 3-D array (concatenate along third dimension).
• Click OK.

7 Double-click the right To Workspace block:

• Set the Variable name parameter to Rx.
• To save each frame as a separate column in the Rx array, set the Save 2-D signals as

parameter to 3-D array (concatenate along third dimension).
• Click OK.

View Signal and Error Data in Workspace
After running a simulation, you can display individual frames of data. For example, to display the
tenth frame of Tx, at the MATLAB prompt type

Tx(:,:,10)

This returns a column vector of length 4, corresponding to the length of a message word. Signals are
typically quite large. So, typing the signal name by itself and displaying the entire transmitted signal
is not of interest.

To display the corresponding frame of errors, type

errors(:,:,10)

This returns a column vector of length 7, corresponding to the length of a codeword.

To display frames 1 through 5 of the transmitted signal, type

 Export Data to MATLAB

9-5

Tx(:,:,1:5)

Analyze Signal and Error Data
You can use MATLAB to analyze the data from a simulation. For example, to identify the differences
between the transmitted and received signals, type

diffs = Tx ~= Rx;

The vector diffs is the XOR of the vectors Tx and Rx. A 1 in diffs indicates that Tx and Rx differ at
that position.

You can determine the indices of frames corresponding to message words that are incorrectly
decoded with the following MATLAB command:

error_indices = find(diffs);

The vector error_indices records the indices where Tx and Rx differ. To view the first incorrectly
decoded word, type

Tx(:,:,error_indices(1))

To view the corresponding frame of errors, type

errors(:,:,error_indices(1))

Analyze this data to determine the error patterns that lead to incorrect decoding.

9 Input, Output, and Display

9-6

Sources and Sinks
In this section...
“Data Sources” on page 9-7
“Noise Sources” on page 9-9
“Sequence Generators” on page 9-10
“Scopes” on page 9-13
“View a Sinusoid” on page 9-14
“View a Modulated Signal” on page 9-16

Communications Toolbox provides sources, sinks, and display devices that facilitate analysis of
communication system performance.

Data Sources

Use the functions and blocks listed in “Sources and Sinks” to generate random data to simulate a
signal source.

Random Symbols

The randsrc function generates random matrices whose entries are chosen independently from an
alphabet that you specify, with a distribution that you specify. A special case generates bipolar
matrices.

For example, the command below generates a 5-by-4 matrix whose entries are random, independently
chosen, and uniformly distributed in the set {1,3,5}.

a = randsrc(5,4,[1,3,5])

a = 5×4

 5 1 1 1
 5 1 5 3
 1 3 5 5
 5 5 3 5
 3 5 5 5

To skew the distribution so that 1 is twice as likely to occur as either 3 or 5, use the command below.
The third input argument has two rows, one of which indicates the possible values of b and the other
indicates the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

b = 5×4

 3 5 3 5
 1 3 1 3
 5 1 1 1
 5 3 1 5
 3 1 1 1

 Sources and Sinks

9-7

Random Integers

In MATLAB®, the randi function generates random integer matrices whose entries are in a range
that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing random integers between 2
and 10.

c = randi([2,10],5,4)

c = 5×4

 5 6 4 6
 5 6 8 10
 8 7 7 5
 9 8 3 7
 3 8 3 4

If your desired range is [0,10] instead of [2,10], you can use either of the commands below. They
produce different numerical results, but use the same distribution.

d = randi([0,10],5,4);
e = randi([0 10],5,4);

In Simulink®, the Random Integer Generator and Poisson Integer Generator blocks both generate
vectors containing random nonnegative integers. The Random Integer Generator block uses a
uniform distribution on a bounded range that you specify in the block mask. The Poisson Integer
Generator block uses a Poisson distribution to determine its output. In particular, the output can
include any nonnegative integer.

Random Bit Error Patterns

In MATLAB, the randerr function generates matrices whose entries are either 0 or 1. However, its
options are different from those of randi, because randerr is meant for testing error-control
coding. For example, the command below generates a 5-by-4 binary matrix, where each row contains
exactly one 1.

f = randerr(5,4)

f = 5×4

 0 0 0 1
 1 0 0 0
 1 0 0 0
 0 0 1 0
 0 0 0 1

You might use such a command to perturb a binary code that consists of five four-bit codewords.
Adding the random matrix f to your code matrix (modulo 2) introduces exactly one error into each
codeword.

On the other hand, to perturb each codeword by introducing one error with probability 0.4 and two
errors with probability 0.6, use the command below instead. Each row has one '1' with probability
0.4, otherwise two '1's

g = randerr(5,4,[1,2; 0.4,0.6])

9 Input, Output, and Display

9-8

g = 5×4

 1 0 1 0
 0 1 0 1
 0 0 0 1
 1 0 0 1
 0 0 1 0

Adding the random matrix g to your code matrix (modulo 2) introduces one or two errors into each
codeword with the specified probability of occurrence for each. The probability matrix that is the
third argument of randerr affects only the number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element column vector using
any of the commands below. The three commands produce different numerical outputs, but use the
same distribution. The third input arguments vary according to each function's particular way of
specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1
binarymatrix2 = randi([0 1],100,1); % Two possible values
binarymatrix3 = randerr(100,1,[0 1; 0.5 0.5]); % No 1s, or one 1

In Simulink, the Bernoulli Binary Generator block generates random bits and is suitable for
representing sources. The block considers each element of the signal to be an independent Bernoulli
random variable. Also, different elements need not be identically distributed.

Noise Sources
Construct noise generator blocks in Simulink to simulate communication links.

Random Noise Generators

You can construct random noise generators to simulate channel noise by using the MATLAB Function
block with random number generating functions. Construct different types of channel noise by using
the following combinations.

Distribution Block Function
Gaussian MATLAB Function wgn
Rayleigh MATLAB Function randn
Rician MATLAB Function randn
Uniform on a bounded interval MATLAB Function rand

See “Random Noise Generators in Simulink” on page 15-30 for an example of how Rayleigh and
Rician distributed noise is created.

Gaussian Noise Generator

In MATLAB®, the wgn function generates random matrices using a white Gaussian noise distribution.
You specify the power of the noise in either dBW (decibels relative to a watt), dBm, or linear units.
You can generate either real or complex noise.

 Sources and Sinks

9-9

For example, the command below generates a column vector of length 50 containing real white
Gaussian noise whose power is 2 dBW. By default, the power type in dBW and load impedance is 1
ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a load of 60 ohms, use
either of the commands below.

y2 = wgn(50,1,2,60,'complex','linear');
y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the awgn function. See
“AWGN Channel” on page 21-2 for more information.

Sequence Generators
Use the functions, System objects, and blocks listed in “Sources and Sinks” to generate sequences for
spreading or synchronization in a communication system. You can generate pseudorandom
sequences, synchronization codes, and orthogonal codes. For examples comparing correlation
properties of these sequence generators, see “Spreading Sequences” on page 9-21.

• “Pseudorandom Sequences” on page 9-10
• “Model PN Sequence Generation with Linear Feedback Shift Register” on page 9-11
• “Synchronization Codes” on page 9-13
• “Orthogonal Codes” on page 9-13

Pseudorandom Sequences

You can generate pseudorandom or pseudonoise (PN) sequences using these System objects in
MATLAB and these blocks in Simulink. The applications of these sequences range from multiple-
access spread spectrum communication systems to ranging, synchronization, and data scrambling.

Sequence System object™ Block
Gold sequences comm.GoldSequence Gold Sequence Generator
Kasami sequences comm.KasamiSequence Kasami Sequence Generator
PN sequences comm.PNSequence PN Sequence Generator

To generate pseudorandom sequences, the underlying code implements shift registers, as illustrated
in this diagram.

9 Input, Output, and Display

9-10

All r registers in the generator update their values at each time step according to the value of the
incoming arrow to the shift register. The adders perform addition modulo 2. The shift register can be
described by a binary polynomial in z, grzr + gr-1zr-1 + ... + g0. The coefficient gi is 1 if there is a
connection, or 0 if there is no connection, from the ith shift register to the adder.

The coefficient mi is 1 if there is a delay, or a 0 if there is no delay, from the ith shift register to the
adder preceding the output. If the shift is zero, the m0 switch is closed while all other mk switches are
open.

The Kasami and PN sequence generators use this polynomial description for their generator
polynomial. The Gold sequence generator uses this polynomial description for the preferred first and
second generator polynomial PN sequences.

Model PN Sequence Generation with Linear Feedback Shift Register

This example shows that sequences output from the PN Sequence Generator can be modeled
using a linear feedback shift register (LFSR) built with primitive Simulink® blocks.

 Sources and Sinks

9-11

For the chosen generator polynomial, p(z)=z^6+z+1, the model generates a PN sequence of period
63, by using the PN Sequence Generator block and by modeling a LFSR using primitive Simulink
blocks. The two parameters, Initial states and Output mask vector (or scalar shift
value), are interpreted in the LFSR model schematic. The PreLoadFcn callback function is used to
initialize runtime parameters. To view the callback functions, go to MODELING> SETUP> Model
Settings> Model Properties, and select the Callbacks tab.

The scope output shows the two implementations produce matching PN sequences.

9 Input, Output, and Display

9-12

Using the PN Sequence Generator block allows you to easily generate PN sequences of large periods.
To experiment further, open the model. Modify settings to see how the performance varies for
different path delays or adjust the PN sequence generator parameters. You can experiment with
different initial states, by changing the value of Initial states prior to running the simulation. For all
values, the two generated sequences are the same.

Synchronization Codes

Use the comm.BarkerCode System object and Barker Code Generator block to generate Barker
codes to perform synchronization. Barker codes are subsets of PN sequences. They are short codes,
with a length at most 13, which are low-correlation sidelobes. A correlation sidelobe is the correlation
of a codeword with a time-shifted version of itself.

Orthogonal Codes

Orthogonal codes are used for spreading to benefit from their perfect correlation properties. When
used in multi-user spread spectrum systems, where the receiver is perfectly synchronized with the
transmitter, the despreading operation is ideal.

Code System object Block
Hadamard codes comm.HadamardCode Hadamard Code Generator
OVSF codes comm.OVSFCode OVSF Code Generator
Walsh codes comm.WalshCode Walsh Code Generator

Scopes
The Comm Sinks block library contains scopes for viewing three types of signal plots:

• “Eye Diagrams” on page 9-14

 Sources and Sinks

9-13

• “Scatter Plots” on page 9-14
• “Signal Trajectories” on page 9-14

The following table lists the blocks and the plots they generate.

Block Name Plots
Eye Diagram Eye diagram of a signal
Constellation Diagram Constellation diagram and signal trajectory of a

signal

Eye Diagrams

An eye diagram is a simple and convenient tool for studying the effects of intersymbol interference
and other channel impairments in digital transmission. When this software product constructs an eye
diagram, it plots the received signal against time on a fixed-interval axis. At the end of the fixed
interval, it wraps around to the beginning of the time axis. As a result, the diagram consists of many
overlapping curves. One way to use an eye diagram is to look for the place where the eye is most
widely opened, and use that point as the decision point when demapping a demodulated signal to
recover a digital message.

The Eye Diagram block produces eye diagrams. This block processes discrete-time signals and
periodically draws a line to indicate a decision, according to a mask parameter.

Examples appear in “View a Sinusoid” on page 9-14 and “View a Modulated Signal” on page 9-16.

Scatter Plots

A constellation diagram of a signal plots the signal's value at its decision points. In the best case, the
decision points should be at times when the eye of the signal's eye diagram is the most widely open.

The Constellation Diagram block produces a constellation diagram from discrete-time signals. An
example appears in “View a Sinusoid” on page 9-14.

Signal Trajectories

A signal trajectory is a continuous plot of a signal over time. A signal trajectory differs from a scatter
plot in that the latter displays points on the signal trajectory at discrete intervals of time.

The Constellation Diagram block produces signal trajectories. The Constellation Diagram block
produces signal trajectories when the ShowTrajectory property is set to true. A signal trajectory
connects all points of the input signal, irrespective of the specified decimation factor (Samples per
symbol).

View a Sinusoid

The following model produces a constellation diagram and an eye diagram from a complex sinusoidal
signal. Because the decision time interval is almost, but not exactly, an integer multiple of the period
of the sinusoid, the eye diagram exhibits drift over time. More specifically, successive traces in the
eye diagram and successive points in the scatter diagram are near each other but do not overlap.

9 Input, Output, and Display

9-14

To build the model, gather and configure these blocks:

• Sine Wave — not the Sine Wave block in the Simulink Sources library

• Set Frequency to .502.
• Set Output complexity to Complex.
• Set Sample time to 1/16.

• Constellation Diagram, in the Comm Sinks library

• On the Constellation Properties panel, set Samples per symbol to 16.
• Eye Diagram, in the Comm Sinks library

• On the Plotting Properties panel, set Samples per symbol to 16.
• On the Figure Properties panel, set Scope position to figposition([42.5 55 35

35]);.

Connect the blocks as shown in the preceding figure. In the Simulate section, set Stop time to 250.
The Simulate section appears on multiple tabs. Running the model produces the following scatter
diagram plot.

The points of the scatter plot lie on a circle of radius 1. Note that the points fade as time passes. This
is because the box next to Color fading is checked under Rendering Properties, which causes the
scope to render points more dimly the more time that passes after they are plotted. If you clear this
box, you see a full circle of points.

The Constellation Diagram block displays a circular trajectory.

 Sources and Sinks

9-15

In the eye diagram, the upper set of traces represents the real part of the signal and the lower set of
traces represents the imaginary part of the signal.

View a Modulated Signal

This multipart example creates an eye diagram, scatter plot, and signal trajectory plot for a
modulated signal. It examines the plots one by one in these sections:

• “Eye Diagram of a Modulated Signal” on page 9-16
• “Constellation Diagram of a Modulated Signal” on page 9-18
• “Signal Trajectory of a Modulated Signal” on page 9-19

Eye Diagram of a Modulated Signal

The following model modulates a random signal using QPSK, filters the signal with a raised cosine
filter, and creates an eye diagram from the filtered signal.

To build the model, gather and configure the following blocks:

• Random Integer Generator, with these updates to parameter settings:

• Set M-ary number to 4.
• Set Sample time to 0.01.

9 Input, Output, and Display

9-16

• QPSK Modulator Baseband with default parameters
• AWGN Channel, with these updates to parameter settings:

• Set Mode to Signal-to-noise ratio (SNR).
• Set SNR (dB) to 15.

• Raised Cosine Transmit Filter, with these updates to parameter settings:

• Set Filter shape to Normal.
• Set Rolloff factor to 0.5.
• Set Filter span in symbols to 6.
• Set Output samples per symbol to 8.
• Set Input processing to Elements as channels (sample based).

• Eye Diagram, with these updates to parameter settings:

• Set Samples per symbol to 8.
• Set Symbols per trace to 3. This specifies the number of symbols that are displayed in each

trace of the eye diagram. A trace is any one of the individual lines in the eye diagram.
• Set Traces displayed to 3.
• Set New traces per display to 1. This specifies the number of new traces that appear each

time the diagram is refreshed. The number of traces that remain in the diagram from one
refresh to the next is Traces displayed minus New traces per display.

• On the Rendering Properties panel, set Markers to + to indicate the points plotted at each
sample. The default value of Markers is empty, which indicates no marker.

• On the Figure Properties panel, set Eye diagram to display to In-phase only.

When you run the model, the Eye Diagram displays the following diagram. Your exact image varies
depending on when you pause or stop the simulation.

Three traces are displayed. Traces 2 and 3 are faded because Color fading under Rendering
Properties is selected. This causes traces to be displayed less brightly the older they are. In this
picture, Trace 1 is the most recent and Trace 3 is the oldest. Because New traces per display is set
to 1, only Trace 1 is appearing for the first time. Traces 2 and 3 also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and because Samples
per trace is set to 8, each symbol contains eight samples. Note that trace 1 contains 24 points, which

 Sources and Sinks

9-17

is the product of Symbols per trace and Samples per symbol. However, traces 2 and 3 contain 25
points each. The last point in trace 2, at the right border of the scope, represents the same sample as
the first point in trace 1, at the left border of the scope. Similarly, the last point in trace 3 represents
the same sample as the first point in trace 2. These duplicate points indicate where the traces would
meet if they were displayed side by side, as illustrated in the following picture.

You can view a more realistic eye diagram by changing the value of Traces displayed to 40 and
clearing the Markers field.

When the Offset parameter is set to 0, the plotting starts at the center of the first symbol, so that the
open part of the eye diagram is in the middle of the plot for most points.

Constellation Diagram of a Modulated Signal

The following model creates a scatter plot of the same signal considered in “Eye Diagram of a
Modulated Signal” on page 9-16.

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on page 9-16 but
replace the Eye Diagram block with the following block:

• Constellation Diagram, with these updates to parameter settings:

• Set Samples per symbol to 2

9 Input, Output, and Display

9-18

• Set Offset to 0. This specifies the number of samples to skip before plotting the first point.
• Set Symbols to display to 40.

When you run the simulation, the Constellation Diagram block displays the following plot.

The plot displays 30 points. Because Color fading under Rendering Properties is selected, points
are displayed less brightly the older they are.

Signal Trajectory of a Modulated Signal

The following model creates a signal trajectory plot of the same signal considered in “Eye Diagram of
a Modulated Signal” on page 9-16.

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on page 9-16 but
replace the Eye Diagram block with the following block:

• Constellation Diagram , with these updates to parameter settings:

• Set Samples per symbol to 8.
• Set Symbols to display to 40. This specifies the number of symbols displayed in the signal

trajectory. The total number of points displayed is the product of Samples per symbol and
Symbols to display.

When you run the model, the Constellation Diagram displays a trajectory like the one below.

 Sources and Sinks

9-19

The plot displays 40 symbols. Because Color fading under Rendering Properties is selected,
symbols are displayed less brightly the older they are.

See “Constellation Diagram of a Modulated Signal” on page 9-18 to compare the preceding signal
trajectory to the scatter plot of the same signal. The Constellation Diagram block connects the points
displayed by the Constellation Diagram block to display the signal trajectory.

If you increase Symbols to display to 100, the model produces a signal trajectory like the one below.
The total number of points displayed at any instant is 800, which is the product of the parameters
Samples per symbol and Symbols to display.

See Also
“Spreading Sequences” on page 9-21

9 Input, Output, and Display

9-20

Spreading Sequences
Spreading consists of multiplying input data bits by a pseudorandom or pseudonoise (PN) sequence.
The ratio of the PN sequence bit rate to the data rate is called the spreading factor. When the PN
sequence has a bit rate higher than the data bit rate, the spreading factor is greater than 1. When the
spreading factor is greater than 1, spreading input data adds redundancy to the transmission signal.

Spreading input data by using spreading sequences with low cross-correlation properties enables the
receiver to resolve individual user data after despreading the received signal. Using spreading
sequences with low cross-correlation properties helps resolve individual user data in a multipath
environment in the presence of interference signals.

After signal synchronization on the receiver side, the received signal is multiplied by the same PN
that was used by the transmitter. This operation removes the spreading from the received signal.
Ideally, after this despreading, the signal for the user of interest is recovered with no further
contribution by the signals of interferers. In CDMA systems, each transmitter is assigned distinct
spreading codes that have low cross-correlation properties, such as the ideal orthogonal codes or any
one of the PN, Gold, or Kasami sequences.

Spread-spectrum communication systems spread the transmission signal over a wide frequency band,
typically much wider than the minimum bandwidth required to transmit the data. The spreading uses
a waveform that appears random to anyone except the intended receiver of the transmitted signal.
The waveform is actually pseudorandom in the sense that it can be generated by precise rules, yet
has the statistical properties of a truly random sequence.

The following sections highlight various spreading sequences, their properties, and characteristic
performance in single-user or multiuser and single-path or multipath transmission environments.

Orthogonal Spreading for Multiuser System in Single-Path Channel

This model compares data recovery for a single-user system versus a two-user system. Transmission
data passes through a single-path AWGN channel in two data streams that are independently spread
by different orthogonal codes.

The model uses random binary data, which is BPSK modulated (real), spread by orthogonal codes of
length 64, and then transmitted over an AWGN channel. The receiver consists of a despreader
followed by a BPSK demodulator.

 Spreading Sequences

9-21

Using the same transmission data, the model calculates the BER performance for recovery of the
single-user and two-user transmissions through identically configured AWGN channels.

The bit error rate results are exactly the same for the individual users in both cases. The matching
error rates result from perfect despreading due to the ideal cross-correlation properties of the
orthogonal codes selected.

To experiment further, open the model. Modify the settings to see how the performance varies with
different Hadamard codes for the individual users.

Orthogonal Spreading for Single-User System in Multipath Channel

This model simulates orthogonal spreading for a single-user system in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently by using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by orthogonal codes of
length 64, and then transmitted over a multipath AWGN channel. The receiver consists of a
despreader, a diversity combiner, and a BPSK demodulator.

9 Input, Output, and Display

9-22

The non-ideal, auto-correlation values of the chosen orthogonal spreading codes prevent perfect
resolution of the individual paths. As a consequence, BER performance is not improved by using
diversity combining in the receiver. For a multipath example that uses PN sequences when spreading
user data and uses diversity combining in the receiver, see “PN Spreading for Single-User System in
Multipath Channel” on page 9-23.

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different Hadamard codes.

PN Spreading for Single-User System in Multipath Channel

This model simulates pseudo-random spreading for a single-user system in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently by using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by PN sequences, and
then transmitted over a multipath AWGN channel. The receiver consists of a despreader, a diversity
combiner, and a BPSK demodulator. The receiver achieves gains from diversity combining due to the
ideal auto-correlation properties of the PN sequences used when spreading the data.

 Spreading Sequences

9-23

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or adjust the PN sequence generator parameters.

PN Spreading for Multiuser System in Multipath Channel

This model simulates pseudo-random spreading for two users in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by PN sequences, and
then transmitted over a multipath AWGN channel. The receiver consists of a despreader, a diversity
combiner, and a BPSK demodulator.

Using the same transmission data, the model calculates the performance for two-user transmissions
through identically configured, multipath AWGN channels.

Because the transmissions for the individual users were spread using different PN sequences, the
error rate computed for the users are different. Due to the higher cross-correlation properties of the
nonorthogonal PN sequences used to spread the data, BER performance is degraded in a multipath
environment. Sequences with high orthogonality, such as Hadamard and Kasami, are a better choice
for multipath environments. For a multipath example that uses Hadamard code sequences when
spreading user data, see “Orthogonal Spreading for Multiuser System in Single-Path Channel” on
page 9-21. For a multipath example that uses Kasami code sequences when spreading user data, see
“Kasami Spreading for Multiuser System in Multipath Channel” on page 9-25.

9 Input, Output, and Display

9-24

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different PN sequences for the individual users.

Benefits of Diversity Combining for Nonorthogonal Sequence
Spreading
For the “PN Spreading for Multiuser System in Multipath Channel” on page 9-24 example, the
individual user performance is degraded for the same channel conditions that were used in the “PN
Spreading for Single-User System in Multipath Channel” on page 9-23 example. This is primarily due
to the higher cross-correlation values between the two sequences, which prevent ideal separation.
However, there are still advantages to diversity combining when using nonorthogonal sequence
spreading, because the error rate for a multipath AWGN channel received using RAKE with diversity
combining is nearly as good as the AWGN-only case in the “Orthogonal Spreading for Multiuser
System in Single-Path Channel” on page 9-21 example.

Kasami Spreading for Multiuser System in Multipath Channel

This model simulates Kasami sequence spreading for two users in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by Kasami sequences,
and then transmitted over a multipath AWGN channel. The receiver consists of a despreader, a
diversity combiner, and a BPSK demodulator.

 Spreading Sequences

9-25

Using the same transmission data, the model calculates the performance for two-user transmissions
through identically configured multipath AWGN channels.

The computed BER indicates transmission data spread using Kasami sequences exhibit low cross-
correlation. The Kasami sequences provide a balance between the ideal cross-correlation properties
of orthogonal codes and the ideal auto-correlation properties of PN sequences.

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different Kasami sequence generator settings for the individual users.

9 Input, Output, and Display

9-26

Data and Signal Management

• “Matrices, Vectors, and Scalars” on page 10-2
• “Sample-Based and Frame-Based Processing” on page 10-4
• “Floating-Point and Fixed-Point Data Types” on page 10-5
• “Delays” on page 10-6

10

Matrices, Vectors, and Scalars
Simulink supports matrix signals, one-dimensional arrays, sample-based processing, and frame-based
processing. This section describes how Communications Toolbox processes certain kinds of matrices
and signals.

This documentation uses the unqualified words scalar and vector in ways that emphasize a signal's
number of elements, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a one-dimensional array with one
element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The signal could be a one-
dimensional array, a matrix that has exactly one column, or a matrix that has exactly one row. The
number of elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish among different types of
scalar signals or different types of vector signals, this document mentions the distinctions explicitly.
For example, the terms one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns the matrix has.
The orientation of a two-dimensional vector is its status as either a row vector or column vector. A
one-dimensional array has no orientation – this is sometimes called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full matrix signal.

Processing Rules
The following rules indicate how the blocks in the Communications Toolbox process scalar, vector,
and matrix signals.

• In their numerical computations, blocks that process scalars do not distinguish between one-
dimensional scalars and one-by-one matrices. If the block produces a scalar output from a scalar
input, the block preserves dimension.

• For vector input signals:

• The numerical computations do not distinguish between one-dimensional arrays and M-by-1
matrices.

• Most blocks do not process row vectors and do not support multichannel functionality.
• The block output preserves dimension and orientation.
• The block treats elements of the input vector as a collection that arises naturally from the

block's operation (for example, a collection of symbols that jointly represent a codeword) or as
successive samples from a single time series.

• Most blocks do not process matrix signals that have more than one row and more than one
column. For blocks that do, a signal in the shape of an N-by-M matrix represents a series of N
successive samples from M channels. An Input processing parameter on the block determines
whether each element or column of the input signal is a channel.

• Some blocks, such as the digital baseband modulation blocks, can produce multiple output values
for each value of a scalar input signal. A Rate options parameter on the block determines if the
additional samples are output by increasing the rate of the output signal or by increasing the size
of the output signal.

10 Data and Signal Management

10-2

• Blocks that process continuous-time signals do not process frame-based inputs. Such blocks
include the analog phase-locked loop blocks.

To learn which blocks processes scalar signals, vector signals, or matrices, refer to each block's
individual Help page.

 Matrices, Vectors, and Scalars

10-3

Sample-Based and Frame-Based Processing

In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. For more information, see “Sample- and Frame-
Based Concepts”.

In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample of a distinct channel. For more information, see “What Is Sample-Based
Processing?”.

10 Data and Signal Management

10-4

Floating-Point and Fixed-Point Data Types
The inputs and outputs of the communications blocks support various data types. For some blocks,
changing to single outputs can lead to different results when compared with double outputs for the
same set of parameters. Some blocks may naturally output different data types than what they
receive (e.g. digital modulators) a signal. Refer to the individual block reference pages for details.

For more information, see “Floating-Point Numbers” (Fixed-Point Designer) and “Fixed-Point Signal
Processing”.

Access the Block Support Table
The Simulink Block Data Type Support for Communications Toolbox table provides details regarding
capabilities and limitations pertaining to code generation, variable-sizing, and supported data types
for all Communications Toolbox blocks. To access the table, type showcommblockdatatypetable at
the MATLAB command line.

 Floating-Point and Fixed-Point Data Types

10-5

Delays
In this section...
“Section Overview” on page 10-6
“Sources of Delays” on page 10-6
“ADSL Example Model” on page 10-7
“Punctured Coding Model” on page 10-8
“Use the Find Delay Block” on page 10-10

Section Overview
Some models require you to know how long it takes for data in one portion of a model to influence a
signal in another portion of a model. For example, when configuring an error rate calculator, you
must indicate the delay between the transmitter and the receiver. If you miscalculate the delay, the
error rate calculator processes mismatched pairs of data and consequently returns a meaningless
result.

This section illustrates the computation of delays in multirate models and in models where the total
delay in a sequence of blocks comprises multiple delays from individual blocks. This section also
indicates how to use the Find Delay and Delay blocks to help deal with delays in a model.

Other References for Delays

Other parts of this documentation set also discuss delays. For information about dealing with delays
or about delays in specific types of blocks, see

• “Group Delay” on page 23-4
• Find Delay block reference page
• Delay block reference page
• Viterbi Decoder block reference page
• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see

• Example: A Rate 2/3 Feedforward Encoder. on page 16-45.
• Example: Soft-Decision Decoding on page 16-48. (See Delay in Received Data on page 16-51.)
• Example: Delays from Demodulation on page 11-21.

Sources of Delays
While some blocks can determine their current output value using only the current input value, other
blocks need input values from multiple time steps to compute the current output value. In the latter
situation, the block incurs a delay. An example of this case is when the Derepeat block must average
five samples from a scalar signal. The block must delay computing the average until it has received
all five samples.

In general, delays in your model might come from various sources:

10 Data and Signal Management

10-6

• Digital demodulators
• Convolutional interleavers or deinterleavers
• Equalizers
• Viterbi Decoder block
• Buffering, downsampling, derepeating, and similar signal operations
• Explicit delay blocks, such as Delay and Variable Integer Delay
• Filters

The following discussions include some of these sources of delay.

ADSL Example Model
This section examines the “256-Channel ADSL” on page 1-144 example and shows how to compute the
correct value for the Receive delay parameter in one of the Error Rate Calculation blocks in the
model. The model includes delays from convolutional interleaving and an explicit delay block.

In the ADSL example, data follows two parallel paths that lead to Error Rate Calculation blocks near
the end of each path. The first path has no interleaver and has a delay of zero. The second path has a
delay compared to the first path due to a convolutional interleaver and deinterleaver pair and a fixed
delay. The Receive delay parameter in the Error Rate Calculation block must reflect the delay of the
given path. The sections that follow make an observation about frame periods in the model, and then
consider delays for the interleaved data path.

Frame Periods in the Model

Before searching for individual delays, first observe that most signal lines throughout the model
share the same frame period. On the Debug tab, expand Information Overlays. In the Sample
Time section, select Colors to color blocks and signals according to their frame periods (or sample
periods, in the case of sample-based signals). All signal lines at the top level of the model are the
same color, which indicates they have the same frame period. Since there is a common frame period,
frames are a convenient unit for measuring delays in the blocks that process these signals. In the
computation of the cumulative delay along a path, the weighted average (of numbers of frames,
weighted by the period of each frame) reduces to a sum.

Path for Interleaved Data

In the transmitter portion of the model, the interleaved path is the lower branch, shown in yellow
below. Similarly, the interleaved path in the receiver portion of the model is the lower branch. The
Error Rate Calculation block, near the end of the interleaved path, computes the value labeled
Interleaved BER.

 Delays

10-7

This table summarizes the delays in the path for noninterleaved data. Subsequent sections explain
the delays in more detail and explain why the total delay relative to the Error Rate Calculation block
is one frame, or 776 samples.

Block Delay, in Output
Samples from
Individual Block

Delay, in Frames Delay, in Input
Samples to Error Rate
Calculation Block

Convolutional
Interleaver and
Convolutional
Deinterleaver pair

40 1 (combined) 776 (combined)

Delay 800
Total — 1 776

Interleaving

In the second path, the delay due to the Convolutional Interleaver block in the transmitter and the
Convolutional Deinterleaver block in the receiver is Rows of shift registers × Register length
step × (Rows of shift registers – 1). As configured, the delay due to the interleaver and
deinterleaver pair in the ADSL example is 5 × 2 × (5 – 1) = 40.

Delay Block

The receiver portion of the interleaved path also contains a Delay block. This block is set to insert a
delay of 800 samples. The Delay block has the same sample time as the interleaver and deinterleaver
blocks. Therefore, the total delay from interleaving, deinterleaving, and the explicit delay is 840
samples. These 840 samples make up one frame of data leaving the Delay block.

Summing the Delays

No other blocks in the interleaved path of the ADSL example cause any delays. Adding the delays
from the interleaver and deinterleaver pair and the Delay block indicates that the total delay in the
interleaved path is one frame.

Total Delay Relative to Error Rate Calculation Block

The Error Rate Calculation block that computes the value labeled Interleaved BER requires a
Receive delay parameter value that is equivalent to one frame. The Receive delay parameter is
measured in samples and each input frame to the Error Rate Calculation block contains 776 samples.
Also, the frame rate at the output ports of all delay-causing blocks in the interleaved path equals the
frame rate at the input of the Error Rate Calculation block. Therefore, the correct value for the
Receive delay parameter is 776 samples.

Punctured Coding Model

This section discusses a punctured coding model that includes delays from decoding, downsampling,
and filtering. Two Error Rate Calculation blocks in the model work correctly if and only if their
Receive delay parameters accurately reflect the delays in the model.

10 Data and Signal Management

10-8

Frame Periods in the Model

Before searching for individual delays, if the Timing Legend pane is not already open, on the Debug
tab, expand Information Overlays. In the Sample Time section, select Legend. In the Timing
Legend pane >Highlight>All. Only the rightmost portion of the model differs in color from the rest
of the model. This means that all signals and blocks in the model except those in the rightmost edge
share the same frame period. Consequently, frames at this predominant frame rate are a convenient
unit for measuring delays in the blocks that process these signals. In the computation of the
cumulative delay along a path, the weighted average (of numbers of frames, weighted by each
frame's period) reduces to a sum.

The yellow blocks represent multirate systems, while the AWGN Channel block runs at a higher frame
rate than all the other blocks in the model.

Inner Error Rate Block

The block labeled Inner Error Rate, located near the center of the model, is a copy of the Error Rate
Calculation block from the Comm Sinks library. It computes the bit error rate for the portion of the
model that excludes the punctured convolutional code. In the portion of the model between this
block's two input signals, delays come from the Tx Filter and the Rx Filter. This section explains why
the Inner Error Rate block’s Receive delay parameter is the total delay on page 10-10 value of 16.

Tx Filter Block

The block labeled Tx Filter is a copy of the Raised Cosine Transmit Filter block. It interpolates the
input signal by a factor of 8 and applies a square-root raised cosine filter. For the filter, the value of
the Filter span in symbols parameter is 6, which means its group delay is 3 symbols. Since this
block’s sample rate increases from input port to output port, it must output an initial frame of zeros
at the beginning of the simulation. Since its input frame size is 2, the total delay of the block is 2 + 3
= 5 symbols. This corresponds to 5 samples at the block’s input port.

 Delays

10-9

Rx Filter Block

The block labeled Rx Filter is a copy of the Raised Cosine Receive Filter block. It decimates its input
signal by a factor of 8 and applies another square-root raised cosine filter. For the filter, the value of
the Filter span in symbols parameter is 6, which means its group delay is 3 symbols. At the output
of the filter block, the 3 symbols correspond to 3 samples.

QPSK Demodulator Block

The block labeled QPSK Demodulator Baseband receives complex QPSK signals and outputs 2 bits for
each complex input. This conversion to output bits doubles the cumulative delay at the input of the
block.

Summing the Delays

No other blocks in the portion of the model between the Inner Error Rate block's two input signals
cause any delays. The total delay is then (2 + 3 + 3) × 2 = 16 samples. This value can be used as the
Receive Delay parameter in the Inner Error Rate block.

Outer Error Rate Block

The block labeled Outer Error Rate, located at the left of the model, is a copy of the Error Rate
Calculation block from the Comm Sinks library. It computes the bit error rate for the entire model,
including the punctured convolutional code. Delays come from the Tx Filter, Rx Filter, and Viterbi
Decoder blocks. This section explains why the Receive delay parameter of the Outer Error Rate
block is the total delay on page 10-10 value of 108.

Filter and Downsample Blocks

The Tx Filter, Rx Filter, and Downsample blocks have a combined delay of 16 samples. For details, see
“Inner Error Rate Block” on page 10-9.

Viterbi Decoder Block

Because the Viterbi Decoder block decodes a rate 3/4 punctured code, it actually reduces the delay
seen at its input. This reduction is given as 16 × 3/4 = 12 samples.

The Viterbi Decoder block decodes the convolutional code, and the algorithm’s use of a traceback
path causes a delay. The block processes a frame-based signal and has Operation mode set to
Continuous. Therefore, the delay, measured in output samples, is equal to the Traceback depth
parameter value of 96. (The delay amount is stated on the reference page for the Viterbi Decoder
block.) Because the output of the Viterbi Decoder block is precisely one of the inputs to the Outer
Error Rate block, it is easier to consider the delay to be 96 samples rather than to convert it to an
equivalent number of frames.

Total Delay Relative to Outer Error Rate Block

The Outer Error Rate block requires a Receive delay parameter value that is the sum of all delays in
the system. This total delay is 12 + 96 = 108 samples.

Use the Find Delay Block
The preceding discussions explained why certain Error Rate Calculation blocks in the models had
specific Receive delay parameter values. You could have arrived at those numbers independently by
using the Find Delay block. This section explains how to find the signal delay using the “256-Channel

10 Data and Signal Management

10-10

ADSL” on page 1-144 example model. Applying the technique to the punctured convolutional coding
example, discussed in “Punctured Coding Model” on page 10-8, would be similar.

Using the Find Delay Block to Determine the Correct Receive Delay

Recall from “Path for Interleaved Data” on page 10-7 that the delay in the path for interleaved data is
776 samples. To have the Find Delay block compute that value for you, use this procedure:

1 Insert a Find Delay block and a Display block in the model near the Error Rate Calculation block
that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

3 Set the Find Delay block's Correlation window length parameter to a value substantially larger
than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else the values produced by
the Find Delay block do not stabilize at a correct value.

4 Run the simulation.

The new Display block now shows the value 776, as expected.

Manipulate Delays

• “Delays and Alignment Problems” on page 10-11
• “Observing the Problem” on page 10-12
• “Aligning Words of a Block Code” on page 10-14
• “Aligning Words for Interleaving” on page 10-15
• “Aligning Words of a Concatenated Code” on page 10-17
• “Aligning Words for Nonlinear Digital Demodulation” on page 10-19

Delays and Alignment Problems

Some models require you not only to compute delays but to manipulate them. For example, if a model
incurs a delay between a block encoder and its corresponding decoder, the decoder might
misinterpret the boundaries between the codewords that it receives and, consequently, return
meaningless results. More generally, such a situation can arise when the path between paired
components of a block-oriented operation (such as interleaving, block coding, or bit-to-integer
conversions) includes a delay-causing operation (such as those listed in “Sources of Delays” on page
10-6).

 Delays

10-11

To avoid this problem, you can insert an additional delay of an appropriate amount between the
encoder and decoder. If the model also computes an error rate, then the additional delay affects that
process, as described in “Delays” on page 10-6. This section uses examples to illustrate the purpose,
methods, and implications of manipulating delays in a variety of circumstances.

This section illustrates the sensitivity of block-oriented operations to delays, using a small model that
aims to capture the essence of the problem in a simple form. Then run the simulation so that the
Display blocks show relevant values.

In this model, two coding blocks create and decode a block code. Two copies of the Delay block
create a delay between the encoder and decoder. The two Delay blocks have different purposes in this
illustrative model:

• The Inherent Delay block represents any delay-causing blocks that might occur in a model
between the encoder and decoder. See “Sources of Delays” on page 10-6 for a list of possibilities
that might occur in a more realistic model.

• The Added Delay block is an explicit delay that you insert to produce an appropriate amount of
total delay between the encoder and decoder. The “256-Channel ADSL” on page 1-144 example
model contains a Delay block that serves this purpose.

Observing the Problem

By default, the Delay parameters in the Inherent Delay and Added Delay blocks are set to 1 and 0,
respectively. This represents the situation in which some operation causes a one-bit delay between
the encoder and decoder, but you have not yet tried to compensate for it. The total delay between the
encoder and decoder is one bit. You can see from the blocks labeled Word and Delayed Word that the
codeword that leaves the encoder is shifted downward by one bit by the time it enters the decoder.
The decoder receives a signal in which the boundary of the codeword is at the second bit in the
frame, instead of coinciding with the beginning of the frame. That is, the codewords and the frames
that hold them are not aligned with each other.

This nonalignment is problematic because the Hamming Decoder block assumes that each frame
begins a new codeword. As a result, it tries to decode a word that consists of the last bit of one output
frame from the encoder followed by the first six bits of the next output frame from the encoder. You

10 Data and Signal Management

10-12

can see from the Error Rate Display block that the error rate from this decoding operation is close to
1/2. That is, the decoder rarely recovers the original message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving each period symbol
from the end of the sentence to the end of the first word of the next sentence. If you try to read such
a paragraph while assuming that a new sentence begins after a period, you misunderstand the start
and end of each sentence. As a result, you might fail to understand the meaning of the paragraph.

To see how delays of different amounts affect the decoder's performance, vary the values of the Delay
parameter in the Added Delay block and the Receive delay parameter in the Error Rate Calculation
block and then run the simulation again. Many combinations of parameter values produce error rates
that are close to 1/2. Furthermore, if you examine the transmitted and received data by entering

[tx rx]

at the MATLAB command line, you might not detect any correlation between the transmitted and
received data.

Correcting the Delays

Some combinations of parameter values produce error rates of zero because the delays are
appropriate for the system. For example:

• In the Added Delay block, set Delay to 6.
• In the Error Rate Calculation block, set Receive delay to 4.
• Run the simulation.
• Enter [tx rx] at the MATLAB command line.

The top number in the Error Rate Display block shows that the error rate is zero. The decoder
recovered each transmitted message correctly. However, the Word and Displayed Word blocks do not
show matching values. It is not immediately clear how the encoder's output and the decoder's input
are related to each other. To clarify the matter, examine the output in the MATLAB command window.
The sequence along the first column (tx) appears in the second column (rx) four rows later. To
confirm this, enter

isequal(tx(1:end-4),rx(5:end))

at the MATLAB command line and observe that the result is 1 (true). This last command tests
whether the first column matches a shifted version of the second column. Shifting the MATLAB vector
rx by four rows corresponds to the Error Rate Calculation block's behavior when its Receive delay
parameter is set to 4.

To summarize, these special values of the Delay and Receive delay parameters work for these
reasons:

• Combined, the Inherent Delay and Added Delay blocks delay the encoded signal by a full
codeword rather than by a partial codeword. Thus the decoder is correct in its assumption that a
codeword boundary falls at the beginning of an input frame and decodes the words correctly.
However, the delay in the encoded signal causes each recovered message to appear one word
later, that is, four bits later.

• The Error Rate Calculation block compensates for the one-word delay in the system by comparing
each word of the transmitted signal with the data four bits later in the received signal. In this way,
it correctly concludes that the decoder's error rate is zero.

 Delays

10-13

Note These are not the only parameter values that produce error rates of zero. Because the code
in this model is a (7, 4) block code and the inherent delay value is 1, you can set the Delay and
Receive delay parameters to 7k-1 and 4k, respectively, for any positive integer k. It is important
that the sum of the inherent delay (1) and the added delay (7k-1) is a multiple of the codeword
length (7).

Aligning Words of a Block Code

The ADSL example, discussed in “ADSL Example Model” on page 10-7, illustrates the need to
manipulate the delay in a model so that each frame of data that enters a block decoder has a
codeword boundary at the beginning of the frame. The need arises because the path between a block
encoder and block decoder includes a delay-causing convolutional interleaving operation. This section
explains why the model uses a Delay block to manipulate the delay between the convolutional
deinterleaver and the block decoder, and why the Delay block is configured as it is.

Misalignment of Codewords

In the ADSL example, the Convolutional Interleaver and Convolutional Deinterleaver blocks appear
after the Scrambler & FEC subsystems but before the Descrambler & FEC subsystems. These two
subsystems contain blocks that perform Reed-Solomon coding, and the coding blocks expect each
frame of input data to start on a new word rather than in the middle of a word.

As discussed in “Path for Interleaved Data” on page 10-7, the delay of the interleaver and
deinterleaver pair is 40 samples. However, the input to the Descrambler & FEC subsystem is a frame
of size 840, and 40 is not a multiple of 840. Consequently, the signal that exits the Convolutional
Deinterleaver block is a frame whose first entry does not represent the beginning of a new codeword.
As described in “Observing the Problem” on page 10-12, this misalignment, between codewords and
the frames that contain them, prevents the decoder from decoding correctly.

Inserting a Delay to Correct the Alignment

The ADSL example solves the problem by moving the word boundary from the 41st sample of the 840-
sample frame to the first sample of a successive frame. Moving the word boundary is equivalent to
delaying the signal. To this end, the example contains a Delay block between the Convolutional
Deinterleaver block and the Descrambler & FEC subsystem.

The Delay parameter in the Delay block is 800 because that is the minimum number of samples
required to shift the 41st sample of one 840-sample frame to the first sample of the next 840-sample
frame. In other words, the sum of the inherent 40-sample delay (from the interleaving/deinterleaving
process) and the artificial 800-sample delay is a full frame of data, not a partial frame.

This 800-sample delay has implications for other parts of the model, specifically, the Receive delay
parameter in one of the Error Rate Calculation blocks. For details about how the delay influences the
value of that parameter, see “Path for Interleaved Data” on page 10-7.

Using the Find Delay Block

The preceding discussion explained why an 800-sample delay is necessary to correct the
misalignment between codewords and the frames that contain them. Knowing that the Descrambler

10 Data and Signal Management

10-14

& FEC subsystem requires frame boundaries to occur on word boundaries, you could have arrived at
the number 800 independently by using the Find Delay block. Use this procedure:

1 Insert a Find Delay block and a Display block in the model.
2 Create a branch line that connects the input of the Convolutional Interleaver block to the sRef

input of the Find Delay block.
3 Create another branch line that connects the output of the Convolutional Deinterleaver block to

the sDel input of the Find Delay block.
4 Connect the delay output of the Find Delay block to the new Display block. The modified part of

the model now looks like the following image (which also shows drop shadows on key blocks to
emphasize the modifications).

5 Show the dimensions of each signal in the model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

6 Run the simulation.

The new Display block now shows the value 40. Also, the display of signal dimensions shows that the
output from the Convolutional Deinterleaver block is a frame of length 840. These results indicate
that the sequence of blocks between the Convolutional Interleaver and Convolutional Deinterleaver,
inclusive, delays an 840-sample frame by 40 samples. An additional delay of 800 samples brings the
total delay to 840. Because the total delay is now a multiple of the frame length, the delayed
deinterleaved data can be decoded.

Aligning Words for Interleaving

This section describes an example that manipulates the delay before a deinterleaver, because the
path between the interleaver and deinterleaver includes a delay from demodulation.

 Delays

10-15

The model includes block coding, helical interleaving, and GMSK modulation. The table below
summarizes the individual block delays in the model.

Block Delay, in Output Samples
from Individual Block

Reference

GMSK Demodulator Baseband 16 “Delays in Digital
Demodulation” on page 11-8

Helical Deinterleaver 42 “Delays of Convolutional
Interleavers” on page 16-122

Delay 5 Delay reference page

Misalignment of Interleaved Words

The demodulation process in this model causes a delay between the interleaver and deinterleaver.
Because the deinterleaver expects each frame of input data to start on a new word, it is important to
ensure that the total delay between the interleaver and deinterleaver includes one or more full
frames but no partial frames.

The delay of the demodulator is 16 output samples. However, the input to the Helical Deinterleaver
block is a frame of size 21, and 16 is not a multiple of 21. Consequently, the signal that exits the
GMSK Demodulator Baseband block is a frame whose first entry does not represent the beginning of
a new word. As described in “Observing the Problem” on page 10-12, this misalignment between
words and the frames that contain them hinders the deinterleaver.

Inserting a Delay to Correct the Alignment

The model moves the word boundary from the 17th sample of the 21-sample frame to the first sample
of the next frame. Moving the word boundary is equivalent to delaying the signal by five samples. The
Delay block between the GMSK Demodulator Baseband block and the Helical Deinterleaver block
accomplishes such a delay. The Delay block has its Delay parameter set to 5.

Combining the effects of the demodulator and the Delay block, the total delay between the interleaver
and deinterleaver is a full 21-sample frame of data, not a partial frame.

10 Data and Signal Management

10-16

Checking Alignment of Block Codewords

The interleaver and deinterleaver cause a combined delay of 42 samples measured at the output from
the Helical Deinterleaver block. Because the delayed output from the deinterleaver goes next to a
Reed-Solomon decoder, and because the decoder expects each frame of input data to start on a new
word, it is important to ensure that the total delay between the encoder and decoder includes one or
more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not necessary to insert a Delay
block between the Helical Deinterleaver block and the Binary-Output RS Decoder block.

Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Channel Error Rate and System Error
Rate. Each of these blocks has a Receive delay parameter that must reflect the delay of the path
between the block's Tx and Rx signals. The following table explains the Receive delay values in the
two blocks.

Block Receive Delay Value Reason
Channel Error Rate 16 Delay of GMSK Demodulator Baseband block, in

samples
System Error Rate 15*3 Three fifteen-sample frames: one frame from the

GMSK Demodulator Baseband and Delay blocks,
and two frames from the interleaver and
deinterleaver pair

Aligning Words of a Concatenated Code

This section describes an example that manipulates the delay between the two portions of a
concatenated code decoder, because the first portion includes a delay from Viterbi decoding while the
second portion expects frame boundaries to coincide with word boundaries. It uses the block and
convolutional codes from the “Digital Video Broadcasting - Terrestrial” on page 1-418 example, but
simplifies the overall design a great deal.

 Delays

10-17

The model includes a shortened block code and a punctured convolutional code. All signals and
blocks in the model share the same frame period. The following table summarizes the individual block
delays in the model.

Block Delay, in Output Samples from Individual Block
Viterbi Decoder 136
Delay 1496 (that is, 1632 - 136)

Misalignment of Block Codewords

The Viterbi decoding process in this model causes a delay between the Integer to Bit Converter block
and the Bit to Integer Converter block. Because the latter block expects each frame of input data to
start on a new 8-bit word, it is important to ensure that the total delay between the two converter
blocks includes one or more full frames but no partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However, the input to the Bit to Integer
Converter block is a frame of size 1632. Consequently, the signal that exits the Viterbi Decoder block
is a frame whose first entry does not represent the beginning of a new word. As described in
“Observing the Problem” on page 10-12, this misalignment between words and the frames that
contain them hinders the converter block.

Note The outer decoder in this model (Integer-Output RS Decoder) also expects each frame of input
data to start on a new codeword. Therefore, the misalignment issue in this model affects many
concatenated code designs, not just those that convert between binary-valued and integer-valued
signals.

Inserting a Delay to Correct the Alignment

10 Data and Signal Management

10-18

The model moves the word boundary from the 137th sample of the 1632-sample frame to the first
sample of the next frame. Moving the word boundary is equivalent to delaying the signal by 1632-136
samples. The Delay block between the Viterbi Decoder block and the Bit to Integer Converter block
accomplishes such a delay. The Delay block has its Delay parameter set to 1496.

Combining the effects of the Viterbi Decoder block and the Delay block, the total delay between the
interleaver and deinterleaver is a full 1632-sample frame of data, not a partial frame.

Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Inner Error Rate and Outer Error
Rate. Each of these blocks has a Receive delay parameter that must reflect the delay of the path
between the block's Tx and Rx signals. The table below explains the Receive delay values in the two
blocks.

Block Receive Delay Value Reason
Inner Error Rate 136 Delay of Viterbi Decoder block, in samples
Outer Error Rate 1504 (188*8 bits) One 188-sample frame, from the combination of

the inherent delay of the Viterbi Decoder block
and the added delay of the Delay block

Aligning Words for Nonlinear Digital Demodulation

This example manipulates delay in order obtain the correct symbol synchronization of a signal so that
symbol boundaries correctly align before demodulation occurs.

This model includes a CPFSK modulation scheme and pulse shaping filter. For the demodulation to
work properly, the input signal to the CPFSK demodulator block must have the correct alignment.
Various blocks in this model introduce processing delays. Because of these delays, the input signal to
the CPFSK demodulator block is not in the correct alignment.

Both the Raised Cosine Transmit and Receive Filter blocks introduce a delay. The delay is defined as:
GroupDelay ⋅ Ts

 Delays

10-19

where Ts represents the input sample time of the Raised Cosine Transmit Filter block.

The input sample time of the Raised Cosine Transmit Filter block equals the output sample time of
the Raised Cosine Receive Filter block. Therefore, the total delay at the output of the Raised Cosine
Receive Filter is:

2 ⋅ GroupDelay ⋅ Ts

or 8 ⋅ Ts

as GroupDelay = 4

The CPFSK demodulator block receives this delayed signal, and then it processes each collection of 8
samples per symbol to compute 1 output symbol. You must ensure that the CPFSK demodulator
receives input samples in the correct collection of samples. For binary CPFSK with a Modulation
index of 1/2, the demodulator input must align along even numbers of symbols. Note that this
requirement applies only to binary CPFSK with a modulation index of 1/2. Other CPM schemes with
different M-ary values and modulation indexes have different requirements.

To ensure that the CPFSK demodulator in this model receives the correct collection of input samples
with the correct alignment, introduce a delay of 8 samples (in this example, 8 ⋅ Ts). The total delay at
the input of the CPFSK demodulator is 16 ⋅ Ts, which equates to two symbol delays (2.T, where T is
the symbol period).

In sample-based mode, the CPFSK demodulator introduces a delay of Traceback length + 1 samples
at its output. In this example, Traceback length equals 16. Therefore, the total Receiver delay in
the Error rate calculation block equals 17+2 or 19. For more information, see “Delays in Digital
Demodulation” on page 11-8.

10 Data and Signal Management

10-20

Digital Modulation

• “Digital Baseband Modulation” on page 11-2
• “Symbol Mapping Examples” on page 11-14
• “Demodulation Delay Examples” on page 11-21
• “Modulation with Pulse Shaping and Filtering Examples” on page 11-23
• “Hard- vs. Soft-Decision Demodulation Examples” on page 11-29
• “Amplitude Modulation” on page 11-36
• “Amplitude Modulation Examples” on page 11-38
• “Estimate Symbol Rate for General QAM Modulation in AWGN Channel” on page 11-42
• “Amplitude and Phase Modulation” on page 11-45
• “Amplitude and Phase Modulation Examples” on page 11-48
• “Continuous-Phase Modulation” on page 11-54
• “Continuous Phase Modulation Examples” on page 11-57
• “Frequency Modulation” on page 11-77
• “Orthogonal Frequency Division Multiplexing Modulation” on page 11-86
• “Apply OFDM in MIMO Simulation” on page 11-92
• “Phase Modulation” on page 11-95
• “Phase Modulation Examples” on page 11-104
• “Trellis-Coded Modulation” on page 11-110
• “Trellis Coded Modulation Examples” on page 11-112

11

Digital Baseband Modulation
In most media for communication, only a fixed range of frequencies is available for transmitting
messages. One way to communicate a message whose frequency spectrum does not fall within that
fixed frequency range, or one that is otherwise unsuitable for the channel, is to alter a carrier signal
according to the information in your message signal. This alteration is called modulation. The
transmitter sends the modulated symbols. The receiver then recovers the original message symbols
through a process called demodulation.

Modulation Methods
Digital baseband modulation modulates digital transmission symbols into sinusoidal waveforms.
Communications Toolbox software provides features to apply a variety of digital baseband modulation
methods. The process by which a carrier signal is altered according to information in a message
signal depends on the modulation method applied. The general form of the carrier signal, s(t) is

s(t) = A(t)cos[2πf0t+ϕ(t)]

The information-carrying component is the amplitude (A), frequency (f0), or phase (ϕ) individually, or
in combination.

Digital Modulation Type Modulation Methods
“Amplitude Modulation” on page 11-36

“Amplitude Modulation Examples” on page 11-
38

Pulse amplitude modulation (PAM)

Quadrature amplitude modulation (QAM)

“Amplitude and Phase Modulation” on page 11-
45

“Amplitude and Phase Modulation Examples” on
page 11-48

Amplitude and pulse shift keying (APSK)

Digital video broadcast system — APSK (DVBS-
APSK)

MIL-188-QAM
“Continuous-Phase Modulation” on page 11-54

“Continuous Phase Modulation Examples” on
page 11-57

Continuous-phase frequency shift keying (CPFSK)

Continuous-phase modulation (CPM)

Gaussian minimum shift keying (GMSK)

Minimum shift keying (MSK)
“Frequency Modulation” on page 11-77

“Frequency Modulation Examples” on page 11-
77

Frequency shift keying (FSK)

“Orthogonal Frequency Division Multiplexing
Modulation” on page 11-86

“OFDM Modulation Examples” on page 11-86

Orthogonal frequency division multiplexing
(OFDM)

11 Digital Modulation

11-2

Digital Modulation Type Modulation Methods
“Phase Modulation” on page 11-95

“Phase Modulation Examples” on page 11-104

Phase shift keying (PSK)

Differential phase shift keying (DPSK)

Offset quadrature phase shift keying (OQPSK)
“Trellis-Coded Modulation” on page 11-110

“Trellis Coded Modulation Examples” on page 11-
112

Trellis-coded modulation (TCM)

Phase shift keying — TCM (PSK-TCM)

Quadrature amplitude modulation — TCM (QAM-
TCM)

Note Modulation is often followed by pulse shaping, and demodulation is often preceded by a
filtering or an integrate-and-dump operation. Unless otherwise indicated, these modulation
techniques do not perform pulse shaping or filtering. For examples, see “Modulation with Pulse
Shaping and Filtering Examples” on page 11-23.

Modeling Concepts
Digital and analog modulation alter a transmittable signal according to the information in message
symbols. Digital modulation restricts the message signal to a finite set of symbols and outputs the
complex envelope of the modulated signal.

Baseband vs. Passband Simulation

Modulation is a process by which a carrier signal is altered according to information in a message
signal. To recover the message through a demodulator correctly, the Nyquist sampling theorem
requires fs > 2(fc + f), where fs represents the simulation sampling rate, fc represents the carrier
frequency, and f represents the highest frequency of the message signal. Typically, fc >> f.

Modulation can be modeled in baseband or passband simulations. Baseband simulation, also known
as the lowpass equivalent method, requires less computation.

Note While Communications Toolbox software supports baseband simulation for digital as well as
analog modulation, it supports passband simulation only for analog modulation.

When simulating baseband modulation to produce the complex envelope of the modulated message
signal, the output signal y is a complex-valued signal related to the output of an analog passband
modulator. If the modulated passband signal has the waveform

Y1(t) 2cos(2πfct + ϕ)− Y2(t) 2sin(2πfct + ϕ) ,

where fc is the carrier frequency and ϕ is the initial phase of the carrier signal, then a baseband
simulation recognizes that this equals the real part of

[(Y1(t) + jY2(t))e jϕ]exp(j2πfct) .

The baseband simulation models only the part inside the square brackets. Here, j is the square root of
–1. The baseband modulated signal vector y is a sampling of the complex signal

 Digital Baseband Modulation

11-3

(Y1(t) + jY2(t))e jθ .

As this figure shows,

• Digital modulators accept real-valued input bit vectors (or symbols) and return complex-valued
output signals (or samples).

• Digital demodulators accept complex-valued input signals (or samples) and return real-valued
output bit vectors (or symbols).

If you want to separate the in-phase and quadrature components of the complex modulated signal,
you can use the Complex to Real-Imag block, or the real and imag MATLAB functions.

As appropriate for a given modulation method, you can visualize the complex modulated signal by
viewing the:

• Modulated samples in a constellation plot
• Phase tree in an eye diagram
• Frequency response in a spectrum analyzer

Note If you prefer to work with analog passband signals instead of baseband signals, then you can
build functions that convert between the two. Be aware that analog passband modulation tends to be
more computationally intensive than baseband modulation because the carrier signal typically needs
to be sampled at a high rate.

Representing Digital Signals

To modulate a single-channel message using digital modulation, begin with a real message whose
values are integers in the range [0, (M–1)], where M represents the modulation order for an M-
symbol alphabet. Represent a single-channel message in a column vector or as a multichannel
message in a matrix, where each column of the matrix represents one channel. For example, to
modulate using an eight symbol alphabet:

• The column vector [2 3 7 1 0 5 5 2 6]' is a valid single-channel input to the modulator.
• The two-column matrix [2 3; 3 3; 7 3; 0 3;] is a valid multichannel input to the modulator.

The matrix for this multichannel input message specifies a second channel that has a constant
value of 3.

For more information, see “Signal Terminology” on page 9-2.

Integer-Valued and Binary-Valued Symbols

Most digital modulation functions, System objects, and blocks can accept either integer-valued or
binary-valued symbols. For modulators, you specify the input type as integer or binary. For
demodulators, you specify the output type as integer or binary.

• When you configure the modulator for integer-valued input symbols, the modulator accepts
integer values in the range [0, (M–1)]. M represents the modulation order.

11 Digital Modulation

11-4

• When you configure the modulator for bit-valued input symbols, the modulator accepts binary-
valued inputs that represent integers. The modulator collects binary-valued symbols into groups of
b = log2(M) bits, where b represents the number of bits per symbol. The input vector length must
be an integer multiple of b. In this configuration, the modulator maps groups of b bits onto
symbols at the modulator output. The modulator outputs one modulated symbol for each group of
b bits.

Symbol Mapping

Symbol mapping specifies the order used by the modulator to map a group of b input bits to a
corresponding phasor symbol of the constellation diagram. To achieve the lower bound limit for the
bit error rate, multilevel modulation schemes typically utilize the Gray coding technique. Gray-coding
orders modulation symbols so that the binary representations of adjacent symbols differ by only one
bit. Combining Gray-coded ordering in communications systems with forward error correction
techniques capable of correcting single-bit errors helps to minimize the bit error rate in multilevel
modulation schemes. For examples that demonstrate the symbol mapping and error rate performance
of Gray-coding and binary-coding, see “Symbol Mapping Examples” on page 11-14.

Most of the Communications Toolbox software modulation features use Gray-coded symbol mapping
as the default setting. The other symbol mapping options are binary-coded and custom-coded. The
property or parameter name used for the symbol mapping input control differs as appropriate for the
specific modulation method being used.

To illustrate the ordering, this table shows the relationship between 8-PSK modulated phasors output
versus the corresponding modulator integer or binary symbol input values when symbol mapping
uses Gray-encoding and binary-encoding.

8-PSK Modulator
Output

Gray-Encoding Binary-Encoding
Modulator
Integer Input

Modulator Binary
Input

Modulator
Integer Input

Modulator Binary
Input

exp(0) 0 000 0 000
exp(jπ/4) 1 001 1 001
exp(jπ/2) =
exp(j2π/4)

3 011 2 010

exp(j3π/4) 2 010 3 011
exp(jπ) =
exp(j4π/4)

6 110 4 100

exp(j5π/4) 7 111 5 101
exp(j3π/2) =
exp(j6π/4)

5 101 6 110

exp(j7π/4) 4 100 7 111

This constellation diagram plots the output phasors labeled with the Gray-coded values for the 8-PSK
modulated symbols. Comparing to the table, you can see the row entries for Gray-encoding appear in
counterclockwise order in the constellation diagram and show that there is only a 1 bit difference
between neighboring samples.

 Digital Baseband Modulation

11-5

Error Rate Performance of Gray-Coded M-PSK Modulation

You can analyze the data to compare theoretical performance with simulation performance. The
theoretical symbol error probability of M-PSK modulation is

PE(M) = erfc
Es
N0

sin π
M

where erfc is the complementary error function, Es/N0 is the ratio of energy in a symbol to noise
power spectral density, and M is the modulation order.

To determine the bit error probability, the symbol error probability, PE, needs to be converted to its bit
error equivalent. There is no general formula for the symbol to bit error conversion. Upper and lower
limits are nevertheless easy to establish. The actual bit error probability, Pb, can be shown to be
bounded by

PE(M)
log2M ≤ Pb ≤

M/2
M − 1PE(M)

The lower limit corresponds to the case where the symbols have undergone Gray coding. The upper
limit corresponds to the case of binary coding. Similar error rate performance improvements with
Gray-coded symbol mapping applies for other modulation methods. For more information on symbol
error rate (SER) and bit error rate (BER) analytical expressions, see “Analytical Expressions Used in
BER Analysis” on page 22-47.

Signal Upsampling and Rate Changes
Some digital modulation methods can output an upsampled version of the modulated symbols. The
corresponding digital demodulation method can accept an upsampled version of the modulated
symbols as input. The samples per symbol control represents the upsampling factor and must be a
positive integer. This table lists the modulation methods that offer upsampling support.

11 Digital Modulation

11-6

Digital Modulation Type Modulation Methods
“Continuous-Phase Modulation” on page 11-54 Continuous-phase frequency shift keying (CPFSK)

Continuous-phase modulation (CPM)

Gaussian minimum shift keying (GMSK)

Minimum shift keying (MSK)
“Frequency Modulation” on page 11-77 Frequency shift keying (FSK)
“Phase Modulation” on page 11-95 Offset quadrature phase shift keying (OQPSK)

Upsampling results in an input-to-output :

• Size change for single-rate processing.
• Rate change for multirate processing in Simulink. Multirate processing is not a consideration for

MATLAB.

In Simulink, your simulation can run with the rate option set for single-rate processing or multirate
processing.

For more information about rate changes, see “Sample- and Frame-Based Concepts”.

This table summarizes the resulting upsampled output based on the processing rate option and the
number of samples per symbol (NSPS) for modulation and demodulation in your simulation.

Computation Type Rate Option Upsampled Output
Modulation Single-rate processing For CPM and FM — Output

vector length is NSPS times the
number of integers or binary
words in the input vector.
Output sample time equals the
input sample time.

For OQPSK — Output vector
length is 2NSPS times the
number of integers or binary
words in the input vector.

Multirate processing For CPM and FM — Output
vector is same size as input
vector. Output sample time is
1/NSPS times the input sample
time.

For OQPSK — Output vector is
a scalar. Output sample time is
1/2NSPS times the input sample
time.

 Digital Baseband Modulation

11-7

Computation Type Rate Option Upsampled Output
Demodulation Single-rate processing For CPM and FM — Number of

integers or binary words in the
output vector is 1/NSPS times the
number of samples in the input
vector. Output sample time
equals the input sample time.

For OQPSK — Output vector is
1/2NSPS times the number of
samples in the input vector.

Multirate processing For CPM and FM — Output
vector is same size as input
vector. Output sample time is
NSPS times the input sample
time.

• The demodulated signal is
delayed by one output
symbol period if NSPS > 1
and the demodulator is from
the FM sublibrary.

• There is no delay if NSPS = 1
or if the demodulator is from
the CPM sublibrary.

For OQPSK — Output signal
contains one integer or one
binary word. Output sample
time is 2NSPS times the input
sample time. The demodulated
signal is delayed by one output
symbol period if NSPS > 1.

Delays in Digital Demodulation
Some digital demodulation techniques incur delays between their inputs and outputs. These delays
depend on the configuration of the demodulation techniques, and the characteristics of the
modulated signals. As a result of delays, data that enters a modulation or demodulation feature at
time T appears in the output at time T + delay. In particular, if your simulation computes error
statistics or compares transmitted data with received data, the simulation must account for the delay
when performing such computations or comparisons. For examples, see “Demodulation Delay
Examples” on page 11-21.

Demodulation Type Situation in Which Delay Occurs Amount of Delay
FM demodulator listed in
“Frequency Modulation”
on page 11-77

Sample-based processing delay = One output
period

11 Digital Modulation

11-8

Demodulation Type Situation in Which Delay Occurs Amount of Delay
All demodulator objects
and blocks listed in
“Continuous-Phase
Modulation” on page 11-
54

Single-rate processing, D = traceback depth
value

delay = D output
periods

Blocks configured for multirate processing and if
the model uses a variable-step solver or a fixed-
step solver with the Tasking Mode parameter
set to SingleTasking

D = Traceback length value

delay = D+1 output
periods

OQPSK demodulator
listed in “Phase
Modulation” on page 11-
95

Single-rate processing OQPSK demodulation
delay varies
depending on the
pulse shaping filter
and the input/output
settings. For more
information, see
comm.OQPSKDemodul
ator and OQPSK
Demodulator
Baseband.

Blocks configured for multirate processing, and
the model uses a fixed-step solver with Tasking
Mode parameter set to Auto or MultiTasking
Blocks configured for multirate processing, and
the model uses a variable-step solver or the
Tasking Mode parameter is set to Single
Tasking

All demodulator objects
and blocks listed in
“Trellis-Coded
Modulation” on page 11-
110

Configured for continuous operation with Tr
equal to the traceback depth value, and code rate
k/n

delay = Tr × k output
bits

Note Other sources of delays come from the M-DPSK, DQPSK, and DBPSK demodulators. These
demodulators produce output whose first sample is unrelated to the input. This delay is related to the
differential modulation technique, not the particular implementation of it. To account for the delay,
specify a one sample computation delay in the error rate calculation. For an example, see
comm.DQPSKDemodulator.

Hard- vs. Soft-Decision Demodulation
All Communications Toolbox demodulator functions, System objects, and blocks can demodulate
binary data using hard-decisions. Some of the demodulator functions, System objects, and blocks can
also demodulate binary data using soft-decisions.

The hard-decision demodulation computes the minimum Hamming distance for each received sample
and selects the symbol with minimum distance. When the hard decision output for a symbol has an
equal Hamming distance for multiple codewords, one of those codewords is randomly selected. Using
soft-decision demodulation can reduce the probability of decision error, but it is more computationally
intensive.

Two soft-decision algorithms are available: exact log-likelihood ratio (LLR) and approximate LLR.
Exact LLR provides the greatest accuracy but is slower, while approximate LLR is less accurate but
more efficient. For examples, see “Hard- vs. Soft-Decision Demodulation Examples” on page 11-29.

The exact LLR algorithm computes exponentials using finite precision arithmetic. For computations
involving very large positive or negative magnitudes, the exact LLR algorithm yields:

 Digital Baseband Modulation

11-9

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Exact LLR Algorithm

The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being transmitted
versus a 1 bit being transmitted for a received signal. The LLR for a bit, b, is defined as:

L(b) = log Pr(b = 0 r = (x, y))
Pr(b = 1 r = (x, y))

Assuming equal probability for all symbols, the LLR for an AWGN channel can be expressed as:

L(b) = log
∑

s ∈ S0
e−

1
σ2 (x− sx)2 + (y − sy)2

∑
s ∈ S1

e−
1

σ2 (x− sx)2 + (y − sy)2

Noise components along the in-phase and quadrature axes are assumed to be independent and of
equal power, that is, σx

2 = σy
2 = σ2/2.

Variables represent the values described in this table.

Variable Description
r Received signal with coordinates (x, y)
b Transmitted bit (one of the K bits in an M-ary symbol, assuming all M symbols

are equally probable)
S0 Ideal symbols or constellation points with bit 0, at the given bit position
S1 Ideal symbols or constellation points with bit 1, at the given bit position
sx In-phase coordinate of ideal symbol or constellation point
sy Quadrature coordinate of ideal symbol or constellation point

σ2 Noise variance of baseband signal

σx
2 Noise variance along in-phase axis

σy
2 Noise variance along quadrature axis

Approximate LLR Algorithm

Approximate LLR is computed by using only the nearest constellation point to the received sample
with a 0 (or 1) at that bit position, rather than all the constellation points as done in exact LLR. It is
defined in [8] as:

L(b) = − 1
σ2 min

s ∈ S0
(x− sx)2 + (y − sy)2 − min

s ∈ S1
(x− sx)2 + (y − sy)2

11 Digital Modulation

11-10

Accessing Digital Modulation Blocks
Open the Digital Baseband Modulation sublibrary by double-clicking its icon in the Modulation
library.

This table lists the sublibraries in the Digital Baseband Modulation sublibrary. Double-click the
icons in the Digital Baseband Modulation sublibrary to view the blocks in each individual
sublibrary.

Icon in Digital Baseband Library Kind of Modulation
APSK Amplitude and phase modulation
CPM (MSK, GMSK) Continuous phase modulation
FSK Frequency-shift keying modulation
OFDM Orthogonal frequency division modulation
PAM/QAM Phase amplitude and quadrature amplitude

modulations
PSK Phase-shift keying modulation
Standard-Compliant (DVBS,MIL188) Digital video broadcast-satellite and MIL-

STD-188 Standard-compliant modulations
TCM Trellis-coded modulation

This table lists general modulator blocks along with the conditions under which is general modulator
is equivalent to a specific-case modulator block. The situation is analogous for demodulators. The
specific-case modulation blocks use the same computational code that their general counterparts use,
but provide an interface that is either simpler or more suitable for the specific case.

General Modulator General Modulator Conditions Specific-case Modulator
General QAM Modulator
Baseband

Predefined constellation containing
M = 2b points on a rectangular
lattice. M is the modulation order
and b is the number of bits per
symbol represented by each
constellation point.

Rectangular QAM Modulator
Baseband

M-PSK Modulator
Baseband

M-ary number parameter set to 2. BPSK Modulator Baseband
M-ary number parameter set to 4. QPSK Modulator Baseband

M-DPSK Modulator
Baseband

M-ary number parameter set to 2. DBPSK Modulator Baseband
M-ary number parameter set to 4. DQPSK Modulator Baseband

CPM Modulator Baseband M-ary number parameter set to 2
and Frequency pulse shape
parameter set to Gaussian.

GMSK Modulator Baseband

M-ary number parameter set to 2,
Frequency pulse shape parameter
set to Rectangular, and Pulse
length parameter set to 1.

MSK Modulator Baseband

 Digital Baseband Modulation

11-11

General Modulator General Modulator Conditions Specific-case Modulator
Frequency pulse shape parameter
set to Rectangular and Pulse
length parameter set to 1.

CPFSK Modulator Baseband

General TCM Encoder Predefined signal constellation
containing M = 2b points on a
rectangular lattice.

Rectangular QAM TCM Encoder

Predefined signal constellation
containing M = 2b points on a circle.

M-PSK TCM Encoder

The CPFSK Modulator Baseband block is similar to the M-FSK Modulator Baseband block, when the
M-FSK block uses continuous phase transitions. However, the M-FSK features differ from the CPFSK
features in their mask interfaces and in the demodulator implementations.

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication
Systems. Second edition. Boston, MA: Springer US, 2000.

[2] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

[3] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[4] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:
Plenum Press, 1986.

[5] Biglieri, E., D. Divsalar, P.J. McLane, and M.K. Simon, Introduction to Trellis-Coded Modulation
with Applications, New York, Macmillan, 1991.

[6] Pawula, R.F., "On M-ary DPSK Transmission Over Terrestrial and Satellite Channels," IEEE
Transactions on Communications, Vol. COM-32, July 1984, pp. 752–761.

[7] Smith, J. G., "Odd-Bit Quadrature Amplitude-Shift Keying," IEEE Transactions on Communications,
Vol. COM-23, March 1975, pp. 385–389.

[8] Viterbi, A.J. “An Intuitive Justification and a Simplified Implementation of the MAP Decoder for
Convolutional Codes.” IEEE Journal on Selected Areas in Communications 16, no. 2 (February
1998): 260–64. https://doi.org/10.1109/49.661114.

See Also

Related Examples
• “Symbol Mapping Examples” on page 11-14
• “Demodulation Delay Examples” on page 11-21
• “Modulation with Pulse Shaping and Filtering Examples” on page 11-23
• “Hard- vs. Soft-Decision Demodulation Examples” on page 11-29

11 Digital Modulation

11-12

More About
• “Amplitude Modulation” on page 11-36
• “Amplitude and Phase Modulation” on page 11-45
• “Continuous-Phase Modulation” on page 11-54
• “Frequency Modulation” on page 11-77
• “Orthogonal Frequency Division Multiplexing Modulation” on page 11-86
• “Phase Modulation” on page 11-95
• “Trellis-Coded Modulation” on page 11-110
• “Analog Passband Modulation” on page 12-17
• “Analog Baseband Modulation” on page 12-2

 Digital Baseband Modulation

11-13

Symbol Mapping Examples

Compare Error Rate for Gray- and Binary-Coded Ordering

Compare Gray coding with binary coding by using appropriately configured PSK modulator and PSK
demodulator System objects. This simulation iterates over a range of bit energy to noise power
spectral density, Eb/N0, values and runs until either the specified maximum number of bit errors
(maxNumErrs) or the maximum number of bits (maxNumBits) is reached for Gray coding for each
Eb/N0 point.

Initialization

Initialize the system variables and create System objects for modulation, demodulation, AWGN
channel, and error rate operations. Since the comm.AWGNChannel System object™ and the randi
function use the default random stream, set the random number generator seed to ensure repeatable
results. The state of the random number generator is stored before setting the random stream seed,
and restored at the end of the example.

M = 8; % Modulation order for 8-PSK
sps = 10000; % Samples per frame
maxNumErrs=100; % Stop simulation if 100 errors reached
maxNumBits=1e8; % Stop simulation if 1e8 bits transmitted

prevState = rng;
rng(529558);

Create PSK modulator and demodulator System objects to map the binary input data to 8-PSK Gray-
and binary-coded constellations.

pskmod = comm.PSKModulator(...
 ModulationOrder=M, ...
 SymbolMapping="Gray", ...
 PhaseOffset=0, ...
 BitInput=true);
pskdemod = comm.PSKDemodulator(...
 ModulationOrder=M, ...
 SymbolMapping="Gray", ...
 PhaseOffset=0, ...
 BitOutput=true, ...
 OutputDataType="uint8", ...
 DecisionMethod="Hard decision");
pskmodb = comm.PSKModulator(...
 ModulationOrder=M, ...
 SymbolMapping="Binary", ...
 PhaseOffset=0, ...
 BitInput=true);
pskdemodb = comm.PSKDemodulator(...
 ModulationOrder=M, ...
 SymbolMapping="Binary", ...
 PhaseOffset=0, ...
 BitOutput=true, ...
 OutputDataType="uint8", ...
 DecisionMethod="Hard decision");

11 Digital Modulation

11-14

Create an AWGN channel System object to add noise to the modulated signal. The noise method is
configured to Eb/N0 for the processing loop. The PSK modulator generates symbols with 1 W of
power, so the signal power property of the AWGN channel object is set to 1 W also.

awgnchan = comm.AWGNChannel(...
 NoiseMethod="Signal to noise ratio (Eb/No)", ...
 BitsPerSymbol=log2(M), ...
 SignalPower=1);

Create a symbol error rate and bit error rate calculator System objects to compare the demodulated
integer and bit data with the original source data. This comparison yields symbol error and bit error
statistics. The output of the error rate calculator System object is a three-element vector containing
the calculated error rate, the number of errors observed, and the amount of data processed. The
simulation uses the three-element vector to determine when to stop the simulation.

symerror = comm.ErrorRate;
biterror = comm.ErrorRate;
biterrorb = comm.ErrorRate;

Frame Processing Loop

Configure a frame processing loop where data is coded, modulated, and demodulated using 8-PSK
modulation. The loop simulates the communications system for Eb/N0 values in the range 0 dB to 12
dB in steps of 2 dB.

For each Eb/N0 value, the simulation stops when either the maximum number of errors
(maxNumErrs) or the maximum number of bits (maxNumBits) processed by the bit error rate
calculator System object is reached for the Gray coded bits.

EbNoVec = 0:2:12; % Eb/No values to simulate
SERVec = zeros(size(EbNoVec)); % SER history
BERVec = zeros(size(EbNoVec)); % BER history for Gray ordered
BERVecb = zeros(size(EbNoVec)); % BER history for binary ordered
for p = 1:length(EbNoVec)
 % Reset System objects
 reset(symerror);
 reset(biterror);
 reset(biterrorb);
 awgnchan.EbNo = EbNoVec(p);
 % Reset SER and BER for the current Eb/No value
 SER = zeros(3,1);
 BER = zeros(3,1);
 while (BER(2)<maxNumErrs) && (BER(3)<maxNumBits)
 % Generate random data
 txSym = randi([0 M-1],sps,1,"uint8");
 txBits = int2bit(txSym,log2(M),true); % Convert symbols to bits
 tx = pskmod(txBits);
 txb = pskmodb(txBits);
 rx = awgnchan(tx);
 rxb = awgnchan(txb);
 rxBits = pskdemod(rx);
 rxBitsb = pskdemodb(rxb);
 rxSym = bit2int(rxBits,log2(M),true);
 SER = symerror(txSym,rxSym); % SER for Gray-coded data
 BER = biterror(txBits,rxBits); % BER for Gray-coded data
 BERb = biterrorb(txBits,rxBitsb); % BER for binary-coded data
 end

 Symbol Mapping Examples

11-15

 % Save history of SER and BER values
 SERVec(p) = SER(1);
 BERVec(p) = BER(1);
 BERVecb(p) = BERb(1);
end

Restore the default stream.

rng(prevState)

Results Analysis

Analyze the data from the example and compare theoretical performance with simulation
performance. Calculate theoretical error probabilities by using the berawgn function. Plot the
simulated symbol error rate for Gray coding, bit error rate for Gray and binary coding, and the
theoretical symbol error and bit error probabilities for Gray coding.

[theorBER,theorSER] = berawgn(EbNoVec,"psk",M,"nondiff");

figure;
semilogy(...
 EbNoVec,SERVec,"o", ...
 EbNoVec,BERVecb,"x", ...
 EbNoVec,BERVec,"*", ...
 EbNoVec,theorSER,"-", ...
 EbNoVec,theorBER,"-");
legend("Symbol error rate", "Bit error rate (Binary)", ...
 "Bit error rate (Gray)", "Theoretical Symbol error rate", ...
 "Theoretical Bit error rate", "Location","SouthWest");
xlabel("Eb/No (dB)");
ylabel("Error Probability");
title("Symbol and Bit Error Probability");
grid on;

11 Digital Modulation

11-16

Gray-Coded M-PSK Modulation Error Rate in AWGN Channel Using
Simulink

This example uses the doc_gray_code to compute bit error rates (BER) and symbol error rates
(SER) for M-PSK modulation. The theoretical error rate performance of M-PSK modulation in AGWN
is compared to the error rate performance for Gray-coded symbol mapping and to the error rate
performance of binary-coded symbol mapping.

 Symbol Mapping Examples

11-17

The Random Integer Generator block serves as the source, producing a sequence of integers. The
Integer to Bit Converter block converts each integer into a corresponding binary representation. The
M-PSK Modulator Baseband block in the doc_gray_code model:

• Accepts binary-valued inputs that represent integers in the range [0, (M - 1], where M is the
modulation order.

• Maps binary representations to constellation points using a Gray-coded ordering.
• Produces unit-magnitude complex phasor outputs, with evenly spaced phases in the range [0, (2

(M - 1) / M)].

The AWGN Channel block adds white Gaussian noise to the modulated data. The M-PSK Demodulator
Baseband block demodulates the noisy data. The Bit to Integer Converter block converts each binary
representation to a corresponding integer. Then two separate Error Rate Calculation blocks calculate
the error rates of the demodulated data. The block labeled SER Calculation compares the integer
data to compute the symbol error rate statistics and the block labeled BER Calculation compares
the bits data to compute the bit error rate statistics. The output of the Error Rate Calculation block is
a three-element vector containing the calculated error rate, the number of errors observed, and the
amount of data processed.

To reduce simulation run time and ensure that the statistics of the errors remain stable as the Eb/N0
ratio increases, the model is configured to run until 100 errors occur or until 1e8 bits have been
transmitted.

11 Digital Modulation

11-18

The model initializes variables used to configure block parameters by using the PreLoadFcn callback
function. For more information, see “Model Callbacks” (Simulink).

Produce Error Rate Curves

Compute the theoretical BER for nondifferential 8-PSK in AWGN over a range of Eb/N0 values by
using the berawgn function. Simulate the doc_gray_code model with Gray-coded symbol mapping
over the same range of Eb/N0 values.

Compare Gray coding with binary coding, by modifying the M-PSK Modulator Baseband and M-PSK
Demodulator Baseband blocks to set the Constellation ordering parameter to Binary instead of
Gray. Simulate the doc_gray_code model with binary-coded symbol mapping over the same range
of Eb/N0 values.

Plot the results by using the semilogy function. The Gray-coded system achieves better error rate
performance than the binary-coded system. Further, the Gray-coded error rate aligns with the
theoretical error rate statistics.

Gray Encode Modulated Signal

For the PSK, DPSK, FSK, QAM, and PAM modulation types, Gray constellations are obtained by
setting the symbol mapping to Gray-encoding in the corresponding modulation function, System
object™, or block. The default symbol order uses Gray-encoded ordering for modulation.

 Symbol Mapping Examples

11-19

For modulation functions, you can specify "gray", "bin", or a vector specifying custom symbol
ordering. This example uses the qammod function with Gray-encoded symbol mapping. Check the
constellation plot, the modulated symbols are Gray-encoded because all adjacent elements differ by
only one bit.

k = 4;
M = 2^k;
y = int2bit([0:M-1]',k,false);
symorder = "gray";
xmap = qammod(y,M,symorder, ...
 InputType="bit", ...
 PlotConstellation=true);

See Also

More About
• “Digital Baseband Modulation” on page 11-2
• “Analog Passband Modulation” on page 12-17
• “Analog Baseband Modulation” on page 12-2

11 Digital Modulation

11-20

Demodulation Delay Examples

Delays from OQPSK Demodulation Using Simulink

The OQPSK demodulation in the doc_oqpsk_modulation_delay model causes the demodulated
signal to lag, compared to the unmodulated signal. When computing error statistics, the model must
adjust the Receive delay parameter in the Error Rate Calculation block to account for the
demodulation delay. With the incorrect delay setting, the computed error rate is incorrect and
significantly higher than expected.

Explore the model

The Random Integer Generator block has the Set size parameter set to 4 to generate integer in the
range [0,3] for OQPSK modulation. The OQPSK Modulator Baseband and OQPSK Demodulator
Baseband blocks are configured with a custom filter pulse shape that has filter numerator set to
[0.7071 0.7071], samples per symbol set to 2, and the Rate options parameter set to Allow
multirate processing. The AWGN Channel block has the Es/N0 set to 6 dB. The Error Rate
Calculation block begins error rate computation with the first received sample and sends the results
an output port. The Display block is resized to show the output triplet (error rate, number of errors,
and number of samples). The Simulation tab has the Stop time set to 1000.

After running the simulation the display block shows error rate calculations and the To Workspace
block outputs the yout variable with error rate calculations for all frames. The error rate varies
depending on the initial seed value in the Random Integer Generator block.

Run the simulation

Run the simulation with the receive delay set to 0 in the Error Rate Calculation block. Display the
computed error rate. The computed error rate is higher than expected.

Calculated error rate = 0.765235

Change the receive delay set to 1 in the Error Rate Calculation block. Rerun the simulation and
display the computed error rate. The computed error rate is in line with the expected value for an
OQPSK signal transmission through an AWGN channel with Es/N0 set to 6 dB.

 Demodulation Delay Examples

11-21

Calculated error rate = 0.036000

See Also

More About
• “Digital Baseband Modulation” on page 11-2
• “Analog Passband Modulation” on page 12-17
• “Analog Baseband Modulation” on page 12-2

11 Digital Modulation

11-22

Modulation with Pulse Shaping and Filtering Examples

Rectangular Pulse Shaping

Rectangular pulse shaping repeats each output from the modulator a fixed number of times to create
an upsampled signal. Although it is less realistic than other kinds of pulse shaping, rectangular pulse
shaping can be a first step or an exploratory step in algorithm development. If the transmitter
upsamples the modulated signal, then the receiver should downsample the received signal before
demodulating. This code uses the rectpulse function for rectangular pulse shaping at the
transmitter and the intdump function for downsampling at the receiver. The integrate and dump
operation is one way to downsample the received signal.

Define simulation variables and create a random digital message.

M = 16; % Alphabet size, 16-QAM
Nsamp = 4; % Oversampling rate
snr = 15; % Signal to noise ratio in dB
x = randi([0 M-1],5000,1); % Message signal

Apply 16-QAM modulation and rectangular pulse shaping. Transmit the signal through an AWGN
channel.

y = qammod(x,M);
ypulse = rectpulse(y,Nsamp);
ynoisy = awgn(ypulse,15,'measured');

Downsample at the receiver. Use a spectrumAnalyzer to compare the pulse-shaped transmitted
signal before and after the addition of AWGN.

ydownsamp = intdump(ynoisy,Nsamp);
sa1 = spectrumAnalyzer(...
 Title="16-QAM Signal with Rectangular Pulse Shaping", ...
 ChannelNames={'No noise','SNR=15 dB'});
sa1(ypulse,ynoisy)

 Modulation with Pulse Shaping and Filtering Examples

11-23

Demodulate to recover the message.

z = qamdemod(ydownsamp,M);

Pulse Shaping Using a Raised Cosine Filter

Filter a 16-QAM signal using a pair of square root raised cosine matched filters. Plot the eye diagram
and scatter plot of the signal. After passing the signal through an AWGN channel, calculate the
number of bit errors.

Set the simulation parameters.

M = 16; % Modulation order
bps = log2(M); % Bits/symbol
n = 20000; % Transmitted bits
sps = 4; % Samples per symbol
EbNo = 10; % Eb/No (dB)

Set the filter parameters.

span = 10; % Filter span in symbols
rolloff = 0.25; % Rolloff factor

Create the raised cosine transmit and receive filters using the previously defined parameters.

11 Digital Modulation

11-24

txfilter = comm.RaisedCosineTransmitFilter(...
 RolloffFactor=rolloff, ...
 FilterSpanInSymbols=span, ...
 OutputSamplesPerSymbol=sps);

rxfilter = comm.RaisedCosineReceiveFilter(...
 RolloffFactor=rolloff, ...
 FilterSpanInSymbols=span, ...
 InputSamplesPerSymbol=sps, ...
 DecimationFactor=sps);

Plot the impulse response of the raised cosine transmit filter object txFilter.

fvtool(txfilter,Analysis="impulse")

Calculate the delay through the matched filters. The group delay is half of the filter span through one
filter and is, therefore, equal to the filter span for both filters. Multiply by the number of bits per
symbol to get the delay in bits.

filtDelay = bps*span;

Create an error rate counter System object™. Set the ReceiveDelay property to account for the
delay through the matched filters.

errorRate = comm.ErrorRate(ReceiveDelay=filtDelay);

Generate binary data.

 Modulation with Pulse Shaping and Filtering Examples

11-25

x = randi([0 1],n,1);

Modulate the data.

modSig = qammod(x,M,InputType="bit");

Filter the modulated signal.

txSig = txfilter(modSig);

Plot the eye diagram of the first 1000 samples.

eyediagram(txSig(1:1000),sps)

Calculate the signal-to-noise ratio (SNR) in dB given EbNo. Pass the transmitted signal through the
AWGN channel using the awgn function.

SNR = EbNo + 10*log10(bps) - 10*log10(sps);
noisySig = awgn(txSig,SNR,"measured");

11 Digital Modulation

11-26

Filter the noisy signal and display its scatter plot.

rxSig = rxfilter(noisySig);
scatterplot(rxSig)

Demodulate the filtered signal and calculate the error statistics. The delay through the filters is
accounted for by the ReceiveDelay property in errorRate.

z = qamdemod(rxSig,M,OutputType="bit");

errStat = errorRate(x,z);
fprintf('\nBER = %5.2e\nBit Errors = %d\nBits Transmitted = %d\n',...
 errStat)

BER = 1.85e-03
Bit Errors = 37
Bits Transmitted = 19960

See Also

More About
• “Digital Baseband Modulation” on page 11-2
• “Analog Passband Modulation” on page 12-17

 Modulation with Pulse Shaping and Filtering Examples

11-27

• “Analog Baseband Modulation” on page 12-2

11 Digital Modulation

11-28

Hard- vs. Soft-Decision Demodulation Examples

Log-Likelihood Ratio (LLR) Demodulation

This example shows the BER performance improvement for QPSK modulation when using log-
likelihood ratio (LLR) instead of hard-decision demodulation in a convolutionally coded
communication link. With LLR demodulation, one can use the Viterbi decoder either in the
unquantized decoding mode or the soft-decision decoding mode. Unquantized decoding, where the
decoder inputs are real values, though better in terms of BER, is not practically viable. In the more
practical soft-decision decoding, the demodulator output is quantized before being fed to the decoder.
It is generally observed that this does not incur a significant cost in BER while significantly reducing
the decoder complexity. We validate this experimentally through this example.

For a Simulink™ version of this example, see “LLR vs. Hard Decision Demodulation in Simulink” on
page 1-136.

Initialization

Initialize simulation parameters.

M = 4; % Modulation order
bitsPerIter = 1.2e4; % Number of bits to simulate
EbNo = 3; % Information bit Eb/No in dB

Initialize coding properties for a rate 1/2, constraint length 7 code.

codeRate = 1/2; % Code rate of convolutional encoder
constLen = 7; % Constraint length of encoder
codeGenPoly = [171 133]; % Code generator polynomial of encoder
tblen = 32; % Traceback depth of Viterbi decoder
trellis = poly2trellis(constLen,codeGenPoly);

Create a comm.ConvolutionalEncoder System object™ by using trellis as an input.

enc = comm.ConvolutionalEncoder(trellis);

Channel

The signal going into the AWGN channel is the modulated encoded signal. To achieve the required
noise level, adjust the Eb/No for coded bits and multi-bit symbols. Calculate the SNR value based on
the Eb/No value you want to simulate.

SNR = convertSNR(EbNo,"ebno","BitsPerSymbol",log2(M),"CodingRate",codeRate);

Viterbi Decoding

Create comm.ViterbiDecoder objects to act as the hard-decision, unquantized, and soft-decision
decoders. For all three decoders, set the traceback depth to tblen.

decHard = comm.ViterbiDecoder(trellis,'InputFormat','Hard', ...
 'TracebackDepth',tblen);

decUnquant = comm.ViterbiDecoder(trellis,'InputFormat','Unquantized', ...
 'TracebackDepth',tblen);

 Hard- vs. Soft-Decision Demodulation Examples

11-29

decSoft = comm.ViterbiDecoder(trellis,'InputFormat','Soft', ...
 'SoftInputWordLength',3,'TracebackDepth',tblen);

Calculating the Error Rate

Create comm.ErrorRate objects to compare the decoded bits to the original transmitted bits. The
Viterbi decoder creates a delay in the decoded bit stream output equal to the traceback length. To
account for this delay, set the ReceiveDelay property of the comm.ErrorRate objects to tblen.

errHard = comm.ErrorRate('ReceiveDelay',tblen);
errUnquant = comm.ErrorRate('ReceiveDelay',tblen);
errSoft = comm.ErrorRate('ReceiveDelay',tblen);

System Simulation

Generate bitsPerIter message bits. Then convolutionally encode and modulate the data.

txData = randi([0 1],bitsPerIter,1);
encData = enc(txData);
modData = pskmod(encData,M,pi/4,InputType="bit");

Pass the modulated signal through an AWGN channel.

[rxSig,noiseVariance] = awgn(modData,SNR);

Before using a comm.ViterbiDecoder object in the soft-decision mode, the output of the
demodulator needs to be quantized. This example uses a comm.ViterbiDecoder object with a
SoftInputWordLength of 3. This value is a good compromise between short word lengths and a
small BER penalty. Define partition points for 3-bit quantization.

demodLLR.Variance = noiseVariance;
partitionPoints = (-1.5:0.5:1.5)/noiseVariance;

Demodulate the received signal and output hard-decision bits.

hardData = pskdemod(rxSig,M,pi/4,OutputType="bit");

Demodulate the received signal and output LLR values.

LLRData = pskdemod(rxSig,M,OutputType="llr");

Hard-decision decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataHard = decHard(hardData);
berHard = errHard(txData,rxDataHard);

Unquantized decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataUnquant = decUnquant(LLRData);
berUnquant = errUnquant(txData,rxDataUnquant);

Soft-decision decoding

11 Digital Modulation

11-30

Pass the demodulated data to the quantiz function. This data must be multiplied by -1 before being
passed to the quantizer, because, in soft-decision mode, the Viterbi decoder assumes that positive
numbers correspond to 1s and negative numbers to 0s. Pass the quantizer output to the Viterbi
decoder. Compute the error statistics.

quantizedValue = quantiz(-LLRData,partitionPoints);
rxDataSoft = decSoft(double(quantizedValue));
berSoft = errSoft(txData,rxDataSoft);

Running Simulation Example

Simulate the previously described communications system over a range of Eb/No values by executing
the simulation file simLLRvsHD. It plots BER results as they are generated. BER results for hard-
decision demodulation and LLR demodulation with unquantized and soft-decision decoding are
plotted in red, blue, and black, respectively. A comparison of simulation results with theoretical
results is also shown. Observe that the BER is only slightly degraded by using soft-decision decoding
instead of unquantized decoding. The gap between the BER curves for soft-decision decoding and the
theoretical bound can be narrowed by increasing the number of quantizer levels.

This example may take some time to compute BER results. If you have the Parallel Computing
Toolbox™ (PCT) installed, you can set usePCT to true to run the simulation in parallel. In this case,
the file LLRvsHDwithPCT is run.

To obtain results over a larger range of Eb/No values, modify the appropriate supporting files. Note
that you can obtain more statistically reliable results by collecting more errors.

usePCT = false;
if usePCT && license('checkout','Distrib_Computing_Toolbox') ...
 && ~isempty(ver('parallel'))
 LLRvsHDwithPCT(1.5:0.5:5.5,5);
else
 simLLRvsHD(1.5:0.5:5.5,5);
end

 Hard- vs. Soft-Decision Demodulation Examples

11-31

Appendix

The following functions are used in this example:

• simLLRvsHD.m — Simulates system without PCT.
• LLRvsHDwithPCT.m — Simulates system with PCT.
• simLLRvsHDPCT.m — Helper function called by LLRvsHDwithPCT.

LLR vs. Hard Decision Demodulation in Simulink

This model shows the improvement in BER performance when using log-likelihood ratio (LLR) instead
of hard decision demodulation in a convolutionally coded communication link.

For a MATLAB® version of this example, see “Log-Likelihood Ratio (LLR) Demodulation” on page 1-
99.

System Setup

This example model simulates a convolutionally coded communication system having one transmitter,
an AWGN channel and three receivers. The convolutional encoder has a code rate of 1/2. The system
employs a 16-QAM modulation. The modulated signal passes through an additive white Gaussian
noise channel. The top receiver performs hard decision demodulation in conjunction with a Viterbi
decoder that is set up to perform hard decision decoding. The second receiver has the demodulator
configured to compute log-likelihood ratios (LLRs) that are then quantized using a 3-bit quantizer. It

11 Digital Modulation

11-32

is well known that the quantization levels are dependent on noise variance for optimum performance
[2]. The exact boundaries of the quantizer are empirically determined here. A Viterbi decoder that is
set up for soft decision decoding processes these quantized values. The LLR values computed by the
demodulator are multiplied by -1 to map them to the right quantizer index for use with Viterbi
Decoder. To compute the LLR, the demodulator must be given the variance of noise as seen at its
input. The third receiver includes a demodulator that computes LLRs which are processed by a
Viterbi decoder that is set up in unquantized mode. The BER performance of each receiver is
computed and displayed.

modelName = 'commLLRvsHD';
open_system(modelName);

System Simulation and Visualization

Simulate this system over a range of information bit Eb/No values. Adjust these Eb/No values for
coded bits and multi-bit symbols to get noise variance values required for the AWGN block and
Rectangular QAM Baseband Demodulator block. Collect BER results for each Eb/No value and
visualize the results.

EbNo = 2:0.5:8; % information rate Eb/No in dB
codeRate = 1/2; % code rate of convolutional encoder
nBits = 4; % number of bits in a 16-QAM symbol
Pavg = 10; % average signal power of a 16-QAM modulated signal
snr = EbNo - 10*log10(1/codeRate) + 10*log10(nBits); % SNR in dB
noiseVarVector = Pavg ./ (10.^(snr./10)); % noise variance

% Initialize variables for storing the BER results
ber_HD = zeros(1,length(EbNo));
ber_SD = zeros(1,length(EbNo));
ber_LLR = zeros(1, length(EbNo));

 Hard- vs. Soft-Decision Demodulation Examples

11-33

% Loop over all noiseVarVector values
for idx=1:length(noiseVarVector)
 noiseVar = noiseVarVector(idx); %#ok<NASGU>
 sim(modelName);
 % Collect BER results
 ber_HD(idx) = BER_HD(1);
 ber_SD(idx) = BER_SD(1);
 ber_LLR(idx) = BER_LLR(1);
end

% Perform curve fitting and plot the results
fitBER_HD = real(berfit(EbNo,ber_HD));
fitBER_SD = real(berfit(EbNo,ber_SD));
fitBER_LLR = real(berfit(EbNo,ber_LLR));
semilogy(EbNo,ber_HD,'r*', ...
 EbNo,ber_SD,'g*', ...
 EbNo,ber_LLR,'b*', ...
 EbNo,fitBER_HD,'r', ...
 EbNo,fitBER_SD,'g', ...
 EbNo,fitBER_LLR,'b');
legend('Hard Decision Decoding', ...
 'Soft Decision Decoding','Unquantized Decoding');
xlabel('Eb/No (dB)');
ylabel('BER');
title('LLR vs. Hard Decision Demodulation with Viterbi Decoding');
grid on;

11 Digital Modulation

11-34

To experiment with this system further, try different modulation types. This system uses a binary
mapped modulation scheme for faster error collection but it is well known that Gray mapped signal
constellation provides better BER performance. Experiment with various constellation ordering
options in the modulator and demodulator blocks. Configure the demodulator block to compute
approximate LLR to see the difference in the BER performance compared to hard decision
demodulation and LLR. Try out a different range of Eb/No values. Finally, investigate different
quantizer boundaries for your modulation scheme and Eb/No values.

Using Dataflow in Simulink

You can configure this example to use data-driven execution by setting the Domain parameter to
dataflow for Dataflow Subsystem. With dataflow, blocks inside the domain, execute based on the
availability of data as rather than the sample timing in Simulink®. Simulink automatically partitions
the system into concurrent threads. This autopartitioning accelerates simulation and increases data
throughput. To learn more about dataflow and how to run this example using multiple threads, see
“Multicore Simulation of Comparing Demodulation Types” on page 1-586.

% Cleanup
close_system(modelName,0);
clear modelName EbNo codeRate nBits Pavg snr noiseVarVector ...
 ber_HD ber_SD ber_LLR idx noiseVar fitBER_HD fitBER_SD fitBER_LLR;

Selected Bibliography

[1] J. L. Massey, "Coding and Modulation in Digital Communications", Proc. Int. Zurich Seminar on
Digital Communications, 1974

[2] J. A. Heller, I. M. Jacobs, "Viterbi Decoding for Satellite and Space Communication", IEEE® Trans.
Comm. Tech. vol COM-19, October 1971

See Also

More About
• “Digital Baseband Modulation” on page 11-2
• “Analog Passband Modulation” on page 12-17
• “Analog Baseband Modulation” on page 12-2

 Hard- vs. Soft-Decision Demodulation Examples

11-35

Amplitude Modulation
Amplitude modulation (AM) is a linear baseband modulation technique in which the message
modulates the amplitude of a constant frequency signal.

Communications Toolbox software includes these modulation and demodulation functions, System
objects, and blocks to model pulse amplitude modulation (PAM) and quadrature amplitude modulation
(QAM).

Functions System objects Blocks
genqammod, genqamdemod

pammod, pamdemod

qammod, qamdemod

comm.GeneralQAMModulator,
comm.GeneralQAMDemodulat
or

General QAM Modulator
Baseband, General QAM
Demodulator Baseband

M-PAM Modulator Baseband, M-
PAM Demodulator Baseband

Rectangular QAM Modulator
Baseband, Rectangular QAM
Demodulator Baseband

PAM
In digital PAM, quantized pulses modulate a carrier signal. A pulse train is the carrier signal for
digital data. As described in Proakis ([2]), the signal waveforms may be expressed as

sm(t) = Am p(t), 1 ≤ m ≤ M
where:

• p(t) is a pulse of duration T.
• {Am, 1 ≤ m ≤ M} denotes the set of M possible amplitudes corresponding to M = 2b possible b-bit

blocks of symbols.

QAM
In digital QAM, two carrier signals of the same frequency are out of phase with each other by 90°, a
condition known as orthogonality or quadrature. The transmitted signal is created by adding the two
carrier signals together. At the receiver, the two signals can be coherently separated (demodulated)
because of their orthogonality property.

The QAM signal waveforms may be viewed as combined amplitude (rm) and phase (ϕm) modulation. As
described in Proakis ([2]), the signal waveforms may be expressed as

sm(t) = Re[rmejϕmej2πfct] = rmcos(2πfct+ϕm)

• rm = Ami
2 + Amq

2

• ϕm = tan-1(Amq/Ami)

See Also
Functions
modnorm | rcosdesign

11 Digital Modulation

11-36

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter

Related Examples
• “Amplitude Modulation Examples” on page 11-38

More About
• “Digital Baseband Modulation” on page 11-2

 Amplitude Modulation

11-37

Amplitude Modulation Examples
These examples demonstrate amplitude modulation (AM) techniques.

Compute Symbol Error Rate

In this example, you generate a random digital signal, modulate it, add noise, demodulate the noisy
signal, and compute the symbol error rate. Then you plot the noisy, modulated data in a constellation
diagram. The numerical results and plot may vary due to the random input data.

Create a random digital message and a constellation diagram System object™.

M = 16; % Alphabet size, 16-QAM
x = randi([0 M-1],5000,1);

cdpts = qammod(0:M-1,M);
constDiag = comm.ConstellationDiagram(...
 ReferenceConstellation=cdpts, ...
 XLimits=[-4 4], ...
 YLimits=[-4 4]);

Apply 16-QAM modulation and transmit the signal through an AWGN channel.

y = qammod(x,M);
ynoisy = awgn(y,15,'measured');

Demodulate the noisy data, ynoisy, to recover the message and check the symbol error rate.

z = qamdemod(ynoisy,M);
[num,errrate] = symerr(x,z)

num = 79

errrate = 0.0158

Plot the noisy data in a constellation diagram. The signal reference constellation has 16 precisely
located points, but the noise added to the transmitted signal causes the scatter plot to have a small
cluster of points scattered around each reference constellation point.

constDiag(ynoisy)

11 Digital Modulation

11-38

Plot Noisy 16-QAM Constellation in Simulink

The doc_qam_mod model uses the Rectangular QAM Modulator Baseband block to modulate random
data and applies noise to the signal by using the AWGN Channel block. After passing the symbols
through a noisy channel, the model produces a constellation diagram of the noisy data. When the
noise level is increased, the constellation points show increased signal distortion.

A Random Integer Generator block generates integers in the range [0,15] for a modulator configured
to apply 16-QAM. The modulated signal passes through an AWGN channel, and a constellation
diagram displays the resulting symbols.

 Amplitude Modulation Examples

11-39

Run the model with Eb/N0 set to 20 dB in the AWGN channel.

Change the Eb/No from 20 dB to 10 dB. Observe the increase in the noise.

11 Digital Modulation

11-40

See Also
Functions
modnorm | rcosdesign | genqammod | genqamdemod | pammod | pamdemod | qammod | qamdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter |
comm.GeneralQAMModulator | comm.GeneralQAMDemodulator

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | General QAM Modulator Baseband |
General QAM Demodulator Baseband | M-PAM Modulator Baseband | M-PAM Demodulator Baseband
| Rectangular QAM Modulator Baseband | Rectangular QAM Demodulator Baseband

Related Examples
• “Estimate Symbol Rate for General QAM Modulation in AWGN Channel” on page 11-42

More About
• Amplitude Modulation on page 11-36

 Amplitude Modulation Examples

11-41

Estimate Symbol Rate for General QAM Modulation in AWGN
Channel

Transmit and receive data using a nonrectangular 16-ary constellation in the presence of Gaussian
noise. Show the scatter plot of the noisy constellation and estimate the symbol error rate (SER) for
two different SNRs.

Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.

c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i];
sigpower = pow2db(mean(abs(c).^2));
M = length(c);

Generate random symbols.

data = randi([0 M-1],2000,1);

Modulate the data by using the genqammod function. General QAM modulation is necessary because
the custom constellation is not rectangular.

modData = genqammod(data,c);

Pass the signal through an AWGN channel with a 20 dB SNR.

rxSig = awgn(modData,20,sigpower);

Display a scatter plot of the received signal and the reference constellation c.

h = scatterplot(rxSig);
hold on
scatterplot(c,[],[],'r*',h)
grid
hold off

11 Digital Modulation

11-42

Demodulate the received signal by using the genqamdemod function. Determine the number of
symbol errors and the SER.

demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 1

ser = 5.0000e-04

Repeat the transmission and demodulation process with an AWGN channel with a 10 dB SNR.
Determine the SER for the reduced SNR. As expected, the performance degrades when the SNR is
decreased.

rxSig = awgn(modData,10,sigpower);
demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 461

ser = 0.2305

 Estimate Symbol Rate for General QAM Modulation in AWGN Channel

11-43

See Also

Related Examples
• Amplitude Modulation on page 11-36
• “AWGN Channel” on page 21-2

11 Digital Modulation

11-44

Amplitude and Phase Modulation
Amplitude and phase modulation is a linear baseband modulation technique in which the message
modulates the amplitude and phase of a constant frequency signal. Two carrier signals of the same
frequency are out of phase with each other by 90°, a condition known as orthogonality or quadrature.
The transmitted signal is created by adding the two carrier signals together. At the receiver, the two
signals can be coherently separated (demodulated) because of their orthogonality property.

Communications Toolbox software includes these modulation and demodulation functions and blocks
to model amplitude phase shift keying (APSK), digital video broadcast system APSK (DVBS-APSK),
and MIL-188-QAM.

Functions System objects Blocks
apskmod, apskdemod

dvbsapskmod,
dvbsapskdemod

mil188qammod,
mil188qamdemod

None M-APSK Modulator Baseband,
M-APSK Demodulator Baseband

DVBS-APSK Modulator
Baseband, DVBS-APSK
Demodulator Baseband

MIL-188 QAM Modulator
Baseband, MIL-188 QAM
Demodulator Baseband

APSK
A pure M-APSK constellation is composed of NC concentric rings or contours, each with uniformly
spaced PSK points. The M-APSK constellation set is

χ =

R1exp j 2π
M1

i + ϕ1 , i = 0, …, M1− 1,

R2exp j 2π
M2

i + ϕ2 , i = 0, …, M2− 1,

⋮ ⋮

RNCexp j 2π
MNC

i + ϕNc , i = 0, …, MNC− 1,

where:

• The modulation order is equal to the sum of all Ml for l = 1, 2, ... , NC.
• NC is the number of concentric rings. NC ≥ 2.
• Ml is the number of constellation points in the lth ring.
• Rl is the radius of the lth ring.
• ϕl is the phase offset of the lth ring.
• j = −1

 Amplitude and Phase Modulation

11-45

DVBS APSK
Digital video broadcasting (DVB) standards specify S2 [1], S2X [2], and SH [3] standard-specific
amplitude phase shift keying (APSK) modulation.

• DVB-S2 standard specifies QPSK modulation and concatenated convolutional and Reed-Solomon
channel coding, and is now used by most satellite operators worldwide for television and data
broadcasting services.

• DVB-S2X standard based systems offer the ability to operate with very low carrier-to-noise and
carrier-to-interference ratios (SNR down to -10 dB), to serve markets such as airborne (business
jets), maritime, civil aviation internet access, VSAT terminals at higher frequency ranges or in
tropical zones, small portable terminals for journalists and other professionals. Furthermore, the
S2X system provides transmission modes offering significantly higher capacity and efficiency to
serve professional links characterized by very high carrier-to-noise and carrier-to-interference
ratios conditions.

• DVB-SH standard provides an efficient transmission system using frequencies below 3 GHz
suitable for satellite services to handheld devices, in terms of reception threshold and resistance
to mobile satellite channel impairments.

MIL-STD-188-110
MIL-STD-188-110 is a US Department of Defense standard for HF communications using serial PSK
mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul communications.
The modulation scheme specified by the standard is a mix of QAM and APSK. For a detailed
description of the modulation scheme, see MIL-STD-188-110B & C [5].

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications (DVB-S2X), European
Telecommunications Standards Institute, Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for Satellite Services to Handheld devices (SH), European
Telecommunications Standards Institute, Valbonne, France, 2008-03.

[4] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied Mathematics,
Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V. Mladenov, and Z. Bojkovic, eds.).
Vouliagmeni, Athens, Greece: WSEAS Press, 2009.

[5] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data Modems."
Department of Defense Interface Standard, USA.

11 Digital Modulation

11-46

See Also
Functions
rcosdesign | apskmod | apskdemod | dvbsapskmod | dvbsapskdemod | mil188qammod |
mil188qamdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | M-APSK Modulator Baseband | M-APSK
Demodulator Baseband | DVBS-APSK Modulator Baseband | DVBS-APSK Demodulator Baseband |
MIL-188 QAM Modulator Baseband | MIL-188 QAM Demodulator Baseband

Related Examples
• “Amplitude and Phase Modulation Examples” on page 11-48

More About
• “Digital Baseband Modulation” on page 11-2

 Amplitude and Phase Modulation

11-47

Amplitude and Phase Modulation Examples
These examples demonstrate amplitude and phase modulation techniques.

Apply APSK Modulation Modifying Symbol Ordering

Plot APSK constellations for Gray-coded and custom-coded symbol mappings.

Define vectors for modulation order and PSK ring radii. Generate bit data for constellation points.

M = [8 8];
modOrder = sum(M);
radii = [0.5 1.5];
x = 0:modOrder-1;

The apskmod function assumes the single channel binary input is left-MSB aligned and specified
column-wise. Use the int2bit function to express the integer input symbols as a single column
binary vector.

xBit = int2bit(x,log2(modOrder));

Apply APSK modulation to the data using the default phase offset. Since element values for M are
equal and element values for phase offset are equal, the symbol mapping defaults to 'gray'. Plot the
constellation using binary input to highlight the Gray-coded nature of the constellation mapping.

y = apskmod(xBit,M,radii,PlotConstellation=true,InputType='bit');

11 Digital Modulation

11-48

Create a custom-coded symbol mapping vector. This custom mapping happens to be another Gray-
coded mapping.

cmap = [0;1;9;8;12;13;5;4;2;3;11;10;14;15;7;6];

Apply APSK modulation with a custom-coded symbol mapping. Plot the constellation using binary
input to highlight that the custom mapping defines different Gray-coded symbol mapping.

z = apskmod(xBit,M,radii, ...
 SymbolMapping=cmap, ...
 PlotConstellation=true, ...
 InputType='bit');

Demodulate MIL-STD-188-110C Specific 64-QAM Signal

Demodulate a 64-QAM signal that was modulated as specified in MIL-STD-188-110C. Compute hard
decision bit output and verify that the output matches the input.

Set the modulation order and generate random bit data.

M = 64;
numBitsPerSym = log2(M);
x = randi([0 1],1000*numBitsPerSym,1);

Modulate the data. Use name-value pairs to specify bit input data and to plot the constellation.

 Amplitude and Phase Modulation Examples

11-49

txSig = mil188qammod(x,M,'InputType','bit','PlotConstellation',true);

Demodulate the received signal. Compare the demodulated data to the original data.

z = mil188qamdemod(txSig,M,'OutputType','bit');
isequal(z,x)

ans = logical
 1

Plot Noisy DVB-S APSK Constellation using Simulink

Apply DVB-S APSK modulation to random data symbols, pass the modulated signal through an AWGN
channel, and then plot the signal constellation.

11 Digital Modulation

11-50

The slex_dvbs_apsk_mod model is configured for the S2 standard suffix and modulation order 16.
For you to get desired results, all blocks in the model must align their configuration to the same
modulation order. To set the modulation order for the DVBS-APSK Modulator Baseband block, select
a value from the dropdown list in the block mask. The set of modulation orders available varies
depending on the DVB standard suffix parameter setting. The InitFcn callback defines the
workspace variable, M = 16, and this variable is used to set the:

• Set size parameter in the Random Integer Generator block
• Number of bits per symbol parameter in the AWGN Channel block

The Constellation Diagram block has the Reference constellation parameter set to Custom and the
Custom value parameter set to align with the modulator block's modulation setting. To see the
values, open Reference Constellation in the Plot tab on the Constellation Diagram window.

Run the model with the EbN0 of the AWGN channel block set to 20 dB, and then view the
constellation diagram.

Change the EbN0 of the AWGN channel block to 10 dB. Run the model and observe the increase in
noise shown in the plotted constellation diagram.

 Amplitude and Phase Modulation Examples

11-51

You can try running the model with a different modulation order. To adjust the modulation order, you
must align the:

• Modulation order setting in the DVBS-APSK Modulator Baseband block
• Value of the workspace variable M
• Reference constellation in the Constellation Diagram block

If these parameters are not aligned with each other, the reference constellation and input signal do
not produce the desired constellation.

Demodulate Noisy 16-APSK Signal Using Simulink

Apply 16-APSK modulation to a signal of random data. Pass the modulated signal through an AWGN
channel. Demodulate the noisy 16-APSK signal. Check the bit error rate (BER).

The slex_16apsk_mod model passes a 16-APSK modulated signal through an AWGN channel,
demodulates the signal and then computes the error rate statistics. The example reports the bit error
rate (BER) at two EbN0 settings.

11 Digital Modulation

11-52

Run the model with the EbN0 of the AWGN channel block set to 6 dB. The results are saved to the
base workspace variable ErrorVec in a 1-by-3 row vector. The first element contains the BER.

With EbN0 set to 6 dB, BER: 0.160

Change the EbN0 of the AWGN channel block to 10 dB. Run the model and observe the decrease in
BER.

With EbN0 set to 10 dB, BER: 0.031

See Also
Functions
rcosdesign | apskmod | apskdemod | dvbsapskmod | dvbsapskdemod | mil188qammod |
mil188qamdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | M-APSK Modulator Baseband | M-APSK
Demodulator Baseband | DVBS-APSK Modulator Baseband | DVBS-APSK Demodulator Baseband |
MIL-188 QAM Modulator Baseband | MIL-188 QAM Demodulator Baseband

More About
• “Amplitude and Phase Modulation” on page 11-45

 Amplitude and Phase Modulation Examples

11-53

Continuous-Phase Modulation
Continuous-phase modulation (CPM) is a linear baseband modulation technique in which the message
modulates the frequency of a continuous-phase signal. The signal has memory because the phase of
the carrier is constrained to be continuous. Communications Toolbox software includes these
modulation and demodulation functions, System objects, and blocks to model continuous-phase
frequency shift keying (CPFSK), continuous-phase modulation (CPM), Gaussian minimum shift keying
(GMSK), and minimum shift keying (MSK).

Functions System objects Blocks
mskmod, mskdemod comm.CPMModulator,

comm.CPMDemodulator

comm.CPFSKModulator,
comm.CPFSKDemodulator

comm.GMSKModulator,
comm.GMSKDemodulator

comm.MSKModulator,
comm.MSKDemodulator

CPM Modulator Baseband, CPM
Demodulator Baseband

CPFSK Modulator Baseband,
CPFSK Demodulator Baseband

GMSK Modulator Baseband,
GMSK Demodulator Baseband

MSK Modulator Baseband, MSK
Demodulator Baseband

CPM
In CPM, the baseband representation of the modulated signal is

s(t) = exp j 2π ∑
i = 0

n
αihiq(t − iT) , and

nT < t < (n + 1)T .

where:

• {αi} is a sequence of M-ary data symbols selected from the alphabet ±1, ±3, ±(M–1).
• M must have the form 2k for some positive integer k, where M is the modulation order and
specifies the size of the symbol alphabet.

• {hi} is a sequence of modulation indices. hi moves cyclically through a set of indices {h0, h1, h2, ...,
hH-1}. When H=1, only one modulation index exists, h0, which is denoted as h.

CPM Pulse Shape Filtering

The CPM method uses pulse shaping to smooth the phase transitions of the modulated signal. The
function q(t) is the phase response obtained from the frequency pulse, g(t), through this relation:

q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to these pulse shape expressions for g(t).

11 Digital Modulation

11-54

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise
Raised cosine

g(t) =
1

2LT 1− cos 2πt
LT , 0 ≤ t ≤ LT

0 otherwise
Spectral raised cosine

g(t) = 1
LmainT

sin 2πt
LmainT
2πt

LmainT

cos β 2πt
LmainT

1− 4β
LmainT t

2 , 0 ≤ β

≤ 1

Gaussian
g(t) = 1

2T Q 2πBb
t − T

2
ln2 − Q 2πBb

t + T
2

ln2 , where

Q(t) =∫t ∞ 1
2πe−τ2/2dτ

Tamed FM (tamed frequency modulation) g(t) = 1
8 g0(t − T) + 2g0(t) + g0(t + T) , where

g0(t) ≈ 1
T

sin(πt
T)

πt
T

− π2

24
2sin πt

T − 2πt
T cos πt

T − πt
T

2sin πt
T

πt
T

3

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the roll-off factor of the spectral raised cosine.
• Bb is the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the spectral raised cosine, Gaussian, and tamed FM pulse shapes have infinite length.
For all practical purposes, LT specifies the truncated finite length.

• T is the symbol durations.
• Q(t) is the complementary cumulative distribution function.

CPFSK
MSK is a specific form of CPM (and CPFSK) in which the modulation index h = 1/2 and g(t) is a
rectangular pulse of duration T. As described in Proakis ([2]), the signal waveforms may be expressed
as

s(t) = Accos 2πfct + Df∫−∞
t

m(α)dα

• Ac represents the amplitude of the CPFSK signal.
• fc is the base carrier frequency.

 Continuous-Phase Modulation

11-55

• Df is a parameter that controls the frequency deviation of the modulated signal.
• The integral portion of the cosine argument results in the continuous phase characteristic of the

CPFSK signal.

GMSK
GMSK is a continuous phase scheme with no phase discontinuities because the frequency changes
occur at the carrier zero-crossing points. For GMSK (and MSK), the frequency difference between the
logical one and logical zero states is always equal to half the data rate. This difference can be
expressed in terms of the modulation index. Specifically, an input symbol of 1 causes a phase shift of
π/2 radians, which corresponds to a modulation index of 0.5.

GMSK applies a Gaussian pulse shaping filter, as described by the Gaussian filter equation in “CPM
Pulse Shape Filtering” on page 11-54.

MSK
MSK is a specific form of CPM (and CPFSK) in which the modulation index h = 1/2 and g(t) is a
rectangular pulse of duration T. As described in Proakis ([2]), the signal waveforms may be expressed
as

s(t) = Acos 2π fc + 1
4T In t − 1

2nπIn + θn , nT ≤ t ≤ (n + 1)T

References
[1] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

[2] Pasupathy, S., "Minimum Shift Keying: A Spectrally Efficient Modulation". IEEE Communications
Magazine, July, 1979, pp. 14–22.

[3] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:
Plenum Press, 1986.

See Also

Related Examples
• “Continuous Phase Modulation Examples” on page 11-57

More About
• “Digital Baseband Modulation” on page 11-2

11 Digital Modulation

11-56

Continuous Phase Modulation Examples
These examples demonstrate continuous phase modulation (CPM) techniques.

Plot Phase Tree for Continuous Phase Modulation

Plot the phase tree diagram for signals that have applied continuous phase modulation (CPM). A
phase tree diagram superimposes many curves, each of which plots the phase of a modulated signal
over time. The distinct curves result from different inputs to the modulator. This example defines
settings for the CPM modulator, applies symbol mapping, and plots the results. Each curve represents
a different instance of simulating the CPM modulator with a distinct (constant) input signal.

Define parameters for the example and create a CPM modulator System object™.

M = 2; % Modulation order
modindex = 2/3; % Modulation index
sps = 8; % Samples per symbol
L = 5; % Symbols to display
pmat = zeros(L*sps,M^L); % Empty phase matrix

cpm = comm.CPMModulator(M, ...
 ModulationIndex=modindex, ...
 FrequencyPulse="Raised Cosine", ...
 PulseLength=2, ...
 SamplesPerSymbol=sps);

Use a for-loop to apply the mapping of the input symbol to the CPM symbols, mapping 0 to -(M-1), 1
to -(M-2), and so on. Populate the columns of the phase matrix with the unwrapped phase angle of the
modulated symbols.

for ip_sig = 0:(M^L)-1
 s = int2bit(ip_sig,L,1);
 s = 2*s + 1 - M;
 x = cpm(s);
 pmat(:,ip_sig+1) = unwrap(angle(x(:)));
end
pmat = pmat/(pi*modindex);
t = (0:L*sps-1)'/sps;

Plot the CPM phase tree.

plot(t,pmat);
title('CPM Phase Tree')
xlabel('Samples')
ylabel('Phase (radians)')

 Continuous Phase Modulation Examples

11-57

View CPM Phase Tree Using Simulink

The doc_cpm_phase_tree model uses the Eye Diagram block to view the in-phase and quadrature
components, phase trajectory, phase tree, and instantaneous frequency of a CPM modulated signal.

Explore Model

A random integer signal is converted to bits and then CPM modulated. The CPM modulated signal
values are converted from complex to magnitude, and angle, and then the phase is unwrapped.

11 Digital Modulation

11-58

Plot Eye Diagrams

Eye Diagram blocks are named to reflect the signal each displays. When you run the example, these
Eye Diagram blocks show how the CPM signal changes over time:

• Modulated Signal block — Displays the in-phase and quadrature signals. Double-click the block to
open the scope. The modulated signal is easy to see in the eye diagram only when the
Modulation index parameter in the CPM Modulator Baseband block is set to 1/2. For a
modulation index value of 2/3, the modulation is more complex and the features of the modulated
signal are difficult to decipher. Unwrapping the phase and plotting it is another way to illustrate
these more complex CPM modulated signals.

• Phase Trajectory block — Displays the CPM phase. Double-click the block to open the scope. The
Phase Trajectory block reveals that the signal phase is also difficult to view because it drifts with
the data input to the modulator.

• Phase Tree block — Displays the phase tree of the signal. The CPM phase is processed by a few
simple blocks to make the CPM pulse shaping easier to view. This processing holds the phase at
the beginning of the symbol interval and subtracts it from the signal. This zero-order hold resets
the phase to zero every three symbols. The resulting plot shows the many phase trajectories that
can be taken by the signal from any given symbol epoch.

• Instantaneous Frequency block — Displays the instantaneous frequency of the signal. The CPM
phase is differentiated to produce the frequency deviation of the signal. Viewing the CPM
frequency signal enables you to observe the frequency deviation qualitatively, as well as make
quantitative observations, such as measuring peak frequency deviation.

Running the doc_cpm_phase_tree model opens and plots the phase tree and instantaneous
frequency eye diagram plots.

 Continuous Phase Modulation Examples

11-59

11 Digital Modulation

11-60

 Continuous Phase Modulation Examples

11-61

11 Digital Modulation

11-62

Further Exploration

To learn more about the example, try changing the following parameters in the CPM Modulator
Baseband block:

• Change Pulse length to a value between 1 and 6.
• Change Frequency pulse shape to one of the other settings, such as Rectangular or

Gaussian.

You can observe the effect of changing these parameters on the phase tree and instantaneous
frequency of the modulated signal.

Compare Filtered QPSK and MSK Signals in Simulink

The cm_qpsk_vs_msk model compares filtered quadrature phase shift keying (QPSK) and minimum
shift keying (MSK) modulation schemes.

 Continuous Phase Modulation Examples

11-63

The model generates the filtered QPSK signal using random integer data from the Random Integer
Generator block, which gets modulated by the QPSK Modulator Baseband block, and then filtered by
the Raised Cosine Transmit Filter block. The model generates the MSK signal using random binary
data from the Bernoulli Binary Generator block, which gets modulated by the MSK Modulator
Baseband block. Noise is added to both the filtered QPSK and MSK signals by using AWGN Channel
blocks. The Eye Diagram blocks are used to visualize eye diagrams of both signals.

For filtered QPSK modulation, the values of both the in-phase and quadrature components of the
signal are permitted to change at any symbol interval. For MSK modulation, the symbol interval is
half that for QPSK, but the in-phase and quadrature components change values in alternate symbol
epochs.

Compare eye diagram plots of a QPSK modulated signal and an MSK modulated signal. For QPSK the
ideal sampling period is 1/2 sample, with sampling time for both in-phase and quadrature signal
components at 0.5, 1.5, 2.5, For MSK, the ideal sample period is 1 sample, with sampling time at
0.5, 1.5, 2.5, ... for the in-phase signal component and 1, 2, 3, ... for the quadrature signal component.

11 Digital Modulation

11-64

 Continuous Phase Modulation Examples

11-65

Compare GMSK and MSK Signals in Simulink

The cm_gmsk_vs_msk model compares Gaussian minimum shift keying (GMSK) and minimum shift
keying (MSK) modulation schemes.

11 Digital Modulation

11-66

 Continuous Phase Modulation Examples

11-67

The Random Integer Generator block provides a source of uniformly distributed random integers in
the range [0, M-1], where M is the constellation size of the GMSK or MSK signal. The Unipolar to
Bipolar Converter block maps a unipolar input signal to a bipolar output consisting of integers
between -(M-1) and +(M-1). The bipolar data is routed to separate paths. The top path applies GMSK
modulation by using the GMSK Modulator Baseband block. The bottom path applies MSK modulation
by using MSK Modulator Baseband block. Noise is added to both the GMSK and MSK signals by using
AWGN Channel blocks. The Eye Diagram blocks are used to visualize eye diagrams of both signals.

The eye diagrams show the similarity between the GMSK and MSK signals when you set the initial
pulse length of the GMSK Modulator Baseband block to 1.

11 Digital Modulation

11-68

 Continuous Phase Modulation Examples

11-69

Set the initial pulse length in the GMSK modulator to 5 to view the difference that a partial response
modulation has on the eye diagram. The increased pulse length results in an increase in the number
of paths, showing that the CPM waveform depends on values of the previous symbols as well as the
present symbol. Plot the eye diagram of the GMSK signal.

11 Digital Modulation

11-70

If you change the initial pulse length to an even number, such as 4, you should set initial phase offset
of the GMSK modulator to pi/4 and the offset argument of the eye diagram to 0 for a better view of
the modulated signal. To more clearly view the Gaussian pulse shape, you must use scopes that
enable you to view the phase of the signal, as described in the “View CPM Phase Tree Using
Simulink” on page 11-58 example.

 Continuous Phase Modulation Examples

11-71

Soft Decision GMSK Demodulator

This model shows a system that includes convolutional coding and GMSK modulation. The receiver in
this model includes two parallel paths, one that uses soft decisions and another that uses hard
decisions. The model computes bit error rates for the two paths to illustrate that the soft decision
receiver performs better. The performance advantage for soft decision reception over hard decision
reception is expected because soft decisions enable the system to retain more information from the
demodulation operation to use in the decoding operation.

Explore Model

The doc_gmsk_soft_decision model transmits and receives a coded GMSK signal. The key
components include the:

• Bernoulli Binary Generator block to generate binary numbers for the input signal.
• Convolutional Encoder block to encode the binary numbers using a rate 1/2 convolutional code.
• GMSK modulator section to compute the logical difference between successive bits and modulate

the result using the GMSK Modulator Baseband block.
• GMSK soft demodulator section to implement the detector design proposed in [1], called a serial

receiver. This section of the model produces a noisy bipolar signal. The section labeled Soft
Decisions uses an eight-region partition in the Quantizing Encoder block to prepare for 3-bit soft-
decision decoding using the Viterbi Decoder block. The section labeled Hard Decisions uses a two-
region partition to prepare for hard-decision Viterbi decoding. Using a two-region partition here is

11 Digital Modulation

11-72

equivalent to having the GMSK Demodulator Baseband block make hard decisions. In each
decoding section, a Delay block aligns codeword boundaries with frame boundaries so that the
Viterbi Decoder block can decode properly. This signal alignment is necessary because the
combined delay of other blocks in the system is not an integer multiple of the length of a
codeword.

• Pair of Error Rate Calculation blocks, as well as Display (Simulink) blocks to show the BER for the
system with each type of decision.

Serial GMSK Receiver

The serial GMSK receiver is based on the fact that GMSK can be represented as a combination of
amplitude pulses [2, 3] and can, therefore, be demodulated with a matched filter. The GMSK
waveform used in this model has a BT product of 0.3 and a frequency pulse length of 4 symbols. As
such, it can be represented by eight different amplitude pulses, which are shown in Figure 2 of [3].
The matched filter in this model uses only the largest pulse of the eight because of its simplicity of
implementation. However, that simplicity yields BER performance that is inferior to the more
traditional Viterbi-based demodulator.

Results and Displays

The example model includes these visualizations to illustrate its performance:

• The Display blocks show the BER results to illustrate the soft decision reception performs better
than the hard decision receiver.

 Continuous Phase Modulation Examples

11-73

• The Tx Signal window shows the scatter plot of the noiseless GMSK signal before the AWGN
channel.

• The Rx Signal window shows the scatter plot of the noisy GMSK signal after the AWGN channel.
• The Freq Response window shows the frequency response of the GMSK signal before and after

the AWGN channel.
• The Decision Levels window shows, in yellow, the various soft decision levels in the top plot and

the binary hard decisions in the bottom plot. This window also indicates, in blue, when errors
occur.

11 Digital Modulation

11-74

References

1 Bjerke, B., J. Proakis, M. Lee, and Z. Zvonar, "A Comparison of GSM Receivers for Fading
Multipath Channels with Adjacent- and Co-Channel Interference," IEEE J. Select. Areas
Commun., Nov. 2000, pp. 2211–2219.

2 Laurent, Pierre, "Exact and Approximate Construction of Digital Phase Modulations by
Superposition of Amplitude Modulated Pulses (AMP)," IEEE Trans. Comm., Vol. COM-34, No. 2,
Feb. 1986, pp. 150–160.

 Continuous Phase Modulation Examples

11-75

3 Jung, Peter, "Laurent's Representation of Binary Digital Continuous Phase Modulated Signals
with Modulation index 1/2 Revisited," IEEE Trans. Comm., Vol. COM-42, No. 2/3/4, Feb./Mar./Apr.
1994, pp. 221–224.

See Also
Functions
mskmod | mskdemod

Objects
comm.CPFSKModulator | comm.CPFSKDemodulator | comm.CPMModulator |
comm.CPMDemodulator | comm.GMSKModulator | comm.GMSKDemodulator |
comm.MSKModulator | comm.MSKDemodulator

Blocks
CPFSK Modulator Baseband | CPFSK Demodulator Baseband | CPM Modulator Baseband | CPM
Demodulator Baseband | GMSK Modulator Baseband | GMSK Demodulator Baseband | MSK
Modulator Baseband | MSK Demodulator Baseband

More About
• “Continuous-Phase Modulation” on page 11-54

11 Digital Modulation

11-76

Frequency Modulation
Frequency modulation (FM) is a baseband modulation technique in which the message modulates the
frequency of a constant amplitude signal. The transmitted signal is created by switching the carrier
frequency at data transitions. At the receiver, the modulated signal can be coherently separated
(demodulated) because of the frequency difference. FM can be regarded as a special case of phase
modulation.

Communications Toolbox software includes these modulation and demodulation functions, System
objects, and blocks to model frequency shift keying (FSK) modulation.

Functions System objects Blocks
fskmod, fskdemod comm.FSKModulator,

comm.FSKDemodulator
M-FSK Modulator Baseband, M-
FSK Demodulator Baseband

FSK
FSK is a special case of orthogonal signals that differ in frequency.

As described in Proakis ([2]), the signal waveforms may be expressed as

sm = 2ε
T cos(2πfct + 2πmΔf t), 1 ≤ m ≤ M, 0 ≤ t ≤ T

Frequency Modulation Examples
These examples demonstrate FM modulation techniques.

Plot FSK Signal Spectrum

Generate an FSK modulated signal and display its spectral characteristics.

Set the function parameters.

M = 4; % Modulation order
freqsep = 8; % Frequency separation (Hz)
nsamp = 8; % Number of samples per symbol
Fs = 32; % Sample rate (Hz)

Generate random M-ary symbols.

x = randi([0 M-1],1000,1);

Apply FSK modulation.

y = fskmod(x,M,freqsep,nsamp,Fs);

Create a spectrum analyzer System object™ and call it to display a plot of the signal spectrum.

specAnal = spectrumAnalyzer(SampleRate=Fs);
specAnal(y)

 Frequency Modulation

11-77

Apply FSK Modulation in Various Fading Channels

Pass an FSK signal through a Rayleigh multipath fading channel. Change the signal bandwidth to
observe the impact of the fading channel on the FSK spectrum.

Flat Fading Channel

Set modulation order to 4, the modulated symbol rate to 45 bps, and the frequency separation to 200
Hz.

M = 4; % Modulation order
symbolRate = 45; % Symbol rate (bps)
freqSep = 200; % Frequency separation (Hz)

Calculate the samples per symbol parameter, sampPerSym, as a function of the modulation order,
frequency separation, and symbol rate. To avoid output signal aliasing, the product of sampPerSym
and symbolRate must be greater than the product of M and freqSep. Calculate the sample rate of
the FSK output signal.

sampPerSym = ceil(M*freqSep/symbolRate);
fsamp = sampPerSym*symbolRate;

Create an FSK modulator.

fskMod = comm.FSKModulator(M, ...
 FrequencySeparation=freqSep, ...

11 Digital Modulation

11-78

 SamplesPerSymbol=sampPerSym, ...
 SymbolRate=symbolRate);

Set the path delays and average path gains for the three-path fading channel.

pathDelays = [0 3 10]*1e-6; % Discrete delays (s)
avgPathGains = [0 -3 -6]; % Average path gains (dB)

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. The path delays and path gains
specify the average delay profile of the channel.

Create a Rayleigh channel using the defined parameters. Set the Visualization property to display
the impulse and frequency responses.

channel = comm.RayleighChannel(...
 SampleRate=fsamp, ...
 PathDelays=pathDelays, ...
 AveragePathGains=avgPathGains, ...
 MaximumDopplerShift=0.01, ...
 Visualization='Impulse and frequency responses', ...
 SamplesToDisplay='10%');

Generate random data symbols and apply FSK modulation.

data = randi([0 3],2000,1);
modSig = fskMod(data);

Create a spectrum analyzer object to plot the FSK modulated signal and the received signal after flat
fading channel filtering.

sa1 = spectrumAnalyzer(...
 SampleRate=fsamp, ...
 ChannelNames=["FSK modulated signal", ...
 "Flat fading channel"]);

The modulated signal is composed of four tones, each having approximately 20 dBm peak power
separated by 200 Hz.

Pass the signal through the Rayleigh fading channel and apply AWGN having a 25 dB signal-to-noise
ratio.

snrdB = 25;
raylFadedData = channel(modSig);

 Frequency Modulation

11-79

11 Digital Modulation

11-80

rxSig = awgn(raylFadedData,snrdB);

The impulse and frequency responses show that the channel behaves as though it were flat. This flat
response is because the signal bandwidth, 800 Hz, is much smaller than the coherence bandwidth, 50
kHz.

Plot the signal spectrum of the FSK-modulated signal before and after channel filtering. The four
tones comprising the FSK signal maintain the same frequency separation and peak power levels
relative to each other. The absolute peak power levels have decreased due to the fading channel.

 Frequency Modulation

11-81

sa1(modSig,rxSig)
release(sa1)

Frequency-Selective Fading

Increase the symbol rate to 45 kbps and the frequency separation to 200 kHz. Calculate the new
samples per symbol and sample rate parameters. Release the FSK modulator object and update its
configuration.

symbolRate = 45e3;
freqSep = 200e3;

release(fskMod)
fskMod.SymbolRate = symbolRate;
fskMod.FrequencySeparation = freqSep;

Create a spectrum analyzer object to plot the FSK modulated signal and the received signal after
frequency-selective fading channel filtering.

sampPerSym = ceil(M*freqSep/symbolRate);
sa2 = spectrumAnalyzer(...
 SampleRate=sampPerSym*symbolRate, ...
 ChannelNames=["FSK modulated signal", ...
 "Frequecy-selective fading channel"]);

Apply FSK modulation to the transmission data.

11 Digital Modulation

11-82

modSig = fskMod(data);

Release the channel object and update the channel sample rate property. Pass the signal through the
Rayleigh fading channel and apply AWGN. The impulse and frequency responses show that the
multipath fading is frequency selective.

release(channel)
fsamp = sampPerSym*symbolRate;
channel.SampleRate = fsamp;

rxSig = awgn(channel(modSig),25);

 Frequency Modulation

11-83

Plot the signal spectrum of the FSK-modulated signal before and after channel filtering. The spectrum
has the same shape as in the flat-fading case, but the four tones are now separated by 200 kHz. There
are still four identifiable tones, but their relative peak power levels differ due to the frequency-
selective fading. The 800 kHz signal bandwidth is larger than the 50 kHz coherence bandwidth.

sa2(modSig,rxSig)
release(sa2)

11 Digital Modulation

11-84

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle

River, N.J: Prentice-Hall PTR, 2001.

[2] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

See Also
Functions
rcosdesign | fskmod | fskdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter |
comm.FSKModulator | comm.FSKDemodulator

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | M-FSK Modulator Baseband | M-FSK
Demodulator Baseband

More About
• “Digital Baseband Modulation” on page 11-2

 Frequency Modulation

11-85

Orthogonal Frequency Division Multiplexing Modulation
Orthogonal frequency division multiplexing (OFDM) modulation is a linear baseband modulation
technique of encoding digital data on multiple carrier frequencies. The transmitter uses an inverse
fast Fourier transform (IFFT) to combine (modulate) multiple closely spaced orthogonal subcarrier
signals with overlapping spectra to carry data in parallel. The receiver uses an FFT to demodulate the
signal.

Communications Toolbox software includes these modulation and demodulation functions, System
objects, and blocks to model OFDM modulation.

Functions System objects Blocks
ofdmmod, ofdmdemod comm.OFDMModulator,

comm.OFDMDemodulator
OFDM Modulator Baseband,
OFDM Demodulator Baseband

OFDM
As described in Proakis ([2]), in an OFDM system with N subchannels, the symbol rate 1/T is reduced
by a factor of N relative to the symbol rate on a single-carrier system that employs the entire
bandwidth, W, and transmits data at the same rate as OFDM. Hence, the symbol interval in the
OFDM system is T = NTs , where Ts is the symbol interval in the single-carrier system. By selecting N
to be sufficiently large, the symbol interval T can be made significantly larger than the time duration
of the channel-time dispersion. Thus, intersymbol interference can be made arbitrarily small through
the selection of N. In other words, each subchannel appears to have a fixed frequency response C(fk),
k = 0, 1, . . . , N - 1.

OFDM Modulation Examples
These examples demonstrate OFDM modulation techniques.

Apply OFDM with User-Specified Pilot Indices

Construct an orthogonal frequency division multiplexing (OFDM) modulator and demodulator pair
and specify their pilot indices. The OFDM modulator System object™ enables you to specify pilot
subcarrier indices consistent with the constraints described by the info object function. In this
example, for OFDM transmission over a 3x2 channel, pilot indices are created for each of the three
transmit antennas. Additionally, the pilot indices differ between odd and even symbols.

Create an OFDM modulator object having five symbols, three transmit antennas, and length six
windowing.

ofdmMod = comm.OFDMModulator(...
 FFTLength=256, ...
 NumGuardBandCarriers=[12; 11], ...
 NumSymbols=5, ...
 NumTransmitAntennas=3, ...
 PilotInputPort=true, ...
 Windowing=true, ...
 WindowLength=6);

Specify pilot indices for even and odd symbols for the first transmit antenna.

11 Digital Modulation

11-86

pilotIndOdd = [20; 58; 96; 145; 182; 210];
pilotIndEven = [35; 73; 111; 159; 197; 225];

pilotIndicesAnt1 = cat(2,pilotIndOdd,pilotIndEven,pilotIndOdd, ...
 pilotIndEven,pilotIndOdd);

Generate pilot indices for the second and third antennas based on the indices specified for the first
antenna. Concatenate the indices for the three antennas and assign them to the
PilotCarrierIndices property.

pilotIndicesAnt2 = pilotIndicesAnt1 + 5;
pilotIndicesAnt3 = pilotIndicesAnt1 - 5;

ofdmMod.PilotCarrierIndices = ...
 cat(3,pilotIndicesAnt1,pilotIndicesAnt2,pilotIndicesAnt3);

Create an OFDM demodulator with two receive antennas based on the existing OFDM modulator
System object. Determine the data and pilot dimensions using the info function.

ofdmDemod = comm.OFDMDemodulator(ofdmMod);
ofdmDemod.NumReceiveAntennas = 2;

dims = info(ofdmMod)

dims = struct with fields:
 DataInputSize: [215 5 3]
 PilotInputSize: [6 5 3]
 OutputSize: [1360 3]

Generate data and pilot symbols for the OFDM modulator given the array sizes specified in modDim.

dataIn = ...
 complex(randn(dims.DataInputSize), ...
 randn(dims.DataInputSize));
pilotIn = ...
 complex(randn(dims.PilotInputSize), ...
 randn(dims.PilotInputSize));

Apply OFDM modulation to the data and pilots.

modOut = ofdmMod(dataIn,pilotIn);

Pass the modulated data through a 3x2 random channel.

chanGain = complex(randn(3,2),randn(3,2));
chanOut = modOut * chanGain;

Demodulate the received data using the OFDM demodulator object.

[dataOut,pilotOut] = ofdmDemod(chanOut);

Show the resource mapping for the three transmit antennas. The gray lines in the figure show the
placement of custom nulls to avoid interference among antennas.

showResourceMapping(ofdmMod)

 Orthogonal Frequency Division Multiplexing Modulation

11-87

11 Digital Modulation

11-88

 Orthogonal Frequency Division Multiplexing Modulation

11-89

For the first transmit and first receive antenna pair, demonstrate that the input pilot signal matches
the input pilot signal.

pilotCompare = ...
 abs(pilotIn(:,:,1)*chanGain(1,1)) - abs(pilotOut(:,:,1,1));
max(pilotCompare(:) < 1e-10)

ans = logical
 1

Apply OFDM to QPSK Signal Spatially Multiplexed over Two Antennas

Apply OFDM modulation to a QPSK signal that is spatially multiplexed over two transmit antennas.

Initialize input parameters and generate random data for each antenna.

M = 4; % Modulation order for QPSK
nfft = 64;
cplen = 16;
nSym = 5;
nt = 2;
nullIdx = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';
numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
pilots = repmat(pskmod((0:M-1).',M),1,nSym,2);

11 Digital Modulation

11-90

ant1 = randi([0 M-1],numDataCarrs,nSym);
ant2 = randi([0 M-1],numDataCarrs,nSym);

QPSK modulate data individually for each antenna. Perform OFDM modulation.

qpskSig(:,:,1) = pskmod(ant1,M);
qpskSig(:,:,2) = pskmod(ant2,M);
y1 = ofdmmod(qpskSig,nfft,cplen,nullIdx,pilotIdx,pilots);

References
[1] IEEE Standard 802.16-2017. "Part 16: Air Interface for Broadband Wireless Access Systems."

March 2018.

[2] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

See Also
Functions
ofdmEqualize | rcosdesign | ofdmmod | ofdmdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter |
comm.OFDMModulator | comm.OFDMDemodulator

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | OFDM Modulator Baseband | OFDM
Demodulator Baseband

Related Examples
• “Apply OFDM in MIMO Simulation” on page 11-92

More About
• “Digital Baseband Modulation” on page 11-2

 Orthogonal Frequency Division Multiplexing Modulation

11-91

Apply OFDM in MIMO Simulation

Use an OFDM modulator and demodulator in a simple, 2x2 MIMO error rate simulation. The OFDM
parameters are based on the 802.11n standard.

Create an OFDM modulator and demodulator pair with user-specified pilot indices, an inserted DC
null, two transmit antennas, and two receive antennas. Specify pilot indices that vary across
antennas.

ofdmMod = comm.OFDMModulator(FFTLength=128, ...
 PilotInputPort=true, ...
 PilotCarrierIndices= ...
 cat(3,[12; 40; 54; 76; 90; 118],[13; 39; 55; 75; 91; 117]), ...
 InsertDCNull=true, ...
 NumTransmitAntennas=2);
ofdmDemod = comm.OFDMDemodulator(ofdmMod);
ofdmDemod.NumReceiveAntennas = 2;

Show the resource mapping of pilot subcarriers for each transmit antenna. The gray lines in the
figure denote the insertion of null subcarriers to minimize pilot signal interference.

showResourceMapping(ofdmMod)

11 Digital Modulation

11-92

Determine the dimensions of the OFDM modulator by using the info method.

ofdmModDim = info(ofdmMod);
numData = ofdmModDim.DataInputSize(1); % Number of data subcarriers
numSym = ofdmModDim.DataInputSize(2); % Number of OFDM symbols
numTxAnt = ofdmModDim.DataInputSize(3); % Number of transmit antennas

Generate data symbols to fill 100 OFDM frames.

nframes = 100;
M = 4; % Modulation order to QPSK
data = randi([0 M-1],nframes*numData,numSym,numTxAnt);

Apply QPSK modulation to the random symbols and reshape the resulting column vector to match the
OFDM modulator requirements.

modData = pskmod(data(:),M,pi/4);
modData = reshape(modData,nframes*numData,numSym,numTxAnt);

Create an error rate counter.

errorRate = comm.ErrorRate;

Simulate the OFDM system over 100 frames assuming a flat, 2x2, Rayleigh fading channel. Remove
the effects of multipath fading using a simple, least squares solution, and demodulate the OFDM
waveform and QPSK data. Generate error statistics by comparing the original data with the
demodulated data.

 Apply OFDM in MIMO Simulation

11-93

for k = 1:nframes

 % Find row indices for kth OFDM frame
 indData = (k-1)*ofdmModDim.DataInputSize(1)+1:k*numData;

 % Generate random OFDM pilot symbols
 pilotData = complex(rand(ofdmModDim.PilotInputSize), ...
 rand(ofdmModDim.PilotInputSize));

 % Modulate QPSK symbols using OFDM
 dataOFDM = ofdmMod(modData(indData,:,:),pilotData);

 % Create flat, i.i.d., Rayleigh fading channel 2-by-2 channel
 chGain = complex(randn(2,2),randn(2,2))/sqrt(2);

 % Pass OFDM signal through Rayleigh and AWGN channels
 receivedSignal = awgn(dataOFDM*chGain,30);

 % Apply least squares solution to remove effects of fading channel
 rxSigMF = chGain.' \ receivedSignal.';

 % Demodulate OFDM data
 receivedOFDMData = ofdmDemod(rxSigMF.');

 % Demodulate QPSK data
 receivedData = pskdemod(receivedOFDMData(:),M,pi/4);

 % Compute error statistics
 dataTmp = data(indData,:,:);
 errors = errorRate(dataTmp(:),receivedData);
end

Display the error statistics.

fprintf('\nSymbol error rate = %d from %d errors in %d symbols\n',errors)

Symbol error rate = 9.471154e-02 from 1970 errors in 20800 symbols

See Also
Functions
pskmod | pskdemod | ofdmmod | ofdmdemod | awgn

Objects
comm.OFDMModulator | comm.OFDMDemodulator | comm.ErrorRate

More About
• “Digital Baseband Modulation” on page 11-2

11 Digital Modulation

11-94

Phase Modulation
Phase modulation (PM) is a linear baseband modulation technique in which the message modulates
the phase of a constant amplitude signal. Communications Toolbox software includes these functions,
System objects, and blocks to modulate digital baseband signals with these modulation methods:

• Binary, quadrature, and general phase shift keying (PSK)
• Binary, quadrature, and general differential phase shift keying (DPSK)
• Offset quadrature phase shift keying (OQPSK)

Functions System objects Blocks
dpskmod, dpskdemod

pskmod, pskdemod

comm.BPSKModulator,
comm.BPSKDemodulator

comm.DBPSKModulator,
comm.DBPSKDemodulator

comm.DPSKModulator,
comm.DPSKDemodulator

comm.DQPSKModulator,
comm.DQPSKDemodulator

comm.OQPSKModulator,
comm.OQPSKDemodulator

comm.PSKModulator,
comm.PSKDemodulator,
comm.gpu.PSKModulator,
comm.gpu.PSKDemodulator

comm.QPSKModulator,
comm.QPSKDemodulator

BPSK Modulator Baseband,
BPSK Demodulator Baseband

DBPSK Modulator Baseband,
DBPSK Demodulator Baseband

DQPSK Modulator Baseband,
DQPSK Demodulator Baseband

M-DPSK Modulator Baseband,
M-DPSK Demodulator Baseband

M-PSK Modulator Baseband, M-
PSK Demodulator Baseband

OQPSK Modulator Baseband,
OQPSK Demodulator Baseband

QPSK Modulator Baseband,
QPSK Demodulator Baseband

BPSK
In binary phase shift keying (BPSK), the phase of a constant amplitude signal switches between two
values corresponding to binary 1 and binary 0. The passband waveform of a BPSK signal is

sn(t) =
2Eb
Tb

cos 2πfct + ϕn ,

where:

• Eb is the energy per bit.
• Tb is the bit duration.
• fc is the carrier frequency.

In MATLAB, the baseband representation of a BPSK signal is

sn(t) = e−iϕn = cos πn .

 Phase Modulation

11-95

The BPSK signal has two phases: 0 and π.

The probability of a bit error in an AWGN channel is

Pb = Q
2Eb
N0

,

where N0 is the noise power spectral density.

QPSK
In quadrature phase shift keying, the message bits are grouped into 2-bit symbols, which are
transmitted as one of four phases of a constant amplitude baseband signal. This grouping provides a
bandwidth efficiency that is twice as great as the efficiency of BPSK. The general QPSK signal is
expressed as

sn(t) =
2Es
Ts

cos 2πfct + (2n + 1)π
4 ; n ∈ 0, 1, 2, 3 ,

11 Digital Modulation

11-96

where Es is the energy per symbol and Ts is the symbol duration. The complex baseband
representation of a QPSK signal is

sn(t) = exp jπ 2n + 1
4 ; n ∈ 0, 1, 2, 3 .

In this QPSK constellation diagram, each 2-bit sequence is mapped to one of four possible states. The
states correspond to phases of π/4, 3π/4, 5π/4, and 7π/4.

To improve bit error rate performance, the incoming bits can be mapped to a Gray-coded ordering.

 Phase Modulation

11-97

Binary-to-Gray Mapping

Binary Sequence Gray-Coded Sequence
00 00
01 01
10 11
11 10

The primary advantage of the Gray code is that only one of the two bits changes when moving
between adjacent constellation points. Gray codes can be applied to higher-order modulations, as
shown in this Gray-coded QPSK constellation.

The bit error probability for QPSK in AWGN with Gray coding is

Pb = Q
2Eb
N0

,

11 Digital Modulation

11-98

which is the same as the expression for BPSK. As a result, QPSK provides the same performance with
twice the bandwidth efficiency.

Higher-Order PSK
You can modulate and demodulate higher-order PSK constellations. The complex baseband form for
an M-ary PSK signal using binary-ordered symbol mapping is

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

This 8-PSK constellation uses Gray-coded symbol mapping.

For modulation orders beyond 4, the bit error rate performance of PSK in AWGN worsens. In the
following figure, the QPSK and BPSK curves overlap one another.

 Phase Modulation

11-99

DPSK
DPSK is a noncoherent form of phase shift keying that does not require a coherent reference signal at
the receiver. With DPSK, the difference between successive input symbols is mapped to a specific
phase. As an example, for binary DPSK (DBPSK), the modulation scheme operates such that the
difference between successive bits is mapped to a binary 0 or 1. When the input bit is 1, the
differentially encoded symbol remains the same as the previous symbol, while an incoming 0 toggles
the output symbol.

The disadvantage of DPSK is that it is approximately 3 dB less energy efficient than coherent PSK.
The bit error probability for DBPSK in AWGN is Pb = 1/2 exp(Eb/N0).

OQPSK
Offset QPSK is similar to QPSK except that the time alignment of the in-phase and quadrature bit
streams differs. In QPSK, the in-phase and quadrature bit streams transition at the same time. In
OQPSK, the transitions have an offset of a half-symbol period as shown.

11 Digital Modulation

11-100

The in-phase and quadrature signals transition only on boundaries between symbols. These
transitions occur at 1-second intervals because the sample rate is 1 Hz. The following figure shows
the in-phase and quadrature signals for an OQPSK signal.

 Phase Modulation

11-101

For OQPSK, the quadrature signal has a 1/2 symbol period offset (0.5 s).

The BER for an OQPSK signal in AWGN is identical to that of a QPSK signal. The BER is

Pb = Q
2Eb
N0

,

where Eb is the energy per bit and N0 is the noise power spectral density.

References
[1] Rappaport, Theodore S. Wireless Communications: Principles and Practice. Upper Saddle River,

NJ: Prentice Hall, 1996, pp. 238–248.

[2] Viterbi, A.J. “An Intuitive Justification and a Simplified Implementation of the MAP Decoder for
Convolutional Codes.” IEEE Journal on Selected Areas in Communications 16, no. 2 (February
1998): 260–64. https://doi.org/10.1109/49.661114.

11 Digital Modulation

11-102

See Also
Functions
rcosdesign

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | Bipolar to Unipolar Converter |
Unipolar to Bipolar Converter | Data Mapper

Related Examples
• “Phase Modulation Examples” on page 11-104
• “Estimate BER of QPSK in AWGN with Reed-Solomon Coding” on page 18-13
• “Log-Likelihood Ratio (LLR) Demodulation” on page 1-99

More About
• “Digital Baseband Modulation” on page 11-2

 Phase Modulation

11-103

Phase Modulation Examples
These examples demonstrate phase modulation (PM) techniques.

Compare Phase Noise Effects on PSK and PAM Signals

Compare PSK and PAM modulation schemes to demonstrate that PSK is more sensitive to phase
noise. PSK is more sensitive to phase noise because the PSK constellation is circular, while the PAM
constellation is linear.

Specify the number of symbols and the modulation order parameters. Generate random data symbols.

len = 10000;
M = 16;
msg = randi([0 M-1],len,1);

Create a phase noise System object™ and show the configured settings.

phasenoise = comm.PhaseNoise(Level=[-70 -80])

phasenoise =
 comm.PhaseNoise with properties:

 Level: [-70 -80]
 FrequencyOffset: [2000 20000]
 SampleRate: 1000000
 RandomStream: 'Global stream'

Modulate msg using both PSK and PAM to compare the two methods.

txpsk = pskmod(msg,M);
txpam = pammod(msg,M);

Perturb the phase of the modulated signals.

rxpsk = phasenoise(txpsk);
rxpam = phasenoise(txpam);

Create scatter plots of the received signals.

scatterplot(rxpsk);
title('Noisy PSK Scatter Plot')

11 Digital Modulation

11-104

scatterplot(rxpam);
title('Noisy PAM Scatter Plot')

 Phase Modulation Examples

11-105

Demodulate the received signals.

recovpsk = pskdemod(rxpsk,M);
recovpam = pamdemod(rxpam,M);

Compute the number of symbol errors for each modulation scheme. The PSK signal experiences a
much greater number of symbol errors.

numerrs_psk = symerr(msg,recovpsk);
numerrs_pam = symerr(msg,recovpam);
[numerrs_psk numerrs_pam]

ans = 1×2

 286 1

Compare DQPSK Signal Constellation Points and Transitions

This model plots the output of the DQPSK Modulator Baseband block. The image shows the possible
transitions from each symbol in the DQPSK signal constellation to the next symbol.

11 Digital Modulation

11-106

The doc_dqpsk_plot uses these blocks:

• Random Integer Generator
• DQPSK Modulator Baseband
• Complex to Real-Imag (Simulink)
• XY Graph (for more information, see “Visualize Simulation Data on an XY Plot” (Simulink))

For the Random Integer Generator block, set the M-ary number to 4, set the initial seed to any
positive integer scalar (to randomize results you can use the output of the randn function), and set
the sample time to .01.

The plot illustrates pi/4-DQPSK modulation because the default phase offset in the DQPSK Modulator
Baseband block is pi/4. To see how the phase offset influences the signal constellation, change the

 Phase Modulation Examples

11-107

Phase offset parameter in the DQPSK Modulator Baseband block to pi/8 or another value. Run the
model again and observe how the plot changes.

GPU-Based Convolutionally Encode and Viterbi Decode 8-PSK
Modulated Data

Create a GPU-based convolutional encoder System object.

conEnc = comm.gpu.ConvolutionalEncoder;

Create a GPU-based phase shift keying (PSK) modulator System object that accepts a bit input signal.

modPSK = comm.gpu.PSKModulator(BitInput=true);

Create a GPU-based additive white Gaussian noise (AWGN) channel System object with a signal-to-
noise ratio of seven.

chan = comm.gpu.AWGNChannel(...
 NoiseMethod='Signal to noise ratio (SNR)', ...
 SNR=7);

Create a GPU-based PSK demodulator System object that outputs a column vector of bit values.

demodPSK = comm.gpu.PSKDemodulator(BitOutput=true);

Create a GPU-based Viterbi decoder System object that accepts an input vector of hard decision
values, which are zeros or ones.

vDec = comm.gpu.ViterbiDecoder(InputFormat='Hard');

Create an error rate System object that ignores 3 data samples before making comparisons. The
received data lags behind the transmitted data by 34 samples.

error = comm.ErrorRate(ComputationDelay=3,ReceiveDelay=34);

Run the simulation by using this for-loop to process data.

for counter = 1:20
 data = randi([0 1],30,1);
 encodedData = conEnc(gpuArray(data));
 modSignal = modPSK(encodedData);
 receivedSignal = chan(modSignal);
 demodSignal = demodPSK(receivedSignal);
 receivedBits = vDec(demodSignal);
 errors = error(data,gather(receivedBits));
end

Display the number of errors.

errors(2)

ans = 26

11 Digital Modulation

11-108

See Also
Functions
rcosdesign | dpskmod | dpskdemod | pskmod | pskdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter |
comm.BPSKModulator | comm.BPSKDemodulator | comm.DBPSKModulator |
comm.DBPSKDemodulator | comm.DPSKModulator | comm.DPSKDemodulator |
comm.DQPSKModulator | comm.DQPSKDemodulator | comm.OQPSKModulator |
comm.OQPSKDemodulator | comm.PSKModulator | comm.PSKDemodulator |
comm.gpu.PSKModulator | comm.gpu.PSKDemodulator | comm.QPSKModulator |
comm.QPSKDemodulator

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | Bipolar to Unipolar Converter |
Unipolar to Bipolar Converter | Data Mapper | BPSK Modulator Baseband | BPSK Demodulator
Baseband | DBPSK Modulator Baseband | DBPSK Demodulator Baseband | DQPSK Modulator
Baseband | DQPSK Demodulator Baseband | M-DPSK Modulator Baseband | M-DPSK Demodulator
Baseband | M-PSK Modulator Baseband | M-PSK Demodulator Baseband | OQPSK Modulator
Baseband | OQPSK Demodulator Baseband | QPSK Modulator Baseband | QPSK Demodulator
Baseband

Related Examples
• “Estimate BER of QPSK in AWGN with Reed-Solomon Coding” on page 18-13
• “Log-Likelihood Ratio (LLR) Demodulation” on page 1-99

More About
• “Phase Modulation” on page 11-95

 Phase Modulation Examples

11-109

Trellis-Coded Modulation
Trellis-coded modulation (TCM) is a baseband modulation technique in which the message modulates
the phase of a constant amplitude signal. The transmitted signal is created by convolutionally
encoding the binary input signal and mapping the result to a signal constellation. At the receiver, the
modulated signal uses the Viterbi algorithm to decode TCM modulated signals.

Communications Toolbox software includes these modulation and demodulation System objects and
blocks to model general TCM, M-PSK TCM, and rectangular QAM TCM.

Functions System objects Blocks
None comm.GeneralQAMTCMModula

tor,
comm.GeneralQAMTCMDemodu
lator

comm.PSKTCMModulator,
comm.PSKTCMDemodulator

comm.RectangularQAMTCMMo
dulator,
comm.RectangularQAMTCMDe
modulator

General TCM Encoder, General
TCM Decoder

M-PSK TCM Encoder, M-PSK
TCM Decoder

Rectangular QAM TCM Encoder,
Rectangular QAM TCM Decoder

General QAM TCM
The general TCM method convolutionally encodes the binary input signal and maps the result to an
arbitrary signal constellation. The signal constellation parameter lists the signal constellation points
in a set-partitioned order complex vector with a length, M, equal to the number of possible output
symbols from the convolutional encoder. For a rate k/n convolutional code, n is equal to log2(M).

PSK TCM
The PSK TCM method convolutionally encodes the binary input signal and maps the result to an PSK
signal constellation. The modulation order (or M-ary number), M, is the number of possible output
symbols from the convolutional encoder. For a rate k/n convolutional code, n is equal to log2(M).

Rectangular QAM TCM
The rectangular QAM TCM method convolutionally encodes the binary input signal and maps the
result to an QAM signal constellation. The modulation order (or M-ary number), M, is the number of
possible output symbols from the convolutional encoder. For a rate k/n convolutional code, n is equal
to log2(M).

References
[1] Biglieri, E., D. Divsalar, P.J. McLane, and M.K. Simon, Introduction to Trellis-Coded Modulation

with Applications, New York, Macmillan, 1991.

[2] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

11 Digital Modulation

11-110

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on Information
Theory, Vol IT28, Jan. 1982, pp. 55–67.

See Also
Functions
rcosdesign | qammod | qamdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter |
comm.ConvolutionalEncoder | comm.ViterbiDecoder

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | Convolutional Encoder | Viterbi
Decoder | M-PSK Modulator Baseband | M-PSK Demodulator Baseband | Rectangular QAM Modulator
Baseband | Rectangular QAM Demodulator Baseband

Related Examples
• “Trellis Coded Modulation Examples” on page 11-112

More About
• “Digital Baseband Modulation” on page 11-2

 Trellis-Coded Modulation

11-111

Trellis Coded Modulation Examples
These examples demonstrate trellis-coded modulation (TCM) techniques.

Modulate and Demodulate Data Using QAM TCM

Modulate and demodulate noisy data using QAM TCM modulation with an arbitrary 4-point
constellation. Estimate the resultant BER.

Define a trellis structure with two input symbols and four output symbols using a [171 133] generator
polynomial. Define an arbitrary four-point constellation.

qamTrellis = poly2trellis(7,[171 133]);
refConst = exp(pi*1i*[1 2 3 6]/4);

Create a QAM TCM modulator and demodulator System object™ pair using qamTrellis and
refConst.

qamtcmod = comm.GeneralQAMTCMModulator(...
 qamTrellis, ...
 Constellation=refConst);
qamtcdemod = comm.GeneralQAMTCMDemodulator(...
 qamTrellis, ...
 Constellation=refConst);

Create an AWGN channel object in which the noise is set by using a signal-to-noise ratio.

awgnchan = comm.AWGNChannel(...
 NoiseMethod='Signal to noise ratio (SNR)', ...
 SNR=4);

Create an error rate calculator with delay (in bits) equal to the product of TracebackDepth and the
number of bits per symbol

errorrate = comm.ErrorRate(...
 ReceiveDelay=qamtcdemod.TracebackDepth * ...
 log2(qamTrellis.numInputSymbols));

Generate random binary data and apply QAM TCM modulation. Pass the signal through an AWGN
channel and demodulate. Collect the error statistics.

for counter = 1:10
 % Generate binary data
 data = randi([0 1],500,1);
 % Modulate
 modSignal = qamtcmod(data);
 % Pass through an AWGN channel
 noisySignal = awgnchan(modSignal);
 % Demodulate
 receivedData = qamtcdemod(noisySignal);
 % Calculate the error statistics
 errorStats = errorrate(data,receivedData);
end

Display the BER and the number of bit errors.

11 Digital Modulation

11-112

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
 errorStats(1), errorStats(2))

Error rate = 1.16e-02
Number of errors = 58

Demodulate Noisy PSK TCM Data

Modulate and demodulate data using 8-PSK TCM modulation in an AWGN channel. Estimate the
resulting error rate.

Define a trellis structure with four input symbols and eight output symbols.

t = poly2trellis([5 4],[23 35 0; 0 5 13]);

Create 8-PSK TCM modulator and demodulator System objects using trellis, t.

M = 8;
psktcmod = comm.PSKTCMModulator(t,ModulationOrder=M);
psktcdemod = comm.PSKTCMDemodulator(t, ...
 ModulationOrder=M, ...
 TracebackDepth=16);

Create an AWGN channel object.

awgnchan = comm.AWGNChannel(...
 NoiseMethod='Signal to noise ratio (SNR)', ...
 SNR=7);

Create an error rate calculator with delay in bits equal to TracebackDepth times the number of bits
per symbol.

errRate = comm.ErrorRate(...
 ReceiveDelay=psktcdemod.TracebackDepth*log2(t.numInputSymbols));

Generate random binary data and modulate with 8-PSK TCM. Pass the modulated signal through the
AWGN channel and demodulate. Calculate the error statistics.

for counter = 1:10
 % Transmit frames of 250 2-bit symbols
 data = randi([0 1],500,1);
 % Modulate
 modSignal = psktcmod(data);
 % Pass through AWGN channel
 noisySignal = awgnchan(modSignal);
 % Demodulate
 receivedData = psktcdemod(noisySignal);
 % Calculate error statistics
 errorStats = errRate(data,receivedData);
end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
 errorStats(1),errorStats(2))

 Trellis Coded Modulation Examples

11-113

Error rate = 2.17e-02
Number of errors = 108

Modulate and Demodulate Using Rectangular 16-QAM TCM

Modulate and demodulate data using 16-QAM TCM in an AWGN channel. Estimate the BER.

Create QAM TCM modulator and demodulator System objects.

rqamtcmod = comm.RectangularQAMTCMModulator;
rqamtcdemod = comm.RectangularQAMTCMDemodulator(TracebackDepth=16);

Create an AWGN channel object.

awgnchan = comm.AWGNChannel(EbNo=5);

Determine the delay through the QAM TCM demodulator. The demodulator uses the Viterbi algorithm
to decode the TCM signal that was modulated using rectangular QAM. The error rate calculation
must align the received samples with the transmitted sample to accurately calculate the bit error
rate. Calculate the delay in the system with the number of bits per symbol and the decoder traceback
depth in the TCM demodulator.

bitsPerSymbol = log2(rqamtcdemod.TrellisStructure.numInputSymbols);
delay = rqamtcdemod.TracebackDepth*bitsPerSymbol;

Create an error rate calculator object with the ReceiveDelay property set to delay.

errRate = comm.ErrorRate(ReceiveDelay=delay);

Generate binary data and modulate with 16-QAM TCM. Pass the signal through an AWGN channel
and demodulate. Calculate the error statistics. The loop runs until either 100 bit errors are
encountered or 1e7 total bits are transmitted.

% Initialize the error results vector.
errStats = [0 0 0];

while errStats(2) < 100 && errStats(3) < 1e7
 % Transmit frames of 200 3-bit symbols
 txData = randi([0 1],600,1);
 % Modulate
 txSig = rqamtcmod(txData);
 % Pass through AWGN channel
 rxSig = awgnchan(txSig);
 % Demodulate
 rxData = rqamtcdemod(rxSig);
 % Collect error statistics
 errStats = errRate(txData,rxData);
end

Display the error data.

fprintf('Error rate = %4.2e\nNumber of errors = %d\n', ...
 errStats(1),errStats(2))

Error rate = 1.94e-03
Number of errors = 100

11 Digital Modulation

11-114

See Also
Functions
rcosdesign | qammod | qamdemod

Objects
comm.RaisedCosineTransmitFilter | comm.RaisedCosineReceiveFilter |
comm.ConvolutionalEncoder | comm.ViterbiDecoder | comm.GeneralQAMTCMModulator |
comm.GeneralQAMTCMDemodulator | comm.PSKTCMModulator | comm.PSKTCMDemodulator |
comm.RectangularQAMTCMModulator | comm.RectangularQAMTCMDemodulator

Blocks
Raised Cosine Transmit Filter | Raised Cosine Receive Filter | Convolutional Encoder | Viterbi
Decoder | M-PSK Modulator Baseband | M-PSK Demodulator Baseband | Rectangular QAM Modulator
Baseband | Rectangular QAM Demodulator Baseband | General TCM Encoder | General TCM Decoder
| M-PSK TCM Encoder | M-PSK TCM Decoder | Rectangular QAM TCM Encoder | Rectangular QAM
TCM Decoder

Related Examples
• “Concatenated OSTBC with TCM” on page 1-253
• “Concatenated OSTBC with TCM in Simulink” on page 1-259

More About
• “Trellis-Coded Modulation” on page 11-110

 Trellis Coded Modulation Examples

11-115

Analog Modulation

• “Analog Baseband Modulation” on page 12-2
• “Analog Baseband Modulation Examples” on page 12-8
• “Analog Passband Modulation” on page 12-17
• “Analog Passband Modulation Examples” on page 12-21

12

Analog Baseband Modulation
In most media for communication, only a fixed range of frequencies is available for transmitting
messages. One way to communicate a message signal whose frequency spectrum does not fall within
that fixed frequency range, or one that is otherwise unsuitable for the channel, is to alter a
transmittable signal according to the information in your message signal. This alteration is called
modulation. The transmitter sends the modulated symbols. The receiver then recovers the original
message symbols through a process called demodulation.

Modulation Methods
Analog baseband modulation modulates analog signals into sinusoidal waveforms. Communications
Toolbox software provides features to apply a variety of analog baseband modulation methods. The
process by which a carrier signal is altered according to information in a message signal depends on
the modulation method applied. The general form of the carrier signal, s(t), as:

s(t) = A(t)cos[2πf0t+ϕ(t)]

The information-carrying component is the amplitude (A), frequency (f0), or phase (ϕ) individually, or
in combination. To satisfy the Nyquist criterion when simulating analog modulation systems, the
sample rate of the system must be greater than twice the sum of the carrier frequency and the signal
bandwidth. For more information, see “Baseband vs. Passband Simulation” on page 11-3.

Functions System objects Blocks
None comm.FMModulator,

comm.FMDemodulator

comm.FMBroadcastModulato
r,
comm.FMBroadcastDemodula
tor

FM Modulator Baseband, FM
Demodulator Baseband

FM Broadcast Modulator
Baseband, FM Broadcast
Demodulator Baseband

FM
Analog baseband FM modulates using frequency modulation. The output is a baseband
representation of the modulated signal. The output signal's frequency varies with the input signal's
amplitude. Both the input and output signals are real scalar signals.

If the input is u(t) varying as a function of time t, then the output is

cos 2πfct + 2πKc∫0 t
u(τ)dτ + θ

where

• fc represents the carrier frequency.
• θ represents the initial phase.
• Kc represents the frequency deviation.

Typically, an appropriate carrier frequency is much higher than the highest frequency of the input
signal. By the Nyquist sampling theorem, 1 / Ts > fc, where Ts represents the sample time of the input
signal.

12 Analog Modulation

12-2

FM Broadcast
Analog baseband FM broadcast includes the functionality of the baseband “FM” on page 12-2
modulator, plus pre-emphasis filtering and the ability to transmit stereophonic signals.

Filtering

FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To compensate, FM
broadcasters insert a pre-emphasis filter before FM modulation to amplify the high-frequency
content. The FM receiver has a reciprocal de-emphasis filter after the FM demodulator to attenuate
high-frequency noise and restore a flat signal spectrum. This figure shows the order of processing
operations.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 75 μs in the United States and 50 μs in
Europe. Similarly, the transfer function for the lowpass de-emphasis filter is given by

Hd(f) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the response shown in this figure.

 Analog Baseband Modulation

12-3

Multiplexed Stereo and RDS (or RBDS) FM Signal

FM broadcast supports stereophonic and monophonic operations. To support stereo transmission:

• The Left + Right channel information is assigned to the mono portion of the spectrum (0 to 15
kHz).

• The Left – Right channel information is amplitude modulated onto the 23 to 53 kHz region of the
baseband spectrum using a 38 kHz subcarrier signal.

A pilot tone at 19 kHz in the multiplexed signal enables the FM receiver to coherently demodulate the
stereo and RDS (or RBDS) signals.

This figure shows the spectrum of the multiplex baseband signal.

12 Analog Modulation

12-4

The multiplex message signal m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t)− R(t) cos(2π × 38kHz × t) + C2RBDS(t
)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains scale the
amplitudes of the L(t)±R(t) signals, the 19 kHz pilot tone, and the RDS (or RBDS) subcarrier,
respectively.

The demodulator applies m(t) to three bandpass filters with center frequencies at 19, 38, and 57 kHz
and to a lowpass filter with a 3 dB cutoff frequency of 15 kHz. The 19 kHz bandpass filter extracts the
pilot tone from the modulated signal. The recovered pilot tone is doubled and tripled in frequency to
produce the 38 kHz and 57 kHz signals, which demodulate the (L – R) and RDS (or RBDS) signals,
respectively. To generate a scaled version of the left and right channels that produces the stereo
sound, the object adds and subtracts the (L + R) and (L – R) signals. To recover the RDS (or RBDS)
signal, m(t) is mixed with the 57 kHz signal.

This figure shows the multiplexing (MPX) decoder block diagram of the FM broadcast demodulator.
L(t) and R(t) are the left and right audio signal components of the time-domain waveforms. RBDS(t) is
the time-domain waveform of the RDS (or RBDS) signal.

 Analog Baseband Modulation

12-5

Accessing Analog Baseband Modulation Blocks
In Simulink, open the Analog Baseband Modulation sublibrary by double-clicking its icon in the
Modulation library. The Analog Baseband Modulation sublibrary contains modulator-demodulator
block pairs for these modulation methods.

Block Pair Modulation Method
FM Broadcast Modulator Baseband, FM
Broadcast Demodulator Baseband

Frequency modulation broadcast

FM Modulator Baseband, FM Demodulator
Baseband

Frequency modulation

References

[1] Hatai, I., and I. Chakrabarti. “A New High-Performance Digital FM Modulator and Demodulator
for Software-Defined Radio and Its FPGA Implementation.” International Journal of
Reconfigurable Computing (December 25, 2011): 1–10. https://doi.org/10.1155/2011/342532.

[2] Taub, H., and D. Schilling. Principles of Communication Systems. McGraw-Hill Series in Electrical
Engineering. New York: McGraw-Hill, 1971, pp. 142–155.

See Also

More About
• “Analog Baseband Modulation Examples” on page 12-8
• “Analog Passband Modulation” on page 12-17

12 Analog Modulation

12-6

• “Digital Baseband Modulation” on page 11-2

 Analog Baseband Modulation

12-7

Analog Baseband Modulation Examples
These examples show basic workflows for analog baseband modulation and demodulation. Elements
of the examples apply to other analog modulation techniques as well.

Note The analog modulation Simulink blocks in Communications Toolbox process only sample-based
scalar signals. The analog modulator and demodulator accept real-valued input signals and return
real-valued output signals. The analog demodulator blocks return discrete-time (not continuous-time)
output.

Modulate and Demodulate Sinusoidal Signal Using FM Method

Modulate and demodulate a sinusoidal signal. Plot the demodulated signal and compare it to the
original signal.

Initialize parameters for the example.

fs = 100; % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 25; % Frequency deviation (Hz)

Create a sinusoidal signal with a duration of 0.5 s and frequency of 4 Hz.

t = (0:ts:0.5-ts)';
x = sin(2*pi*4*t);

Create an FM modulator System object™, setting the sample rate and frequency deviation. Then,
create an FM demodulator System object, using the FM modulator configuration to set the
demodulator properties.

fmmodulator = comm.FMModulator(...
 'SampleRate',fs, ...
 'FrequencyDeviation',fd);
fmdemodulator = comm.FMDemodulator(fmmodulator);

FM-modulate the signal and plot the real component of the complex signal. The frequency of the
modulated signal changes with the amplitude of the input signal.

y = fmmodulator(x);
plot(t,[x real(y)])
title('Input Sinusoid and FM-Modulated Signals')
xlabel('Time (seconds)'); ylabel('Amplitude')
legend('Input signal','Modulated signal (real component)')

12 Analog Modulation

12-8

Demodulate the FM-modulated signal.

z = fmdemodulator(y);

Plot the original and demodulated signals. The demodulator output signal exactly aligns with the
original signal.

plot(t,x,'r',t,z,'ks')
legend('Original signal','Demodulated signal')
xlabel('Time (s)')
ylabel('Amplitude')

 Analog Baseband Modulation Examples

12-9

Modulate and Demodulate Streaming Audio Signals Using FM
Broadcast Method

Modulate and demodulate an audio signal with the FM broadcast modulator and demodulator System
objects. Plot the frequency responses to compare the input and demodulated audio signals.

Load the audio file guitartune.wav by using an audio file reader System object™. Set the samples
per frame to 44,100, which is large enough to include the entire audio file.

audiofilereader = dsp.AudioFileReader("guitartune.wav", ...
 SamplesPerFrame=44100);
x = audiofilereader();

Create spectrum analyzer System objects to plot the spectra of the modulated and demodulated
signals.

saFM = spectrumAnalyzer(...
 SampleRate=152e3, ...
 Title="FM Broadcast Signal");
saAudio = spectrumAnalyzer(...
 SampleRate=44100, ...
 ShowLegend=true, ...
 Title="Audio Signal", ...
 ChannelNames=["Input signal" "Demodulated signal"]);

12 Analog Modulation

12-10

Create FM broadcast modulator and demodulator objects. Set the sample rate of the output audio
signal to match the sample rate of the input audio signal. Configure the demodulator to match the
specified modulator.

fmbMod = comm.FMBroadcastModulator(...
 AudioSampleRate=audiofilereader.SampleRate, ...
 SampleRate=200e3);
fmbDemod = comm.FMBroadcastDemodulator(fmbMod)

fmbDemod =
 comm.FMBroadcastDemodulator with properties:

 SampleRate: 200000
 FrequencyDeviation: 75000
 FilterTimeConstant: 7.5000e-05
 AudioSampleRate: 44100
 PlaySound: false
 Stereo: false
 RBDS: false

The length of the sequence input to the object must be an integer multiple of the decimation factor.
To determine the audio decimation factor of the filter in the modulator and demodulator, use the
info object function.

info(fmbMod)

ans = struct with fields:
 AudioDecimationFactor: 441
 AudioInterpolationFactor: 2000
 RBDSDecimationFactor: 19
 RBDSInterpolationFactor: 320

info(fmbDemod)

ans = struct with fields:
 AudioDecimationFactor: 50
 AudioInterpolationFactor: 57
 RBDSDecimationFactor: 50
 RBDSInterpolationFactor: 57

The audio decimation factor of the modulator is a multiple of the audio frame length of 44,100. The
audio decimation factor of the demodulator is an integer multiple of the 200,000 samples data
sequence length of the modulator output.

Modulate the audio signal and plot the spectrum of the modulated signal.

y = fmbMod(x);
saFM(y)

 Analog Baseband Modulation Examples

12-11

Demodulate the modulated audio signal and plot the resultant spectrum. Compare the input signal
spectrum with the demodulated signal spectrum. The spectra are similar except that the demodulated
signal has smaller high-frequency components.

z = fmbDemod(y);
saAudio([x z])

12 Analog Modulation

12-12

Modulate and Demodulate FM Signals in Simulink

Modulate and demodulate a sinusoidal signal using FM Modulator Baseband and FM Demodulator
Baseband blocks.

The fmmoddemod model generates a sine wave of frequency 4 Hz and amplitude 1 V. The FM
Modulator Baseband block sets the frequency deviation to 50 Hz.

 Analog Baseband Modulation Examples

12-13

The Modulated Signal scope shows that the frequency of the modulator output, Mod Sig, varies with
the amplitude of the input data.

12 Analog Modulation

12-14

The Demodulated Signal scope demonstrates that the output of the demodulator, Demod Sig, is
perfectly aligned with the input data.

 Analog Baseband Modulation Examples

12-15

12 Analog Modulation

12-16

Analog Passband Modulation
In most media for communication, only a fixed range of frequencies is available for transmitting
messages. One way to communicate a message whose frequency spectrum does not fall within that
fixed frequency range, or one that is otherwise unsuitable for the channel, is to alter a carrier signal
according to the information in your message signal. This alteration is called modulation. The
transmitter sends the modulated symbols. The receiver then recovers the original message symbols
through a process called demodulation.

Modulation Methods
Analog passband modulation modulates analog transmission signals into sinusoidal waveforms.
Communications Toolbox software provides features to apply a variety of analog passband modulation
methods. The process by which a carrier signal is altered according to information in a message
signal depends on the modulation method applied. The general form of the carrier signal, s(t), is

s(t) = A(t)cos[2πf0t+ϕ(t)]

The information-carrying component is the amplitude (A), frequency (f0), or phase (ϕ) individually, or
in combination. To satisfy the Nyquist criterion when simulating analog modulation systems, the
sample rate of the system must be greater than twice the sum of the carrier frequency and the signal
bandwidth. For more information, see “Baseband vs. Passband Simulation” on page 11-3.

You can design your analog modulation system using these passband methods.

Functions System objects Blocks
ammod, amdemod

ssbmod, ssbdemod

None Double-sideband AM (DSB AM)

DSB AM Modulator Passband,
DSB AM Demodulator Passband

Double-sideband suppressed-
carrier AM (DSB-SC AM)

DSBSC AM Modulator
Passband, DSBSC AM
Demodulator Passband

Single-sideband amplitude
modulation (SSB AM)

SSB AM Modulator Passband,
SSB AM Demodulator Passband

fmmod, fmdemod FM Modulator Passband, FM
Demodulator Passband

pmmod, pmdemod PM Modulator Passband, PM
Demodulator Passband

Filter Design Decisions
Unless otherwise indicated by filtering configuration controls, the features for passband modulation
and demodulation do not perform pulse shaping or filtering. After demodulating a signal, you might

 Analog Passband Modulation

12-17

want to filter out the carrier signal. You can select a particular filter, such as butter, cheby1,
cheby2, and ellip, on the mask of the demodulator block. Different filtering methods have different
properties, and you might need to test your application with several filters before deciding which is
most suitable.

DSB AM
Analog passband DSB AM modulates using double-sideband amplitude modulation. The output is a
passband representation of the modulated signal. Both the input and output signals are real scalar
signals.

For an input u(t) varying as a function of time t, then the output is

(u(t) + k)cos(2πfct + θ)

where

• k represents the input signal offset and is commonly set to the maximum absolute value of the
negative part of the input signal u(t).

• fc represents the carrier frequency.
• θ represents the initial phase.

Typically, an appropriate carrier frequency is much higher than the highest frequency of the input
signal. By the Nyquist sampling theorem, 1 / Ts > fc, where Ts represents the sample time of the input
signal.

DSB-SC AM
Analog passband DSB-SC AM modulates using double-sideband suppressed-carrier amplitude
modulation. The output is a passband representation of the modulated signal. Both the input and
output signals are real scalar signals.

For an input u(t) varying as a function of time t, then the output is

u(t)cos(2πfct + θ)

where

• fc represents the carrier frequency.
• θ represents the initial phase.

Typically, an appropriate carrier frequency is much higher than the highest frequency of the input
signal. By the Nyquist sampling theorem, 1 / Ts > fc, where Ts represents the sample time of the input
signal.

SSB AM
Analog passband SSB AM modulates using single-sideband amplitude modulation. The output is a
passband representation of the modulated signal. Both the input and output signals are real scalar
signals.

SSB AM transmits either the lower or upper sideband signal, but not both.

12 Analog Modulation

12-18

If the input is u(t) varying as a function of time t, then the output is

(u(t)cos(fct + θ) ± û(t)sin(fct + θ)

where

• fc represents the carrier frequency.
• θ represents the initial phase.
• û(t) represents the Hilbert transform of the input u(t).
• For ±, the minus sign indicates the upper sideband and the plus sign indicates the lower sideband.

FM
Analog passband FM modulates using frequency modulation. The output is a passband representation
of the modulated signal. The output signal's frequency varies with the input signal's amplitude. Both
the input and output signals are real scalar signals.

If the input is u(t) varying as a function of time t, then the output is

cos 2πfct + 2πKc∫0 t
u(τ)dτ + θ

where

• fc represents the carrier frequency.
• θ represents the initial phase.
• Kc represents the frequency deviation.

Typically, an appropriate carrier frequency is much higher than the highest frequency of the input
signal. By the Nyquist sampling theorem, 1 / Ts > fc, where Ts represents the sample time of the input
signal.

PM
Analog passband PM modulates using phase modulation. The output is a passband representation of
the modulated signal. The output signal's phase varies with the input signal's amplitude. Both the
input and output signals are real scalar signals.

If the input is u(t) varying as a function of time t, then the output is

cos(2πfct + Kcu(t) + θ)

where

• fc represents the carrier frequency.
• θ represents the initial phase.
• Kc represents the phase deviation.

Typically, an appropriate carrier frequency is much higher than the highest frequency of the input
signal. By the Nyquist sampling theorem, 1 / Ts > fc, where Ts represents the sample time of the input
signal.

 Analog Passband Modulation

12-19

Accessing Analog Passband Modulation Blocks
In Simulink, open the Analog Passband Modulation sublibrary by double-clicking its icon in the
Modulation library. The Analog Passband Modulation sublibrary contains modulator-demodulator
block pairs for these modulation methods.

Block Pair Modulation Methods
DSB AM Modulator Passband, DSB AM
Demodulator Passband

Double-sideband amplitude modulation

DSBSC AM Modulator Passband, DSBSC AM
Demodulator Passband

Double-sideband suppressed-carrier AM

SSB AM Modulator Passband, SSB AM
Demodulator Passband

Single-sideband AM

FM Modulator Passband, FM Demodulator
Passband

Frequency modulation

PM Modulator Passband, PM Demodulator
Passband

Phase modulation

References

[1] Peebles, Peyton Z, Jr. Communication System Principles. Reading, Mass.: Addison-Wesley, 1976.

See Also

More About
• “Analog Passband Modulation Examples” on page 12-21
• “Analog Baseband Modulation” on page 12-2
• “Digital Baseband Modulation” on page 11-2

12 Analog Modulation

12-20

Analog Passband Modulation Examples
These examples show the basic workflows for analog passband modulation and demodulation.
Elements of the examples apply to other analog modulation techniques as well.

Note The analog modulation Simulink blocks in Communications Toolbox process only sample-based
scalar signals. The analog modulator and demodulator accept real-valued input signals and return
real-valued output signals. The analog demodulator blocks return discrete-time (not continuous-time)
output.

Represent Analog Signals for Amplitude Modulation in MATLAB

Represent single-channel and multichannel analog signals for amplitude modulation in MATLAB®.

Define variables for the sampling rate, carrier frequency, and sampling times. Create a sinewave
sampled at the sampling time increments. For sample time increments represented by t, the vector x
results from sampling a sine wave 8000 times per second for 0.1 seconds. Use the ammod function to
amplitude modulate the sine wave, and then plot the signals.

Fs = 8000; % Sampling rate in samples per second
Fc = 300; % Carrier frequency in Hz
t = [0:0.1*Fs]'/Fs; % Sampling times for 0.1 seconds
x = sin(20*pi*t); % Representation of the signal

y = ammod(x,Fc,Fs); % Modulate x to produce y
figure;
subplot(2,1,1); plot(t,x); % Plot x on top
subplot(2,1,2); plot(t,y) % Plot y below

 Analog Passband Modulation Examples

12-21

Define a multichannel signal containing two sine waves. The first channel is a sinusoid with zero
initial phase and the second channel is a sinusoid with an initial phase of pi/8. Use the ammod function
to amplitude modulate the sine waves, and then plot the signals.

Fs = 8000;
t = [0:.1*Fs]'/Fs;
x = [sin(20*pi*t),sin(20*pi*t+pi/8)];

y = ammod(x,Fc,Fs); % Modulate x to produce y
figure;
subplot(2,1,1); plot(t,x); % Plot x on top
subplot(2,1,2); plot(t,y) % Plot y below

12 Analog Modulation

12-22

Phase-Modulate Analog Signals in AWGN Channel

Prepare to sample a signal for two seconds at a rate of 100 samples per second.

Define variables for the sampling rate, carrier frequency, sampling times, and phase deviation. Create
a signal as the sum of a one-cycle and a two-cycle sinusoid. For sample time increments represented
by t, the vector x results from summing two sine waves 100 times per second for 2 seconds. Use the
pmmod function to phase-modulate the sine wave x. Add Gaussian white noise to the modulated
signal, use the pmdemod function to recover the original signal, and then plot the orignal and
recovered signals.

Fs = 100; % Sampling rate
Fc = 10; % Carrier frequency in Hz
t = [0:2*Fs+1]'/Fs; % Time points for sampling
phasedev = pi/2; % Phase deviation for phase modulation

x = sin(2*pi*t) + sin(4*pi*t);

y = pmmod(x,Fc,Fs,phasedev); % Modulate.
y = awgn(y,10,'measured',103); % Add noise.
z = pmdemod(y,Fc,Fs,phasedev); % Demodulate.
% Plot the original and recovered signals.
figure; plot(t,x,'k-',t,z,'g-');
legend('Original signal','Recovered signal');

 Analog Passband Modulation Examples

12-23

Analog Modulation Filtering Examples
Filter Cutoff Frequency Variation in Simulink

When you apply filtering to a signal, s, selecting an initial cutoff frequency equal to half the carrier
frequency is typically a good starting point. Because the carrier frequency must be higher than the
bandwidth of the message signal, a cutoff frequency chosen in this way properly filters out unwanted
frequency components. If the cutoff frequency is too high, unwanted out-of-band interference may not
be filtered out. If the cutoff frequency is too low, the filtering may narrow the bandwidth of the
message signal and inband message content may be filtered out. Filtering causes a delay between a
demodulated signal and the original transmitted signal. The filter order and other filter parameters
affect the length of this delay.

The doc_sawtooth_mod model applies single-sideband amplitude modulation (SSB-AM) to a 0.3 Hz
sawtooth message signal onto a 25 Hz carrier signal, demodulates the resulting signal using a
Butterworth filter, and plots the original and recovered signals. The Butterworth filter is implemented
within the SSB AM Demodulator Passband block. To see how different lowpass filter cutoff
frequencies affect the recovered signal, simulate the system with the cutoff frequency of the SSB AM
Demodulator Passband block set to 30 Hz, 49 Hz, and 4 Hz. Plot the transmitted and demodulated
signal for each run.

12 Analog Modulation

12-24

Simulate and plot waveform with cutoff frequency set to 30 Hz. The recovered signal is delayed but
demodulated signal looks clean.

Simulate and plot waveform with cutoff frequency set to 49 Hz. The higher cutoff frequency allows
the carrier signal to interfere with the demodulated signal.

 Analog Passband Modulation Examples

12-25

Simulate and plot waveform with cutoff frequency set to 4 Hz. The lower cutoff frequency narrows
the bandwidth of the demodulated signal and clips the demodulated signal.

12 Analog Modulation

12-26

Equalization

• “Equalization” on page 13-2
• “Adaptive Equalizers” on page 13-5
• “MLSE Equalizers” on page 13-35

13

Equalization
In this section...
“Equalizer Structure Options” on page 13-2
“Selected References for Equalizers” on page 13-3

In a multipath fading scattering environment, the receiver typically detects several constantly
changing, delayed versions of the transmitted signal. These time-dispersive channels cause
intersymbol interference (ISI) that occurs when symbols received from multiple paths are delayed
and overlap in time. ISI causes high error rates because the symbols from multiple received paths
interfere with each other and become indistinguishable by the receiver.

Equalizers attempt to mitigate ISI and improve the receiver performance. Equalizer structures are
filters that attempt to match the propagation channel response. For time-varying propagation
channels, adapting the equalization filter tap weights so that they maintain a match to the channel
over time improves the error rate performance.

Equalizer Structure Options
The Communications Toolbox includes System objects and blocks to recover transmitted data using
by linear, decision-feedback, or maximum-likelihood sequence estimation (MLSE) equalization
structures. For more information, see “Selected References for Equalizers” on page 13-3.

This figure shows the high-level configuration options for each equalization structure.

For each equalizer structure, you can configure structural settings (such as the number of taps and
initial set of tap weights), algorithmic settings (such as the step size), and the signal constellation
used by the modulator in your design. You also specify adaptability of the equalizer tap weights
throughout the simulation.

13 Equalization

13-2

• Linear and decision-feedback filter equalizer structures adapt tap weights by using the LMS, RLS,
or CMA adaptive algorithm. When using these equalizer structures, the number of samples per
symbol determines whether symbols are processed using whole or fractional symbol spacing.

• When using LMS and RLS adaptive algorithms, the equalizer begins operating in tap weights
training mode. Configure the equalizer to operate adaptively in decision-directed mode or
without further adjustment of taps after training is completed.

• When using the CMA adaptive algorithm, the equalizer has no training mode. You can
configure the equalizer to operate adaptively in decision-directed mode or in nonadaptive
mode.

To explore the linear and decision-feedback filter equalizer capabilities, see “Adaptive Equalizers”
on page 13-5.

• Maximum-Likelihood Sequence Estimation (MLSE) equalizers use the Viterbi algorithm. The
MLSE equalization structure provides the optimal match to the received symbols but it requires
an accurate channel estimate and is the most computationally complex structure. To explore
MLSE equalizer capabilities, see “MLSE Equalizers” on page 13-35.

The computational complexity of each equalization structure grows with the length of the channel
time dispersion. Considering the Doppler and frequency selectivity characteristics of the channel, use
the information in this table when selecting which equalization structure to use in your simulation.

Equalizer Structure Doppler Speed Is Channel Frequency
Selective?

Computational
Complexity

Linear RLS High No Medium
Linear LMS Low No Lowest
Linear CMA Low No Lowest
DFE RLS High Yes Medium
DFE LMS Low Yes Lowest
DFE CMA Low Yes Lowest
MLSE Low Yes Highest

Selected References for Equalizers

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley
& Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, John Wiley & Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

[5] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, John Wiley & Sons,
1996.

 Equalization

13-3

See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer | comm.MLSEEqualizer

Blocks
Linear Equalizer | Decision Feedback Equalizer | MLSE Equalizer

More About
• “Adaptive Equalizers” on page 13-5
• “MLSE Equalizers” on page 13-35

13 Equalization

13-4

Adaptive Equalizers

In this section...
“Number of Taps” on page 13-5
“Symbol Tap Spacing” on page 13-5
“Linear Equalizers” on page 13-6
“Decision-Feedback Equalizers” on page 13-7
“Reference Signal and Operating Modes” on page 13-8
“Error Calculation” on page 13-8
“Updating Tap Weights” on page 13-9
“Configuring Adaptive Equalizers” on page 13-10
“Using Adaptive Equalizers in Simulink” on page 13-29
“Adaptive Equalization with Filtering and Fading Channel” on page 13-29

Adaptive equalizer structures provide suboptimal equalization of time variations in the propagation
channel characteristics. However, these equalizers are appealing because their computational
complexity is lower than “MLSE Equalizers” on page 13-35.

In Communications Toolbox, the comm.LinearEqualizer and
comm.DecisionFeedbackEqualizer System objects and the Linear Equalizer and Decision
Feedback Equalizer blocks use tap delay line filters to equalize a linearly modulated signal through a
dispersive channel. These features output the estimate of the signal by using an estimate of the
channel modeled as a finite input response (FIR) filter.

To decode a received signal, the adaptive equalizer:

1 Applies the FIR filter to the symbols in the input signal. The FIR filter tap weights correspond to
the channel estimate.

2 Outputs the signal estimate and uses the signal estimate to update the tap weights for the next
symbol. The signal estimate and updating of weights depends on the adaptive equalizer structure
and algorithm.

Adaptive equalizer structure options are linear or decision-feedback. Adaptive algorithm options are
least mean square (LMS), recursive mean square (RMS), or constant modulus algorithm (CMA). For
background material on adaptive equalizers, see “Selected References for Equalizers” on page 13-3.

Number of Taps
For the linear equalizer, the number of taps must be greater than or equal to the number of input
samples per symbol. For the decision feedback equalizer, the number of forward taps must be greater
than or equal to the number of input samples per symbol.

Symbol Tap Spacing
You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional symbol-
spaced equalizer.

 Adaptive Equalizers

13-5

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per symbol as 1.
Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-rate equalizers are
sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of input samples
per symbol as an integer greater than 1 and provide an input signal oversampled at that sampling
rate. Fractional symbol-spaced equalizers have taps spaced at an integer fraction of the input
symbol duration. Fractional symbol-spaced equalizers are not sensitive to timing phase.

Note The MLSE equalizer supports fractional symbol spacing but using it is not recommended. The
MLSE computational complexity and burden grows exponentially with the length of the channel time
dispersion. Oversampling the input means multiplying the exponential term by the number of samples
per symbol.

Linear Equalizers
Linear equalizers can remove intersymbol interference (ISI) when the frequency response of a
channel has no null. If a null exists in the frequency response of a channel, linear equalizers tend to
enhance the noise. In this case, use decision feedback equalizers to avoid enhancing the noise.

A linear equalizer consists of a tapped delay line that stores samples from the input signal. Once per
symbol period, the equalizer outputs a weighted sum of the values in the delay line and updates the
weights to prepare for the next symbol period.

Linear equalizers can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractionally spaced equalizers. The output sample rate is 1/T
and the input sample rate is K/T, where T is the symbol period. Tap-weight updating occurs at the
output rate.

This schematic shows a linear equalizer with L weights, a symbol period of T, and K samples per
symbol. If K is 1, the result is a symbol-spaced linear equalizer instead of a fractional symbol-spaced
linear equalizer.

13 Equalization

13-6

In each symbol period, the equalizer receives K input samples at the tapped delay line. The equalizer
then outputs a weighted sum of the values in the tapped delay line and updates the weights to
prepare for the next symbol period.

Decision-Feedback Equalizers
A decision feedback equalizer (DFE) is a nonlinear equalizer that reduces intersymbol interference
(ISI) in frequency-selective channels. If a null exists in the frequency response of a channel, DFEs do
not enhance the noise. A DFE consists of a tapped delay line that stores samples from the input signal
and contains a forward filter and a feedback filter. The forward filter is similar to a linear equalizer.
The feedback filter contains a tapped delay line whose inputs are the decisions made on the equalized
signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the delay line
and updates the weights to prepare for the next symbol period.

DFEs can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractional symbol-spaced equalizers. The output sample rate is
1/T and the input sample rate is K/T. Tap weight updating occurs at the output rate.

This schematic shows a fractional symbol-spaced DFE with a total of N weights, a symbol period of T,
and K samples per symbol. The filter has L forward weights and N-L feedback weights. The forward
filter is at the top, and the feedback filter is at the bottom. If K is 1, the result is a symbol-spaced DFE
instead of a fractional symbol-spaced DFE.

 Adaptive Equalizers

13-7

In each symbol period, the equalizer receives K input samples at the forward filter and one decision
or training sample at the feedback filter. The equalizer then outputs a weighted sum of the values in
the forward and feedback delay lines and updates the weights to prepare for the next symbol period.

Note The algorithm for the Adaptive Algorithm block in the schematic jointly optimizes the forward
and feedback weights. Joint optimization is especially important for convergence in the recursive
least square (RLS) algorithm.

Reference Signal and Operating Modes
In default applications, the equalizer first operates in training mode to gather information about the
channel. The equalizer later switches to decision-directed mode.

• When the equalizer is operating in training mode, the reference signal is a preset, known
transmitted sequence.

• When the equalizer is operating in decision-directed mode, the reference signal is a detected
version of the output signal, denoted by yd in the schematic.

The CMA algorithm has no training mode. Training mode applies only when the equalizer is
configured to use the LMS or RLS algorithm.

Error Calculation
The error calculation operation produces a signal given by this expression, where R is a constant
related to the signal constellation.

13 Equalization

13-8

e =
d− y LMS or RLS

y(R− y 2) CMA

Updating Tap Weights
• “Least Mean Square Algorithm” on page 13-9
• “Recursive Least Square Algorithm” on page 13-9
• “Constant Modulus Algorithm” on page 13-10

For linear and decision-feedback equalizer structures, the choice of LMS, RLS, or CMA determines
the algorithms that are used to set the tap weights and perform the error calculation. The new set of
tap weights depends on:

• The current set of tap weights
• The input signal
• The output signal
• The reference signal, d, for LMS and RLS adaptive algorithms only. The reference signal

characteristics depend on the operating mode of the equalizer.

Least Mean Square Algorithm

For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is a vector of
all inputs ui. Based on the current set of weights, the LMS algorithm creates the new set of weights
as

wnew = wcurrent + (StepSize) ue*.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed when using the LMS adaptive algorithm, use the maxstep
object function. The * operator denotes the complex conjugate and the error calculation e = d - y.

Recursive Least Square Algorithm

For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u is the vector
of all inputs ui. Based on the current set of inputs, u, and the inverse correlation matrix, P, the RLS
algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the equalized
output signal to be less stable. H denotes the Hermitian transpose. Based on the current inverse
correlation matrix, the new inverse correlation matrix is

Pnew =
(1− KuH)Pcurrent
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

 Adaptive Equalizers

13-9

Constant Modulus Algorithm

For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights wi, and u is
the vector of all inputs ui. Based on the current set of weights, the CMA adaptive algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed by the CMA adaptive algorithm, use the maxstep object
function. The * operator denotes the complex conjugate and the error calculation e = y(R - |y|2),
where R is a constant related to the signal constellation.

Configuring Adaptive Equalizers
Choose the linear or decision-feedback equalizer structure. Decide which adaptive algorithm to use —
LMS, RLS, or CMA. Specify settings for structure and algorithm-specific operation modes.

Configuring an equalizer involves selecting a linear or decision-feedback structure, selecting an
adaptive algorithm, and specifying the structure and algorithm specific operation modes.

• “Specify an Adaptive Equalizer” on page 13-10
• “Equalizer Training” on page 13-13
• “Managing Delays When Using Equalizers” on page 13-24

When deciding which adaptive algorithm best fits your needs, consider:

• The LMS algorithm executes quickly but converges slowly. Its complexity grows linearly with the
number of weights.

• The RLS algorithm converges quickly. Its complexity grows approximately with the square of the
number of weights. This algorithm can also be unstable when the number of weights is large.

• The constant modulus algorithm (CMA) is useful when no training signal is available. It works best
for constant modulus modulations such as PSK.

• If CMA has no additional side information, it can introduce phase ambiguity. For example, the
weights found by the CMA might produce a perfect QPSK constellation but introduce a phase
rotation of 90, 180, or 270 degrees. In this case, employ a phase ambiguity correction
algorithm or choose a differential modulation scheme. Differential modulation schemes are
insensitive to phase ambiguity.

To view or change any properties of an adaptive equalizer, use the syntax described for channel
objects in “Displaying and Changing Object Properties” on page 21-14.

For more information about adaptive algorithms, see the references listed in “Selected References for
Equalizers” on page 13-3.

Specify an Adaptive Equalizer

• “Defining Equalizer Objects” on page 13-11
• “Adaptive Algorithm Assignment” on page 13-12

To create an adaptive equalizer object for use in MATLAB, select the comm.LinearEqualizer or
comm.DecisionFeedbackEqualizer System object. For Simulink, use the Linear Equalizer or

13 Equalization

13-10

Decision Feedback Equalizer block. Based on the propagation channel characteristics in your
simulation, use the criteria in “Equalization” on page 13-2 to select the equalizer structure.

The equalizer object has many properties that record information about the equalizer. Properties can
be related to:

• The structure of the equalizer, such as the number of taps.
• The adaptive algorithm that the equalizer uses, such as the step size in the LMS or CMA

algorithm.
• Information about the current state of the equalizer. The equalizer object can output the values of

the weights.

To view or change any properties of an equalizer object, use the syntax described for channel objects
in “Displaying and Changing Object Properties” on page 21-14.
Defining Equalizer Objects

The code creates equalizer objects for these configurations:

• A symbol-spaced linear RLS equalizer with 10 weights.
• A fractionally spaced linear RLS equalizer with 10 weights, a BPSK constellation, and two samples

per symbol.
• A decision-feedback RLS equalizer with three weights in the feedforward filter and two weights in

the feedback filter.

All three equalizer objects specify the RLS adaptive algorithm with a forgetting factor of 0.3.

Create equalizer objects of different types. The default settings are used for properties not set using
'Name,Value' pairs.

eqlin = comm.LinearEqualizer(...
 Algorithm='RLS', ...
 NumTaps=10, ...
 ForgettingFactor=0.3)

eqlin =
 comm.LinearEqualizer with properties:

 Algorithm: 'RLS'
 NumTaps: 10
 ForgettingFactor: 0.3000
 InitialInverseCorrelationMatrix: 0.1000
 Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

eqfrac = comm.LinearEqualizer(...
 Algorithm='RLS', ...
 NumTaps=10, ...

 Adaptive Equalizers

13-11

 ForgettingFactor=0.3, ...
 Constellation=[-1 1], ...
 InputSamplesPerSymbol=2)

eqfrac =
 comm.LinearEqualizer with properties:

 Algorithm: 'RLS'
 NumTaps: 10
 ForgettingFactor: 0.3000
 InitialInverseCorrelationMatrix: 0.1000
 Constellation: [-1 1]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 2
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

eqdfe = comm.DecisionFeedbackEqualizer(...
 Algorithm='RLS', ...
 NumForwardTaps=3, ...
 NumFeedbackTaps=2, ...
 ForgettingFactor=0.3)

eqdfe =
 comm.DecisionFeedbackEqualizer with properties:

 Algorithm: 'RLS'
 NumForwardTaps: 3
 NumFeedbackTaps: 2
 ForgettingFactor: 0.3000
 InitialInverseCorrelationMatrix: 0.1000
 Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

Adaptive Algorithm Assignment

Use the Algorithm property to assign the adaptive algorithm used by the equalizer.

Algorithm Assignment

When creating the equalizer object, assign the adaptive algorithm.

eqlms = comm.LinearEqualizer('Algorithm','LMS');

Create the equalizer object with default property settings. LMS is the default adaptive algorithm.

13 Equalization

13-12

eqrls = comm.LinearEqualizer;
eqrls.Algorithm

ans =
'LMS'

Update eqrls to use the RLS adaptive algorithm.

eqrls.Algorithm = 'RLS';
eqrls.Algorithm

ans =
'RLS'

Cloning and Duplicating Objects

Configure a new equalizer object by cloning an existing equalizer object, and then changing its
properties. Clone eqlms to create an independent equalizer, eqcma, then update the algorithm to
'CMA'.

eqcma = clone(eqlms);
eqcma.Algorithm

ans =
'LMS'

eqcma.Algorithm = 'CMA';
eqcma.Algorithm

ans =
'CMA'

If you want an independent duplicate, use the clone command.

eqlms.NumTaps

ans = 5

eq2 = eqlms;
eq2.NumTaps = 6;
eq2.NumTaps

ans = 6

eqlms.NumTaps

ans = 6

The clone command creates a copy of eqlms that is independent of eqlms. By contrast, the
command eqB = eqA creates eqB as a reference to eqA, so that eqB and eqA always have identical
property settings.

Equalizer Training

• “Linearly Equalize System by Using Different Training Schemes” on page 13-13
• “Linearly Equalize Symbols By Using EVM-Based Training” on page 13-21

Linearly Equalize System by Using Different Training Schemes

 Adaptive Equalizers

13-13

Demonstrate linear equalization by using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel. Apply different equalizer training schemes and show the
symbol error magnitude.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200 training
symbols and 1800 random data symbols. Configure a linear LMS equalizer to recover the packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
lineq = comm.LinearEqualizer(...
 Algorithm="LMS", ...
 NumTaps=5, ...
 ReferenceTap=3, ...
 StepSize=0.01);

Train the Equalizer at the Beginning of Each Packet with Reset

Use prepended training symbols when processing each packet. After processing each packet, reset
the equalizer. This reset forces the equalizer to train the taps with no previous knowledge. Equalizer
error signal plots for the first, second, and last packet show higher symbol errors at the start of each
packet.

jj = 1;
figure
for ii = 1:numPkts
 b = randi([0 M-1],numDataSymbols,1);
 dataSym = pskmod(b,M,pi/4);
 packet = [trainingSymbols;dataSym];
 rx = awgn(packet,SNR);
 [~,err] = lineq(rx,trainingSymbols);
 reset(lineq)
 if (ii ==1 || ii == 2 ||ii == numPkts)
 subplot(3,1,jj)
 plot(abs(err))
 title(['Packet # ',num2str(ii)])
 xlabel('Symbols')
 ylabel('Error Magnitude')
 axis([0,length(packet),0,1])
 grid on;
 jj = jj+1;
 end
end

13 Equalization

13-14

Train the Equalizer at the Beginning of Each Packet Without Reset

Process each packet using prepended training symbols. Do not reset the equalizer after each packet
is processed. By not resetting after each packet, the equalizer retains tap weights from training prior
packets. Equalizer error signal plots for the first, second, and last packet show that after the initial
training on the first packet, subsequent packets have fewer symbol errors at the start of each packet.

release(lineq)
jj = 1;
figure
for ii = 1:numPkts
 b = randi([0 M-1],numDataSymbols,1);
 dataSym = pskmod(b,M,pi/4);
 packet = [trainingSymbols;dataSym];
 channel = 1;
 rx = awgn(packet*channel,SNR);
 [~,err] = lineq(rx,trainingSymbols);
 if (ii ==1 || ii == 2 ||ii == numPkts)
 subplot(3,1,jj)
 plot(abs(err))
 title(['Packet # ',num2str(ii)])
 xlabel('Symbols')
 ylabel('Error Magnitude')
 axis([0,length(packet),0,1])
 grid on;
 jj = jj+1;

 Adaptive Equalizers

13-15

 end
end

Train the Equalizer Periodically

Systems with signals subject to time-varying channels require periodic equalizer training to maintain
lock on the channel variations. Specify a system that has 200 symbols of training for every 1800 data
symbols. Between training, the equalizer does not update tap weights. The equalizer processes 200
symbols per packet.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);
tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Set the AdaptAfterTraining property to false to stop the equalizer tap weight updates after the
training phase.

release(lineq)
lineq.AdaptAfterTraining = false

13 Equalization

13-16

lineq =
 comm.LinearEqualizer with properties:

 Algorithm: 'LMS'
 NumTaps: 5
 StepSize: 0.0100
 Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i]
 ReferenceTap: 3
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: false
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

Equalize the impaired data. Plot the angular error from the channel, the equalizer error signal, and
signal constellation. As the channel varies, the equalizer output does not remove the channel effects.
The output constellation rotates out of sync, resulting in bit errors.

[y,err] = lineq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel Without Retraining')

 Adaptive Equalizers

13-17

scatterplot(y)

13 Equalization

13-18

Set the TrainingInputPort property to true to configure the equalizer to retrain the taps when
signaled by the trainFlag input. The equalizer trains only when trainFlag is true. After every
2000 symbols, the equalizer retrains the taps and keeps lock on variations of the channel. Plot the
angular error from the channel, equalizer error signal, and signal constellation. As the channel
varies, the equalizer output removes the channel effects. The output constellation does not rotate out
of sync and bit errors are reduced.

release(lineq)
lineq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;
trainingPeriod = 2000;
eVec = zeros(size(rx));
yVec = zeros(size(rx));
for p=1:numPackets
 [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
 lineq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag);
 symbolCnt = symbolCnt + spp;
 if symbolCnt >= trainingPeriod
 trainFlag = true;
 symbolCnt = 0;
 else
 trainFlag = false;
 end
end
figure

 Adaptive Equalizers

13-19

subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

scatterplot(yVec)

13 Equalization

13-20

Linearly Equalize Symbols By Using EVM-Based Training

Recover QPSK symbols with a linear equalizer by using the constant modulus algorithm (CMA) and
EVM-based taps training. When using blind equalizer algorithms, such as CMA, train the equalizer
taps by using the AdaptWeights property to start and stop training. Helper functions are used to
generate plots and apply phase correction.

Initialize system variables.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
raylChan = comm.RayleighChannel(...
 'PathDelays',[0 1], ...
 'AveragePathGains',[0 -12], ...
 'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Create the equalizer and EVM System objects. The equalizer System object specifies a linear
equalizer by using the CMA adaptive algorithm. Call the helper function to initialize figure plots.

lineq = comm.LinearEqualizer(...
 'Algorithm','CMA', ...
 'NumTaps',5, ...

 Adaptive Equalizers

13-21

 'ReferenceTap',3, ...
 'StepSize',0.03, ...
 'AdaptWeightsSource','Input port')

lineq =
 comm.LinearEqualizer with properties:

 Algorithm: 'CMA'
 NumTaps: 5
 StepSize: 0.0300
 Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i]
 ReferenceTap: 3
 InputSamplesPerSymbol: 1
 AdaptWeightsSource: 'Input port'
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

info(lineq)

ans = struct with fields:
 Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
 'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = ...
 initFigures(numPackets,lineq);

Equalization Loop

To implement the equalization loop:

1 Generate PSK data packets.
2 Apply Rayleigh fading and AWGN to the transmission data.
3 Apply equalization to the received data and phase correction to the equalizer output.
4 Estimate the EVM and toggle the adaptWeights flag to true or false based on the EVM level.
5 Update the figure plots.

for p=1:numPackets
 data = randi([0 M-1],numSymbols,1);
 tx = pskmod(data,M,pi/4);
 rx = awgn(raylChan(tx),SNR);
 rxDelay = finddelay(rx,tx);
 [y,err,wts] = lineq(rx,adaptWeights);
 y = phaseCorrection(y);
 evmEst = evm(y);
 adaptWeights = (evmEst > 20);

 updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
 wts,y(end),evmEst,adaptWeights,p,numPackets)
end

13 Equalization

13-22

rxDelay

rxDelay = 0

The figure plots show that, as the EVM varies, the equalizer toggles in and out of decision-directed
weight adaptation mode.

Helper Functions

This helper function initializes figures that show a quad plot of simulation results.

function [errPlot,evmPlot,scatter,adaptState] = ...
 initFigures(numPkts,lineq)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(lineq.NumTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 lineq.NumTaps 0 1.8])
xlabel('Taps');
ylabel('|Weights|');
title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');

 Adaptive Equalizers

13-23

axis square;
axis([-1.2 1.2 -1.2 1.2]);
grid on
xlabel('In-phase');
ylabel('Quadrature');
title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on;
axis([0 numPkts -0.2 1.2])
ylabel('Training');
xlabel('Symbols');
title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on;
axis([1 numPkts 0 100])
xlabel('Symbols');
ylabel('EVM (%)');
title('EVM')
end

This helper function updates figures.

function updateFigures(errPlot,evmPlot,scatSym, ...
 adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
 yVec = nan(numFrames,1);
 evmVec = nan(numFrames,1);
 adaptVec = nan(numFrames,1);
end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;

errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);
scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

This helper function applies phase correction.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Managing Delays When Using Equalizers

For proper equalization, you must determine and account for system delays. As shown in the
following example, you can use the finddelay function to determine the system delay. This example

13 Equalization

13-24

uses LMS linear equalization but the same approach is valid for the RLS and CMA adaptive
algorithms and for decision feedback equalizers.

Linearly Equalize Delayed Signal

Simulate a system with delay between the transmitted symbols and received samples. Typical
systems have transmitter and receiver filters that result in a delay. This delay must be accounted for
to synchronize the system. In this example, the system delay is introduced without transmit and
receive filters. Linear equalization, using the least mean squares (LMS) algorithm, recovers QPSK
symbols.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Generate QPSK-modulated symbols. Apply multipath channel filtering, a system delay, and AWGN to
the transmitted symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');

Create equalizer and EVM System objects. The equalizer System object specifies a linear equalizer
that uses the LMS algorithm.

lineq = comm.LinearEqualizer('Algorithm','LMS', ...
 'NumTaps',9,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
 'Estimated from reference constellation');

Equalize Without Adjusting Input Delay

Equalize the received symbols.

[y1,err1,wts1] = lineq(rx,tx(1:numTrainingSymbols,1));

Find the delay between the received symbols and the transmitted symbols by using the finddelay
function.

rxDelay = finddelay(tx,rx)

rxDelay = 20

Display the equalizer information. The latency value indicates the delay introduced by the equalizer.
Calculate the total delay as the sum of rxDelay and the equalizer latency.

eqInfo = info(lineq)

eqInfo = struct with fields:
 Latency: 4

 Adaptive Equalizers

13-25

totalDelay = rxDelay + eqInfo.Latency;

Until the equalizer output converges, the symbol error rate is high. Plot the error output, err1, to
determine when the equalized output converges.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')

The plot shows excessive errors beyond the 1000 symbols training period. When demodulating
symbols and computing symbol errors, to account for the unconverged output and the system delay
between the equalizer output and transmitted symbols, skip the first 2000 symbols.

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)

symErrWithDelay = 5999

evmWithDelay = evm(y1)

evmWithDelay = 33.0110

The error rate and EVM are high because the receive delay was not accounted for in the equalizer
System object.

13 Equalization

13-26

Adjust Input Delay in Equalizer

Equalize the received data by using the delay value to set the InputDelay property. Because
InputDelay is a nontunable property, you must release the lineq System object to reconfigure the
InputDelay property. Equalize the received symbols.

release(lineq)
lineq.InputDelay = rxDelay

lineq =
 comm.LinearEqualizer with properties:

 Algorithm: 'LMS'
 NumTaps: 9
 StepSize: 0.0100
 Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i]
 ReferenceTap: 5
 InputDelay: 20
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

[y2,err2,wts2] = lineq(rx,tx(1:numTrainingSymbols,1));

Plot the tap weights and equalized error magnitude. A stem plot shows the equalizer tap weights
before and after the system delay is removed. A 2-D line plot shows the slower equalizer convergence
for the delayed signal as compared to the signal with the delay removed.

subplot(2,1,1)
stem([real(wts1),real(wts2)])
xlabel('Taps')
ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on

 Adaptive Equalizers

13-27

figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')
ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on

13 Equalization

13-28

Plot error output of the equalized signals, rxDelayed and rxDelayRemoved. For the signal that has
the delay removed, the equalizer converges during the 1000 symbol training period. When
demodulating symbols and computing symbol errors, to account for the unconverged output and the
system delay between the equalizer output and transmitted symbols, skip the first 500 symbols.
Reconfiguring the equalizer to account for the system delay enables better equalization of the signal,
and reduces symbol errors and the EVM.

eqInfo = info(lineq)

eqInfo = struct with fields:
 Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)

symErrDelayRemoved = 0

evmDelayRemoved = evm(y2(500+totalDelay:end))

evmDelayRemoved = 9.5660

Using Adaptive Equalizers in Simulink

Adaptive Equalization with Filtering and Fading Channel

 Adaptive Equalizers

13-29

This model shows the behavior of the selected adaptive equalizer in a communication link that has a
fading channel. The transmitter and receiver have root raised cosine pulse shaped filtering. A
subsystem block enables you to select between linear or decision feedback equalizers that use the
least mean square (LMS) or recursive least square (RLS) adaptive algorithm.

Model Structure

• The transmitter generates 16QAM random signal data that includes a training sequence and
applies root raised cosine pulse shaped filtering.

• Channel impairments include multipath fading, Doppler shift, carrier frequency offset, variable
integer delay, free space path loss, and AWGN.

• The receiver applies root raised cosine pulse shaped filtering, adjusts the gain, includes equalizer
mode control to enable training and enables you to select the equalizer algorithm from these
choices.

• Scopes help you understand how the different equalizers and adaptive algorithms behave.

Explore Example Model

Experimenting with the model

This model provides several ways for you to change settings and observe the results. The model uses
callback functions to configure some block and subsystem parameters. For more information, see
“Model Callbacks” (Simulink). The InitFcn callback function, found in Modeling>Model

13 Equalization

13-30

Settings>Model Properties>Callbacks, calls the cm_ex_adaptive_eq_with_fading_init
helper function to initialize the model. This helper function enables you to vary settings in the model,
including:

• System parameters, such as SNR.
• Pulse shaping filter parameters, such as rolloff and filter length.
• Path loss value.
• Channel conditions: Rayleigh or Rician fading, channel path gains, channel path delays, and

Doppler shift.
• Equalizer choice and configuration, as used by the Equalizer Selector subsystem.

Model Considerations

This non-standards-based communication link is representative of a modern communications system.

• The optimal equalizer configuration depends on the channel conditions. The initialization helper
function sets the Doppler shift and multipath fading channel parameters that highlight the
capabilities of different equalizers.

• The decision feedback equalizer structure performs better than the linear equalizer structure for
higher intersymbol interference.

• The RLS algorithm performs better than the LMS algorithm for higher Doppler frequencies.
• The LMS algorithm executes quickly, converges slowly, and its complexity grows linearly with the

number of weights.
• The RLS algorithm converges quickly, its complexity grows approximately as the square of the

number of weights. It can be unstable when the number of weights is large.
• The channels exercised for different equalizers have the following characteristics.

 Adaptive Equalizers

13-31

• Initial settings for other channel impairments are the same for all equalizers. Carrier frequency
offset value is set to 50 Hz. Free space path loss is set to 60 dB. Variable integer delay is set to 2
samples, which requires the equalizers to perform some timing recovery.

Deep channel fades and path loss can cause the equalizer input signal level to be much less than the
desired output signal level and result in unacceptably long equalizer convergence time. The AGC
block adjusts the magnitude of received signal to reduce the equalizer convergence time. You must
adjust the optimal gain output power level based on the modulation scheme selected. For 16QAM, a
desired output power of 10 W is used.

Training of the equalizer is performed at the beginning of the simulation.

Running the Simulation

Running the simulation computes symbol error statistics and produces these figures:

• A constellation diagram of the signal after the receive filter.
• A constellation diagram of the signal after adjusting gain.
• A constellation diagram of the signal after equalization with signal quality measurements shown.
• An equalizer error plot.

For the plots shown here, the equalizer algorithm selected is RLS Linear. Monitoring these figures,
you can see that the received signal quality fluctuates as simulation time progresses.

The After Rx Filter and After AGC constellation plots show the signal before equalization. After AGC
shows the impact of the channel conditions on the transmitted signal. The After Eq plot shows the
signal after equalization. The signal plotted in the constellation diagram after equalization shows the
variation in signal quality based on the effectiveness of the equalization process. Throughout the
simulation, the signal constellations plotted before equalization deviate noticeably from a 16QAM
signal constellation. The After Eq constellation improves or degrades as the equalizer error signal
varies. The Eq error plotted in the Eq Error plot, indicates poor equalization at the start of the
simulation. The error degrades at first then improves as the equalizer converges.

13 Equalization

13-32

 Adaptive Equalizers

13-33

Further Exploration

Double-click the Equalizer Selector subsystem and select a different equalizer. Run the simulation to
see the performance of the various equalizer options. You can use the signal logger to compare the
results from this experimentation. In the model window, right-click on signal wires and select Log
Selected Signals. If you have enabled signal logging, after the simulation run finishes, open the
Simulation Data Inspector to view the logged signals.

At the MATLAB® command prompt, enter edit cm_ex_adaptive_eq_with_fading_init.m to
open the initialization file, then modify a parameter and rerun the simulation. For example, adjust the
channel characteristics (params.maxDoppler, params.pathDelays, and params.pathGains).
The RLS adaptive algorithm performs better than the LMS adaptive algorithm as the maximum
Doppler is increased.

See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer | comm.MLSEEqualizer

Blocks
Linear Equalizer | Decision Feedback Equalizer | MLSE Equalizer

More About
• “Equalization” on page 13-2
• “MLSE Equalizers” on page 13-35

13 Equalization

13-34

MLSE Equalizers
In this section...
“Equalize a Vector Signal in MATLAB” on page 13-35
“Equalizing Signals in Continuous Operation Mode” on page 13-36
“Use a Preamble or a Postamble” on page 13-39
“Using MLSE Equalizers in Simulink” on page 13-40
“MLSE Equalization with Dynamically Changing Channel” on page 13-40

Maximum-Likelihood Sequence Estimation (MLSE) equalizers provide optimal equalization of time
variations in the propagation channel characteristics. However, MLSE equalizers are sometimes less
appealing because their computational complexity is higher than “Adaptive Equalizers” on page 13-5.

In Communications Toolbox, the mlseeq function, comm.MLSEEqualizer System object, and MLSE
Equalizer block use the Viterbi algorithm to equalize a linearly modulated signal through a dispersive
channel. These features output the maximum likelihood sequence estimate of the signal by using an
estimate of the channel modeled as a finite input response (FIR) filter.

To decode a received signal, the MLSE equalizer:

1 Applies the FIR filter to the symbols in the input signal. The FIR filter tap weights correspond to
the channel estimate.

2 Uses the Viterbi algorithm to compute the traceback paths and the state metric. These values are
assigned to the symbols at each step of the Viterbi algorithm. The metrics are based on Euclidean
distance.

3 Outputs the maximum likelihood sequence estimate of the signal as a sequence of complex
numbers corresponding to the constellation points of the modulated signal.

An MLSE equalizer yields the best theoretically possible performance, but is computationally
intensive.

For background material on MLSE equalizers, see “Selected References for Equalizers” on page 13-3.

Equalize a Vector Signal in MATLAB
You can use the mlseeq function or comm.MLSEEqualizer System object for MLSE equalization in
MATLAB. The examples in this section call the mlseeq function. A similar workflow applies when
using the comm.MLSEEqualizer System object. For examples that use the System object, see the
comm.MLSEEqualizer System object reference page.

The mlseeq function has two operation modes:

• Continuous operation mode enables you to process a series of vectors by using repeated calls to
mlseeq. The function saves its internal state information from one call to the next. To learn more,
see Equalizing in Continuous Operation Mode on page 13-36.

• Reset operation mode enables you to specify a preamble and postamble that accompany your data.
To learn more, see Using a Preamble or Postamble on page 13-39.

If you are not processing a series of vectors and do not need to specify a preamble or postamble, the
operational modes are nearly identical. They differ in that continuous operation mode incurs a delay,

 MLSE Equalizers

13-35

while reset operation mode does not. The following example uses reset operation mode. If you modify
the example to run using continuous operation mode, there will be delay in the equalized output. To
learn more about this delay, see Delays in Continuous Operation Mode on page 13-37.

Use mlseeq to Equalize a Vector Signal

In its simplest form, the mlseeq function equalizes a vector of modulated data when you specify:

• The estimated coefficients of the channel (modeled as an FIR filter).
• The signal constellation for the modulation type.
• The Viterbi algorithm traceback depth. Larger values for the traceback depth can improve the

results from the equalizer but increase the computation time.

Generate a PSK modulated signal with modulation order set to four.

M = 4;
msg = pskmod([1 2 2 0 3 1 3 3 2 1 0 2 3 0 1]',M);

Filter the modulated signal through a distortion channel.

chcoeffs = [.986; .845; .237; .12345+.31i];
filtmsg = filter(chcoeffs,1,msg);

Define the reference constellation, traceback length, and channel estimate for the MLSE equalizer. In
this example, the exact channel is provided as the channel estimate.

const = pskmod([0:M-1],M);
tblen = 10;
chanest = chcoeffs;

Equalize the received signal.

msgEq = mlseeq(filtmsg,chanest,const,tblen,'rst');
isequal(msg,msgEq)

ans = logical
 1

Equalizing Signals in Continuous Operation Mode
If your data is partitioned into a series of vectors (that you process within a loop, for example),
continuous operation mode is an appropriate way to use the mlseeq function. In continuous
operation mode, mlseeq can save its internal state information for use in a subsequent invocation
and can initialize by using previously stored state information. To choose continuous operation mode
when invoking mlseeq, specify 'cont' as an input argument.

Note Continuous operation mode incurs a delay, as described in Delays in Continuous Operation
Mode on page 13-37. This mode cannot accommodate a preamble or postamble.

13 Equalization

13-36

Procedure for Continuous Operation Mode

When using continuous operation mode within a loop, preallocate three empty matrix variables to
store the state metrics, traceback states, and traceback inputs for the equalizer before the
equalization loop starts. Inside the loop, invoke mlseeq using a syntax such as:
sm = [];
ts = [];
ti = [];
for ...
 [y,sm,ts,ti] = mlseeq(x,chcoeffs,const,tblen,'cont',nsamp,sm,ts,ti);
...
end

Using sm, ts, and ti as input arguments causes mlseeq to continue operating from where it finished
in the previous iteration. Using sm, ts, and ti as output arguments causes mlseeq to update the
state information at the end of the current iteration. In the first iteration, sm, ts, and ti start as
empty matrices, so the first invocation of the mlseeq function initializes the metrics of all states to 0.

Delays in Continuous Operation Mode

Continuous operation mode with a traceback depth of tblen incurs an output delay of tblen
symbols. The first tblen output symbols are unrelated to the input signal and the last tblen input
symbols are unrelated to the output signal. For example, this command uses a traceback depth of 3.
The first three output symbols are unrelated to the input signal of ones(1,10).
y = mlseeq(ones(1,10),1,[-7:2:7],3,'cont')

y =
 -7 -7 -7 1 1 1 1 1 1 1

It is important to keep track of delays introduced by different portions of the communications system.
The “Use mlseeq to Equalize a Vector in Continuous Operation Mode” on page 13-37 example
illustrates how to account for the delay when computing an error rate.

Use mlseeq to Equalize a Vector in Continuous Operation Mode

This example shows the procedure for using the continuous operation mode of the mlseeq function
within a loop.

Initialize Variables

Specify run-time variables.

numsym = 200; % Number of symbols in each iteration
numiter = 25; % Number of iterations

M = 4; % Use 4-PSK modulation
qpskMod = comm.QPSKModulator('PhaseOffset',0);

chcoeffs = [1 ; 0.25]; % Channel coefficients
chanest = chcoeffs; % Channel estimate

To initialize the equalizer, define parameters for the reference constellation, traceback length,
number of samples per symbol, and the state variables sm, ts, and ti.

const = qpskMod((0:M-1)');
tblen = 10;
nsamp = 1;

 MLSE Equalizers

13-37

sm = [];
ts = [];
ti = [];

Define variables to accumulate results from each iteration of the loop.

fullmodmsg = [];
fullfiltmsg = [];
fullrx = [];

Simulate the System by Using a Loop

Run the simulation in a loop that generates random data, modulates the data by using baseband PSK
modulation, and filters the data. The mlseeq function equalizes the filtered data. The loop also
updates the variables that accumulate results from each iteration of the loop.

for jj = 1:numiter
 msg = randi([0 M-1],numsym,1); % Random signal vector
 modmsg = qpskMod(msg); % PSK-modulated signal
 filtmsg = filter(chcoeffs,1,modmsg); % Filtered signal
 % Equalize the signal.
 [rx,sm,ts,ti] = mlseeq(filtmsg,chanest,const, ...
 tblen,'cont',nsamp,sm,ts,ti);
 % Update vectors with cumulative results.
 fullmodmsg = [fullmodmsg; modmsg];
 fullfiltmsg = [fullfiltmsg; filtmsg];
 fullrx = [fullrx; rx];
end

Computing an Error Rate and Plotting Results

Compute the symbol error rate from all iterations of the loop. The symerr function compares
selected portions of the received and transmitted signals, not the entire signals. Because continuous
operation mode incurs a delay whose length in samples is the traceback depth (tblen) of the
equalizer, exclude the first tblen samples from the received signal and the last tblen samples from
the transmitted signal. Excluding samples that represent the delay of the equalizer ensures that the
symbol error rate calculation compares samples from the received and transmitted signals that are
meaningful and that truly correspond to each other.

Taking the delay into account, compute the total number of symbol errors.

hErrorCalc = comm.ErrorRate('ReceiveDelay',10);
err = step(hErrorCalc, fullmodmsg, fullrx);
numsymerrs = err(1)

numsymerrs = 0

Plot the signal constellation before and after equalization. The points in the equalized signal coincide
with the points of the ideal signal constellation for 4-PSK.

h = scatterplot(fullfiltmsg);
hold on;
scatterplot(fullrx,1,0,'r*',h);
legend('Filtered signal before equalization','Equalized signal',...
 'Location','NorthOutside');
hold off;

13 Equalization

13-38

Use a Preamble or a Postamble
Some systems include a sequence of known symbols at the beginning or end of a set of data. The
known sequence at the beginning or end is called a preamble or postamble, respectively. The mlseeq
function can accommodate a preamble and postamble that are already incorporated into its input
signal. When you invoke the function, you specify the preamble and postamble as integer vectors that
represent the sequence of known symbols by indexing into the signal constellation vector. For
example, a preamble vector of [1 4 4] and a 4-PSK signal constellation of [1 j -1 -j] indicates
that the modulated signal begins with [1 -j -j].

If your system uses a preamble without a postamble, use a postamble vector of [] when invoking
mlseeq. If your system uses a postamble without a preamble, use a preamble vector of [].

Recover Message Containing Preamble

Recover a message that includes a preamble, equalize the signal, and check the symbol error rate.

Specify the modulation order, equalizer traceback depth, number of samples per symbol, preamble,
and message length.

M = 4;
tblen = 16;
nsamp = 1;
preamble = [3;1];
msgLen = 500;

 MLSE Equalizers

13-39

Generate the reference constellation.

const = pskmod(0:3,4);

Generate a message by using random data and prepend the preamble to the message. Modulate the
random data.

msgData = randi([0 M-1],msgLen,1);
msgData = [preamble; msgData];
msgSym = pskmod(msgData,M);

Filter the data through a distortion channel and add Gaussian noise to the signal.

chcoeffs = [0.623; 0.489+0.234i; 0.398i; 0.21];
chanest = chcoeffs;
msgFilt = filter(chcoeffs,1,msgSym);
msgRx = awgn(msgFilt,9,'measured');

Equalize the received signal. To configure the equalizer, provide the channel estimate, reference
constellation, equalizer traceback depth, operating mode, number of samples per symbol, and
preamble. The same preamble symbols appear at the beginning of the message vector and in the
syntax for mlseeq. Because the system does not use a postamble, an empty vector is specified as the
last input argument in this mlseeq syntax.

Check the symbol error rate of the equalized signal. Run-to-run results vary due to use of random
numbers.

eqSym = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp,preamble,[]);
[nsymerrs,ser] = symerr(msgSym,eqSym)

nsymerrs = 8

ser = 0.0159

Using MLSE Equalizers in Simulink
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly modulated signal through
a dispersive channel. The block outputs the maximum likelihood sequence estimate (MLSE) of the
signal by using your estimate of the channel modeled as a finite input response (FIR) filter. When
using the MLSE Equalizer block, you specify the channel estimate and the signal constellation of the
input signal. You can also specify an expected input signal preamble and postamble as input
parameters to the MLSE Equalizer block.

MLSE Equalization with Dynamically Changing Channel

Use a Maximum Likelihood Sequence Estimation (MLSE) equalizer to equalize the effects of a
multipath Rayleigh fading channel. The MLSE equalizer inputs data that has passed through a time
varying dispersive channel and an estimate of the channel. The channel estimate contains
dynamically evolving channel coefficients of a two-path Rayleigh fading channel.

Model Structure

• The transmitter generates QPSK random signal data.

13 Equalization

13-40

• Channel impairments include multipath fading and AWGN.
• The receiver applies MLSE equalization and QPSK demodulation.
• The model uses scopes and a BER calculation to show the system behavior.

Explore Example Model

Experimenting with the model

The Bernoulli Binary Generator block sample time of 5e-6 seconds corresponds to a bit rate of
200 kbps and a QPSK symbol rate of 100 ksym/sec.

The Multipath Rayleigh Fading Channel block settings are:

• Maximum Doppler shift is 30 Hz.
• Discrete path delay is [0 1e-5], which corresponds to two consecutive sample times of the input

QPSK symbol data. This delay reflects the simplest delay vector for a two-path channel.
• Average path gain is [0 -10].
• Average path gains are normalized to 0 dB so that the average power input to the AWGN block is 1

W.

The MLSE Equalizer block has the Traceback depth set to 10. Vary this depth to study its effect on
Bit Error rate (BER).

The QPSK demodulator accepts an N-by-1 input frame and generates a 2N-by-1 output frame. This
output frame and a traceback depth of 10 results in a delay of 20 bits. The model performs frame-

 MLSE Equalizers

13-41

based processing on frames that have 100 samples per frame. Due to the frame-based processing,
there is a inherent delay of 100 bits in the model. The combined receive delay of 120 is set in the
Receive delay parameter of the Error Rate Calculation block, aligning the samples.

The computed BER is displayed. Constellation plots show the constellation before and after
equalization.

BER = 0.033508

13 Equalization

13-42

See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer | comm.MLSEEqualizer

Blocks
Linear Equalizer | Decision Feedback Equalizer | MLSE Equalizer

More About
• “Equalization” on page 13-2
• “Adaptive Equalizers” on page 13-5

 MLSE Equalizers

13-43

Equalizer Examples (new & old)

• “DF Equalize QPSK-Modulated Signal in Simulink” on page 14-2
• “Linearly Equalize QPSK-Modulated Signal in Simulink” on page 14-5
• “Adaptive Equalization with Filtering and Fading Channel” on page 14-8
• “MLSE Equalization with Dynamically Changing Channel” on page 14-13
• “Equalize BSPK Signal” on page 14-16

14

DF Equalize QPSK-Modulated Signal in Simulink

Apply decision feedback equalization using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel.

The slex_dfeq_qpsk_signal model generates an M=4 sequence using the Random Integer
Generator block. The sequence is modulated with the M-PSK Modulator Baseband block, filtered
with the Discrete FIR Filter block, and then impaired with the AWGN block. The Decision
Feedback Equalizer block equalizes the data sequence, the data is demodulated with the M-PSK
Demodulator Baseband block, and the bit error rate is computed. The signal path out of the
modulator is split to a Selector block, which provides the first 1000 symbols of the modulated
signal to the equalizer as an initial training sequence.

No delay is introduced between the transmitted and received signal because the maximum tap value
is the first tap of the discrete FIR filter and the equalizer reference tap is 1. The equalizer converges
after around 1000 symbols so this value is used for the computation delay of the Error Rate
Calculation block.

The computed error rate is displayed and plots show the equalized constellation, equalized tap
weights, and signal error magnitude.

Computed error rate = 0.00077778

14 Equalizer Examples (new & old)

14-2

 DF Equalize QPSK-Modulated Signal in Simulink

14-3

14 Equalizer Examples (new & old)

14-4

Linearly Equalize QPSK-Modulated Signal in Simulink

Apply linear equalization using the least mean squares (LMS) algorithm to recover QPSK symbols
passed through an AWGN channel.

The slex_lineq_qpsk_signal model generates an M=4 sequence using the Random Integer
Generator block. The sequence is modulated with the M-PSK Modulator Baseband block, filtered
with the Discrete FIR Filter block, and then impaired with the AWGN block. The Linear
Equalizer block equalizes the data sequence, the data is demodulated with the M-PSK
Demodulator Baseband block, and the bit error rate is computed. The signal path out of the
modulator is split to a Selector block, which provides the first 1000 symbols of the modulated
signal to the equalizer as an initial training sequence.

No delay is introduced between the transmitted and received signal because the maximum tap value
is the first tap of the discrete FIR filter and the equalizer reference tap is 1. The equalizer converges
after around 1000 symbols so this value is used for the computation delay of the Error Rate
Calculation block.

The computed error rate is displayed and plots show the equalized constellation, equalized tap
weights, and signal error magnitude.

Computed error rate = 0.0024444

 Linearly Equalize QPSK-Modulated Signal in Simulink

14-5

14 Equalizer Examples (new & old)

14-6

 Linearly Equalize QPSK-Modulated Signal in Simulink

14-7

Adaptive Equalization with Filtering and Fading Channel

This model shows the behavior of the selected adaptive equalizer in a communication link that has a
fading channel. The transmitter and receiver have root raised cosine pulse shaped filtering. A
subsystem block enables you to select between linear or decision feedback equalizers that use the
least mean square (LMS) or recursive least square (RLS) adaptive algorithm.

Model Structure

• The transmitter generates 16QAM random signal data that includes a training sequence and
applies root raised cosine pulse shaped filtering.

• Channel impairments include multipath fading, Doppler shift, carrier frequency offset, variable
integer delay, free space path loss, and AWGN.

• The receiver applies root raised cosine pulse shaped filtering, adjusts the gain, includes equalizer
mode control to enable training and enables you to select the equalizer algorithm from these
choices.

• Scopes help you understand how the different equalizers and adaptive algorithms behave.

Explore Example Model

14 Equalizer Examples (new & old)

14-8

Experimenting with the model

This model provides several ways for you to change settings and observe the results. The model uses
callback functions to configure some block and subsystem parameters. For more information, see
“Model Callbacks” (Simulink). The InitFcn callback function, found in Modeling>Model
Settings>Model Properties>Callbacks, calls the cm_ex_adaptive_eq_with_fading_init
helper function to initialize the model. This helper function enables you to vary settings in the model,
including:

• System parameters, such as SNR.
• Pulse shaping filter parameters, such as rolloff and filter length.
• Path loss value.
• Channel conditions: Rayleigh or Rician fading, channel path gains, channel path delays, and

Doppler shift.
• Equalizer choice and configuration, as used by the Equalizer Selector subsystem.

Model Considerations

This non-standards-based communication link is representative of a modern communications system.

• The optimal equalizer configuration depends on the channel conditions. The initialization helper
function sets the Doppler shift and multipath fading channel parameters that highlight the
capabilities of different equalizers.

• The decision feedback equalizer structure performs better than the linear equalizer structure for
higher intersymbol interference.

• The RLS algorithm performs better than the LMS algorithm for higher Doppler frequencies.
• The LMS algorithm executes quickly, converges slowly, and its complexity grows linearly with the

number of weights.
• The RLS algorithm converges quickly, its complexity grows approximately as the square of the

number of weights. It can be unstable when the number of weights is large.

 Adaptive Equalization with Filtering and Fading Channel

14-9

• The channels exercised for different equalizers have the following characteristics.

• Initial settings for other channel impairments are the same for all equalizers. Carrier frequency
offset value is set to 50 Hz. Free space path loss is set to 60 dB. Variable integer delay is set to 2
samples, which requires the equalizers to perform some timing recovery.

Deep channel fades and path loss can cause the equalizer input signal level to be much less than the
desired output signal level and result in unacceptably long equalizer convergence time. The AGC
block adjusts the magnitude of received signal to reduce the equalizer convergence time. You must
adjust the optimal gain output power level based on the modulation scheme selected. For 16QAM, a
desired output power of 10 W is used.

Training of the equalizer is performed at the beginning of the simulation.

Running the Simulation

Running the simulation computes symbol error statistics and produces these figures:

• A constellation diagram of the signal after the receive filter.
• A constellation diagram of the signal after adjusting gain.
• A constellation diagram of the signal after equalization with signal quality measurements shown.
• An equalizer error plot.

For the plots shown here, the equalizer algorithm selected is RLS Linear. Monitoring these figures,
you can see that the received signal quality fluctuates as simulation time progresses.

The After Rx Filter and After AGC constellation plots show the signal before equalization. After AGC
shows the impact of the channel conditions on the transmitted signal. The After Eq plot shows the
signal after equalization. The signal plotted in the constellation diagram after equalization shows the
variation in signal quality based on the effectiveness of the equalization process. Throughout the
simulation, the signal constellations plotted before equalization deviate noticeably from a 16QAM
signal constellation. The After Eq constellation improves or degrades as the equalizer error signal
varies. The Eq error plotted in the Eq Error plot, indicates poor equalization at the start of the
simulation. The error degrades at first then improves as the equalizer converges.

14 Equalizer Examples (new & old)

14-10

 Adaptive Equalization with Filtering and Fading Channel

14-11

Further Exploration

Double-click the Equalizer Selector subsystem and select a different equalizer. Run the simulation to
see the performance of the various equalizer options. You can use the signal logger to compare the
results from this experimentation. In the model window, right-click on signal wires and select Log
Selected Signals. If you have enabled signal logging, after the simulation run finishes, open the
Simulation Data Inspector to view the logged signals.

At the MATLAB® command prompt, enter edit cm_ex_adaptive_eq_with_fading_init.m to
open the initialization file, then modify a parameter and rerun the simulation. For example, adjust the
channel characteristics (params.maxDoppler, params.pathDelays, and params.pathGains).
The RLS adaptive algorithm performs better than the LMS adaptive algorithm as the maximum
Doppler is increased.

14 Equalizer Examples (new & old)

14-12

MLSE Equalization with Dynamically Changing Channel

Use a Maximum Likelihood Sequence Estimation (MLSE) equalizer to equalize the effects of a
multipath Rayleigh fading channel. The MLSE equalizer inputs data that has passed through a time
varying dispersive channel and an estimate of the channel. The channel estimate contains
dynamically evolving channel coefficients of a two-path Rayleigh fading channel.

Model Structure

• The transmitter generates QPSK random signal data.
• Channel impairments include multipath fading and AWGN.
• The receiver applies MLSE equalization and QPSK demodulation.
• The model uses scopes and a BER calculation to show the system behavior.

Explore Example Model

Experimenting with the model

The Bernoulli Binary Generator block sample time of 5e-6 seconds corresponds to a bit rate of
200 kbps and a QPSK symbol rate of 100 ksym/sec.

The Multipath Rayleigh Fading Channel block settings are:

• Maximum Doppler shift is 30 Hz.

 MLSE Equalization with Dynamically Changing Channel

14-13

• Discrete path delay is [0 1e-5], which corresponds to two consecutive sample times of the input
QPSK symbol data. This delay reflects the simplest delay vector for a two-path channel.

• Average path gain is [0 -10].
• Average path gains are normalized to 0 dB so that the average power input to the AWGN block is 1

W.

The MLSE Equalizer block has the Traceback depth set to 10. Vary this depth to study its effect on
Bit Error rate (BER).

The QPSK demodulator accepts an N-by-1 input frame and generates a 2N-by-1 output frame. This
output frame and a traceback depth of 10 results in a delay of 20 bits. The model performs frame-
based processing on frames that have 100 samples per frame. Due to the frame-based processing,
there is a inherent delay of 100 bits in the model. The combined receive delay of 120 is set in the
Receive delay parameter of the Error Rate Calculation block, aligning the samples.

The computed BER is displayed. Constellation plots show the constellation before and after
equalization.

BER = 0.033508

14 Equalizer Examples (new & old)

14-14

 MLSE Equalization with Dynamically Changing Channel

14-15

Equalize BSPK Signal

Equalize a BPSK signal using a linear equalizer with a least mean square (LMS) algorithm.

Generate random binary data and apply BPSK modulation.

M = 2;
data = randi([0 1],1000,1);
modData = pskmod(data,M);

Apply two-tap static fading to the modulated signal and add AWGN noise.

rxSig = conv(modData,[0.02+0.5i 0.05]);
rxSig = awgn(rxSig,30);

Create a linear equalizer System object™ configured to use the LMS adaptive algorithm, 8 taps, 0.1
step size, and the 4th tap as the reference tap. Set the constellation to match the modulation of the
transmitted signal.

lineq = comm.LinearEqualizer(...
 NumTaps=8, ...
 StepSize=0.1, ...
 Constellation=complex([-1 1]), ...
 ReferenceTap=4)

lineq =
 comm.LinearEqualizer with properties:

 Algorithm: 'LMS'
 NumTaps: 8
 StepSize: 0.1000
 Constellation: [-1.0000 + 0.0000i 1.0000 + 0.0000i]
 ReferenceTap: 4
 InputDelay: 0
 InputSamplesPerSymbol: 1
 TrainingFlagInputPort: false
 AdaptAfterTraining: true
 InitialWeightsSource: 'Auto'
 WeightUpdatePeriod: 1

Equalize the received signal, rxSig. Use the first 200 data bits as a training sequence. Display a
constellation diagram showing the received signal before and after equalization.

trSeq = modData(1:200);
[eqSig,err] = lineq(rxSig,trSeq);

constdiag = comm.ConstellationDiagram(...
 NumInputPorts=2, ...
 ChannelNames={'Before equalization','After equalization'}, ...
 ReferenceConstellation=pskmod([0 M-1],M));
constdiag(rxSig(400:end),eqSig(400:end))

14 Equalizer Examples (new & old)

14-16

Plot the magnitude of the error estimate. As shown by the decrease and stabilizing of the error signal,
the equalization converges in less than 200 bits.

plot(abs(err))
title('Error Estimate')
xlabel('Bits')
ylabel('Amplitude (V)')

 Equalize BSPK Signal

14-17

14 Equalizer Examples (new & old)

14-18

Various User Guide Topic Examples

• “Create a Standalone GSM Waveform Explorer Application with MATLAB Compiler”
on page 15-2

• “GSM TDMA Frame Parameterization for Waveform Generation” on page 15-5
• “Compensate for Frequency Offset Using Coarse and Fine Compensation” on page 15-21
• “Correct Symbol Timing and Doppler Offsets” on page 15-25
• “Random Noise Generators in Simulink” on page 15-30
• “Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization”

on page 15-33
• “Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset” on page 15-37
• “Modulate and Demodulate 8-PSK Signal” on page 15-41

15

Create a Standalone GSM Waveform Explorer Application with
MATLAB Compiler

This example shows how to use MATLAB® Compiler™ to create a standalone application from the
custom MATLAB app, GSMWaveformExplorer, which was created by using App Designer. By
installing “MATLAB Runtime” (MATLAB Compiler) you can run standalone applications on systems
that do not have MATLAB installed. For more information, see “Create and Run a Simple App Using
App Designer”.

MATLAB Simulation

Open the GSMWaveformExplorer app in MATLAB by entering:

GSMWaveformExplorer

The GSMWaveformExplorer app allows you to explore GSM TDMA frame configurations by using
the gsmUplinkConfig and gsmDownlinkConfig objects and the gsmFrame function. You can select
the Link direction as Uplink or Downlink. In the Timeslot tab, you can adjust the burst type and
attenuation of individual timeslots. In the Waveform tab, you can adjust the samples per symbol and
burst shape. Select View to visualize the time domain and spectrogram plots of the waveform.

15 Various User Guide Topic Examples

15-2

Compile the MATLAB Function into a Standalone Application

Compile GSMWaveformExplorer into a standalone application by using the mcc (MATLAB Compiler)
function and specifying the '-m' option. This step takes a few minutes to complete. The first message
shown below appears only if your have a network installation and the second message appears only if
you are running MATLAB Compiler with a demo license.

mcc('-m','GSMWaveformExplorer');

You can also use the interactive applicationCompiler (MATLAB Compiler) app to generate the
standalone application.

Run the Standalone Application

Before deploying the standalone app, you can test it on a machine that has MATLAB installed by
running commands in the MATLAB Command Window. You can run the standalone
GSMWaveformExplorer app on a machine that has MATLAB installed by using the system
command.

• If you are running in the Windows® or Linux® operating system, type:

status = system(fullfile(pwd,'GSMWaveformExplorer'));

• If you are running in the Mac operating system, type:

 Create a Standalone GSM Waveform Explorer Application with MATLAB Compiler

15-3

status =
system(fullfile('GSMWaveformExplorer.app','Contents','MacOS','GSMWaveformExpl
orer'));

Running the standalone application with the system command uses the MATLAB environment and
any library files needed from this installation of MATLAB. As with running the app in MATLAB,
running the standalone version of the GSMWaveformExplorer app opens an GSM Waveform
Explorer window that allows you to adjust the GSM TDMA frame configurations and view the
waveform.

To deploy this application on a machine that does not have MATLAB installed, see “MATLAB
Runtime” (MATLAB Compiler).

15 Various User Guide Topic Examples

15-4

GSM TDMA Frame Parameterization for Waveform Generation

This example shows how to parameterize and generate different GSM TDMA frames and multiframe
structures.

Introduction

The GSM standard [1 on page 15-18] specifies a TDMA frame as a combination of 8 time slots. Each
time slot has a duration of 3/5200 seconds (about 0.577 ms) and a time slot number (TN) from 0 to 7.
GSM frames use GMSK modulation, where one symbol is equivalent to one bit. Each time slot is
156.25 bits long. The content of a time slot is called a burst. The transmission timing of a burst within
a time slot is defined in terms of the bit number. The bit number (BN) refers to a particular bit period
within a time slot. The bit with the lowest bit number is transmitted first. BN0 is the first bit period
and BN156 is the last quarter-bit period. This figure shows time frames, time slots, and bursts for a
GSM system [1 on page 15-18].

A TDMA contains eight time slots with each timeslot separated by a guard period. Each time slot can
carry only one type of burst. Available burst types are: normal burst (NB), frequency correction burst
(FB), synchronization burst (SB), access burst (AB), or dummy burst [2 on page 15-18]. The different
burst types and the guard period are described in these next sections.

 GSM TDMA Frame Parameterization for Waveform Generation

15-5

Normal Burst (NB)

The normal burst consists of these bit fields and can appear in uplink or downlink frames. All tail bits
are zero. Based on the specified training sequence code (TSC), the training sequence field contains
one of eight possible training sequences.

normalBurstDescription()

ans=6×3 table
 BitNumber LengthOfField ContentsOfField
 ___________ _____________ ________________________

 "0 - 2" {[3]} "tail bits"
 "3 - 60" {[58]} "encrypted bits"
 "61 - 86" {[26]} "training sequence bits"
 "87 - 144" {[58]} "encrypted bits"
 "145 - 147" {[3]} "tail bits"
 "148 - 156" {[8.2500]} "guard period (bits)"

Access Burst (AB)

The access burst consists of these bit fields and can appear in uplink frames only. All tail bits are zero.

accessBurstDescription()

ans=5×3 table
 BitNumber LengthOfField ContentsOfField
 __________ _____________ ______________________

 "0 - 7" {[8]} "extended tail bits"
 "8 - 48" {[41]} "synch. sequence bits"
 "49 - 84" {[36]} "encrypted bits"
 "85 - 87" {[3]} "tail bits"
 "88 - 156" {[68.2500]} "guard period (bits)"

Frequency Correction Burst (FB)

The frequency correction burst consists of these bit fields and can appear in downlink frames only. All
tail bits and fixed bits are zero. Modulating all zeros with the GMSK modulator results in a constant
phase rotation of -90 degrees for each symbol duration. Therefore, this burst generates an
unmodulated carrier with a positive frequency offset of 1625/24 kHz.

frequencyCorrectionBurstDescription()

ans=4×3 table
 BitNumber LengthOfField ContentsOfField
 ___________ _____________ _____________________

 "0 - 2" {[3]} "tail bits"
 "3 - 144" {[142]} "fixed bits"
 "145 - 147" {[3]} "tail bits"
 "148 - 156" {[8.2500]} "guard period (bits)"

15 Various User Guide Topic Examples

15-6

Synchronization Burst (SB)

The synchronization burst consists of these bit fields and can appear in downlink frames only. All tail
bits are zero.

synchronizationBurstDescription()

ans=6×3 table
 BitNumber LengthOfField ContentsOfField
 ___________ _____________ _________________________________

 "0 - 2" {[3]} "tail bits"
 "3 - 41" {[39]} "encrypted bits"
 "42 - 105" {[64]} "extended training sequence bits"
 "106 - 144" {[39]} "encrypted bits"
 "145 - 147" {[3]} "tail bits"
 "148 - 156" {[8.2500]} "guard period (bits)"

Dummy Burst

The dummy burst consists of these bit fields and can appear in downlink frames only. All tail bits are
zero. Mixed bits contain a predetermined sequence of ones and zeros.

dummyBurstDescription()

ans=4×3 table
 BitNumber LengthOfField ContentsOfField
 ___________ _____________ _____________________

 "0 - 2" {[3]} "tail bits"
 "3 - 144" {[142]} "mixed bits"
 "145 - 147" {[3]} "tail bits"
 "148 - 156" {[8.2500]} "guard period (bits)"

Guard Period

The GSM standard, [3 on page 15-18], requires mobile stations to attenuate their transmission
during the period between bursts. The ramp-up and ramp-down of the signal power level occurs
during the guard periods. The useful part of a burst starts half way through the bit number 0. The
useful part ends halfway through BN87 for ABs and BN147 for NBs, FBs, SBs, and dummy bursts.
This figure shows the useful and active parts of a burst.

 GSM TDMA Frame Parameterization for Waveform Generation

15-7

Generate Single Uplink Frame

Configure an uplink GSM TDMA frame using the gsmUplinkConfig object.

cfg = gsmUplinkConfig()

cfg =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Set time slots 2 and 5 to carry access bursts. Since MATLAB® array indices start from 1, but time
slots start from 0, set the third and sixth elements of the BurstType to "AB".

cfg.BurstType([2 5] +1) = "AB"

cfg =
 gsmUplinkConfig with properties:

 BurstType: [NB NB AB NB NB AB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

15 Various User Guide Topic Examples

15-8

Assign training sequence codes 3, 5, 1, 7, 0, and 2 to time slots 0, 1, 3, 4, 6, and 7, respectively.

cfg.TSC([0 1 3 4 6 7] +1) = [3 5 1 7 0 2]

cfg =
 gsmUplinkConfig with properties:

 BurstType: [NB NB AB NB NB AB NB NB]
 SamplesPerSymbol: 16
 TSC: [3 5 2 1 7 5 0 2]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Generate the baseband samples of the frame using the gsmFrame function.

x = gsmFrame(cfg);

Plot the frame. Get the sample rate of the generated waveform by using the gsmInfo function, and
then calculate the time axis values in ms. The plot shows 8 bursts in the frame, with guard periods
between each burst. As described in the Access Burst (AB) on page 15-6 section, ABs are short burst
and have a wider guard period than other bursts.

wfInfo = gsmInfo(cfg);
Rs = wfInfo.SampleRate;
t = (0:length(x) - 1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(x))
grid on
axis([0 5 0 1.2])
title('GSM Uplink TDMA Frame - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(x)))
grid on
title('GSM Uplink TDMA Frame - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

 GSM TDMA Frame Parameterization for Waveform Generation

15-9

Plot the spectrogram of the frame.

figure
spectrogram(x,500,[],[],Rs,'centered')
title('GSM Uplink TDMA Frame - Spectrogram')

15 Various User Guide Topic Examples

15-10

Generate Single Downlink Frame

Configure a downlink GSM TDMA frame using the gsmDownlinkConfig object.

cfg = gsmDownlinkConfig

cfg =
 gsmDownlinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Set time slots 0 to carry a frequency correction burst, set time slots 4 and 6 to carry dummy bursts,
and set time slot 2 to be empty.

cfg.BurstType(0 +1) = "FB";
cfg.BurstType([4 6] +1) = "Dummy";
cfg.BurstType(2 +1) = "Off"

cfg =
 gsmDownlinkConfig with properties:

 GSM TDMA Frame Parameterization for Waveform Generation

15-11

 BurstType: [FB NB Off NB Dummy NB Dummy NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [0 0 0 0 0 0 0 0]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

Generate the baseband samples of the frame using the gsmFrame function. This function inserts
random bits instead of encrypted bits.

x = gsmFrame(cfg);

Plot the frame.

wfInfo = gsmInfo(cfg);
Rs = wfInfo.SampleRate;
t = (0:length(x) - 1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(x))
grid on
axis([0 5 0 1.2])
title('GSM Uplink TDMA Frame - Amplitude')
xlabel('Time (ms)');ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(x)))
grid on
title('GSM Uplink TDMA Frame - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')

15 Various User Guide Topic Examples

15-12

Plot the spectrogram of the frame. This plot shows the single tone during time slot 0 due to the FB.

figure
spectrogram(x,500,[],[],Rs,'centered')
title('GSM Uplink TDMA Frame - Spectrogram')

 GSM TDMA Frame Parameterization for Waveform Generation

15-13

Generate Multiframe Structure

Create a 51-frame multiframe structure, as shown in the figure in the Introduction on page 15-5
section. Create three gsmDownlinkConfig objects with specified burst configurations. To assemble
the 51-frame multiframe, use the first and second gsmDownlinkConfig objects once and repeat the
third gsmDownlinkConfig objects for the next 49 frames. Repeat the multiframe structure 3 times.

cfg1 = gsmDownlinkConfig('BurstType',["FB" "NB" "NB" "NB" "NB" "Dummy" "NB" "NB"]);
cfg2 = gsmDownlinkConfig('BurstType',["SB" "NB" "NB" "NB" "NB" "Dummy" "NB" "NB"]);
cfg3 = gsmDownlinkConfig('BurstType',["NB" "NB" "NB" "NB" "NB" "Dummy" "NB" "NB"]);
wfInfo = gsmInfo(cfg);
frameLength = wfInfo.FrameLengthInSamples;
x = zeros(frameLength*51*3,1);
for p=1:3
 x1 = gsmFrame(cfg1);
 x2 = gsmFrame(cfg2);
 x3 = gsmFrame(cfg3,49);
 x((p-1)*frameLength*51+1:p*frameLength*51) = [x1;x2;x3];
end

Simulate Power Control and Propagation Loss Effects

Due to power control and unique propagation loss for each user, the power of each time slot within a
frame might be different. Set the power attenuation for time slots 0, 3, and 7 to 2, 6, and 10 dB,
respectively.

15 Various User Guide Topic Examples

15-14

cfg = gsmUplinkConfig;
cfg.Attenuation([0 3 7] +1) = [2 6 10]

cfg =
 gsmUplinkConfig with properties:

 BurstType: [NB NB NB NB NB NB NB NB]
 SamplesPerSymbol: 16
 TSC: [0 1 2 3 4 5 6 7]
 Attenuation: [2 0 0 6 0 0 0 10]
 RiseTime: 2
 RiseDelay: 0
 FallTime: 2
 FallDelay: 0

x = gsmFrame(cfg);
wfInfo = gsmInfo(cfg);
Rs = wfInfo.SampleRate;
t = (0:length(x) - 1)/Rs*1e3;
plot(t, 20*log10(abs(x)))
axis([0 5 -20 5])
grid on
title('GSM Uplink TDMA Frame Power')
xlabel('Time (ms)')
ylabel('Power (dB)')

 GSM TDMA Frame Parameterization for Waveform Generation

15-15

Adjust Ramp-Up and Ramp-Down Behavior

GSM bursts must ramp up and ramp down during guard periods [2] on page 15-18. The gsmFrame
function implements the rise and fall characteristics of the bursts as a sinusoid. The burst ramps up
from zero to full amplitude in the number of symbol durations specified by the RiseTime property
value. The resolution of RiseTime is 1/Nsps, where Nsps represents the SamplesPerSymbol
property value of the gsmDownlinkConfig object.

Adjust the ramp-up characteristics of the bursts. Since SamplesPerFrame is 16, you can specify
RiseTime with a symbol duration resolution of 0.0625. Set RiseTime to a duration of 3.125 symbols.

cfg = gsmDownlinkConfig;
cfg.RiseTime = 3.125;

Visualize and check if the rise-time characteristics are within the GSM specifications by using the
gsmCheckTimeMask function.

gsmCheckTimeMask(cfg)

Move the start of the rise time duration to the left by 1.5 symbols by setting the RiseDelay to -1.5.
When RiseDelay is 0, the burst reaches full amplitude at the start of the useful part of the burst.

cfg.RiseDelay = -1.5;
gsmCheckTimeMask(cfg)

15 Various User Guide Topic Examples

15-16

The burst ramps down from full amplitude to zero in the number of symbol durations specified by the
FallTime property. The resolution of FallTime is 1/Nsps, where Nsps represents the
SamplesPerSymbol property value of the gsmDownlinkConfig object. Set FallTime to a duration
of 2.75 symbols.

Move the start of the fall time to the right by 0.25 symbols durations by setting the FallDelay to
0.25. When FallDelay is 0, the burst starts to ramp down from full amplitude at the end of the useful
part of the burst.

cfg = gsmDownlinkConfig;
cfg.FallTime = 2.75;
cfg.FallDelay = 0.25;
gsmCheckTimeMask(cfg)

 GSM TDMA Frame Parameterization for Waveform Generation

15-17

References

[1] 3GPP TS 45.001. "GSM/EDGE Physical layer on the radio path. General description." 3rd
Generation Partnership Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 45.002, "GSM/EDGE Multiplexing and multiple access on the radio path." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network

[3] 3GPP TS 45.004, "GSM/EDGE Modulation." General description." 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network

Helper Functions

normalBurstDescription

This function formats a table to show information about normal burst fields.

function d = normalBurstDescription()
BitNumber = ["0 - 2";"3 - 60";"61 - 86";...
 "87 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;58;26;58;3;8.25};
ContentsOfField = [...
 "tail bits";...

15 Various User Guide Topic Examples

15-18

 "encrypted bits";...
 "training sequence bits";...
 "encrypted bits";...
 "tail bits";...
 "guard period (bits)"...
];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

frequencyCorrectionBurstDescription

This function formats a table to show information about frequency correction burst fields.

function d = frequencyCorrectionBurstDescription()
BitNumber = ["0 - 2";"3 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;142;3;8.25};
ContentsOfField = [...
 "tail bits";...
 "fixed bits";...
 "tail bits";...
 "guard period (bits)"...
];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

synchronizationBurstDescription

This function formats a table to show information about synchronization burst fields.

function d = synchronizationBurstDescription()
BitNumber = ["0 - 2";"3 - 41";"42 - 105";...
 "106 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;39;64;39;3;8.25};
ContentsOfField = [...
 "tail bits";...
 "encrypted bits";...
 "extended training sequence bits";...
 "encrypted bits";...
 "tail bits";...
 "guard period (bits)"...
];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

dummyBurstDescription

This function formats a table to show information about dummy burst fields.

function d = dummyBurstDescription()
BitNumber = ["0 - 2";"3 - 144";"145 - 147";"148 - 156"];
LengthOfField = {3;142;3;8.25};
ContentsOfField = [...
 "tail bits";...
 "mixed bits";...
 "tail bits";...
 "guard period (bits)"...
];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

 GSM TDMA Frame Parameterization for Waveform Generation

15-19

accessBurstDescription

This function formats a table to show information about access burst fields.

function d = accessBurstDescription()
BitNumber = ["0 - 7";"8 - 48";"49 - 84";...
 "85 - 87";"88 - 156"];
LengthOfField = {8;41;36;3;68.25};
ContentsOfField = [...
 "extended tail bits";...
 "synch. sequence bits";...
 "encrypted bits";...
 "tail bits";...
 "guard period (bits)"...
];
d = table(BitNumber,LengthOfField,ContentsOfField);
end

15 Various User Guide Topic Examples

15-20

Compensate for Frequency Offset Using Coarse and Fine
Compensation

Correct for a phase and frequency offset in a noisy QAM signal using a carrier synchronizer. Then
correct for the offsets using both a carrier synchronizer and a coarse frequency compensator.

Set the example parameters.

fs = 10000; % Symbol rate (Hz)
sps = 4; % Samples per symbol
M = 16; % Modulation order
k = log2(M); % Bits per symbol
EbNo = 20; % Eb/No (dB)
SNR = convertSNR(EbNo,"ebno",BitsPerSymbol=k,SamplesPerSymbol=sps);

Create a constellation diagram object to visualize the effects of the offset compensation techniques.
Specify the constellation diagram to display only the last 4000 samples.

constdiagram = comm.ConstellationDiagram(...
 'ReferenceConstellation',qammod(0:M-1,M), ...
 'SamplesPerSymbol',sps, ...
 'SymbolsToDisplaySource','Property', ...
 'SymbolsToDisplay',4000, ...
 'XLimits',[-5 5], ...
 'YLimits',[-5 5]);

Introduce a frequency offset of 400 Hz and a phase offset of 30 degrees.

phaseFreqOffset = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',400, ...
 'PhaseOffset',30, ...
 'SampleRate',fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi([0 M-1],10000,1);
modSig = qammod(data,M);

Create a raised cosine filter object and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter(...
 'OutputSamplesPerSymbol',sps, ...
 'Gain',sqrt(sps));
txSig = txfilter(modSig);

Apply the phase and frequency offset, and then pass the signal through the AWGN channel.

freqOffsetSig = phaseFreqOffset(txSig);
rxSig = awgn(freqOffsetSig,SNR);

Apply fine frequency correction to the signal by using the carrier synchronizer.

fineSync = comm.CarrierSynchronizer(...
 'DampingFactor',0.7, ...
 'NormalizedLoopBandwidth',0.005, ...
 'SamplesPerSymbol',sps, ...

 Compensate for Frequency Offset Using Coarse and Fine Compensation

15-21

 'Modulation','QAM');
rxData = fineSync(rxSig);

Display the constellation diagram of the last 4000 symbols.

constdiagram(rxData)

Even with time to converge, the spiral nature of the plot shows that the carrier synchronizer has not
yet compensated for the large frequency offset. The 400 Hz offset is 1% of the sample rate.

Repeat the process with a coarse frequency compensator inserted before the carrier synchronizer.

Create a coarse frequency compensator to reduce the frequency offset to a manageable level.

coarseSync = comm.CoarseFrequencyCompensator(...
 'Modulation','QAM', ...

15 Various User Guide Topic Examples

15-22

 'FrequencyResolution',1, ...
 'SampleRate',fs*sps);

Pass the received signal to the coarse frequency compensator and then to the carrier synchronizer.

syncCoarse = coarseSync(rxSig);
rxData = fineSync(syncCoarse);

Plot the constellation diagram of the signal after coarse and fine frequency compensation. The
received data now aligns with the reference constellation.

constdiagram(rxData)

 Compensate for Frequency Offset Using Coarse and Fine Compensation

15-23

See Also
comm.CoarseFrequencyCompensator | comm.CarrierSynchronizer

15 Various User Guide Topic Examples

15-24

Correct Symbol Timing and Doppler Offsets

Correct symbol timing and frequency offset errors by using the comm.SymbolSynchronizer and
comm.CarrierSynchronizer System objects.

Configuration

Initialize simulation parameters.

M = 16; % Modulation order
nSym = 2000; % Number of symbols in a packet
sps = 2; % Samples per symbol
spsFilt = 8; % Samples per symbol for filters and channel
spsSync = 2; % Samples per symbol for synchronizers
lenFilt = 10; % RRC filter length

Create a matched pair of root raised cosine (RRC) filter System objects for transmitter and receiver.

txfilter = comm.RaisedCosineTransmitFilter(...
 FilterSpanInSymbols=lenFilt, ...
 OutputSamplesPerSymbol=spsFilt, ...
 Gain=sqrt(spsFilt));
rxfilter = comm.RaisedCosineReceiveFilter(...
 FilterSpanInSymbols=lenFilt, ...
 InputSamplesPerSymbol=spsFilt, ...
 DecimationFactor=spsFilt/2, ...
 Gain=sqrt(1/spsFilt));

Create a phase-frequency offset System object to introduce a 100 Hz Doppler shift.

doppler = comm.PhaseFrequencyOffset(...
 FrequencyOffset=100, ...
 PhaseOffset=45, ...
 SampleRate=1e6);

Create a variable delay System object to introduce timing offsets.

varDelay = dsp.VariableFractionalDelay;

Create carrier and symbol synchronizer System objects to correct for Doppler shift and timing offset,
respectively.

carrierSync = comm.CarrierSynchronizer(...
 SamplesPerSymbol=spsSync);
symbolSync = comm.SymbolSynchronizer(...
 TimingErrorDetector='Early-Late (non-data-aided)', ...
 SamplesPerSymbol=spsSync);

Create constellation diagram System objects to view the results.

refConst = qammod(0:M-1,M,UnitAveragePower=true);
cdReceive = comm.ConstellationDiagram(...
 ReferenceConstellation=refConst, ...
 SamplesPerSymbol=spsFilt,Title='Received Signal');
cdDoppler = comm.ConstellationDiagram(...
 ReferenceConstellation=refConst, ...
 SamplesPerSymbol=spsSync, ...

 Correct Symbol Timing and Doppler Offsets

15-25

 Title='Frequency Corrected Signal');
cdTiming = comm.ConstellationDiagram(...
 ReferenceConstellation=refConst, ...
 SamplesPerSymbol=spsSync, ...
 Title='Frequency and Timing Synchronized Signal');

Main Processing Loop

The main processing loop:

• Generates random symbols and applies QAM modulation.
• Filters the modulated signal.
• Applies frequency and timing offsets.
• Passes the transmitted signal through an AWGN channel.
• Filters the received signal.
• Corrects the Doppler shift.
• Corrects the timing offset.

for k = 1:15
 data = randi([0 M-1],nSym,1);
 modSig = qammod(data,M,UnitAveragePower=true);
 txSig = txfilter(modSig);

 txDoppler = doppler(txSig);
 txDelay = varDelay(txDoppler,k/15);

 rxSig = awgn(txDelay,25);

 rxFiltSig = rxfilter(rxSig);
 rxCorr = carrierSync(rxFiltSig);
 rxData = symbolSync(rxCorr);
end

Visualization

Plot the constellation diagrams of the received signal, frequency corrected signal, and frequency and
timing synchronized signal. Specific constellation points cannot be identified in the received signal
and can be only partially identified in the frequency corrected signal. However, the timing and
frequency synchronized signal aligns with the expected QAM constellation points.

cdReceive(rxSig)

15 Various User Guide Topic Examples

15-26

cdDoppler(rxCorr)

 Correct Symbol Timing and Doppler Offsets

15-27

cdTiming(rxData)

15 Various User Guide Topic Examples

15-28

See Also
comm.CarrierSynchronizer | comm.SymbolSynchronizer

 Correct Symbol Timing and Doppler Offsets

15-29

Random Noise Generators in Simulink

You can generate noise for communication system modeling using the MATLAB® Function block with
a random number generator. This example generates and displays histogram plots of Gaussian,
Rayleigh, Rician, and Uniform noise.

The noise generators output 1e5-by-1 vectors every second, which is equivalent to a 0.00001 second
sample time. In this model, each MATLAB Function block defines a specific noise generator using its
underlying function. To view the underlying code for a MATLAB Function block in the MATLAB Editor,
open the model, select the desired MATLAB Function block, and then press Ctrl+u. Each MATLAB
function block contains block mask parameters that map to the function arguments in the underlying
code.

For each MATLAB Function block the Samples per frame parameter maps to its underlying function
argument spf. Similarly, Seed maps to seed.

The Gaussian Noise MATLAB Function block maps the Power (dBW) parameter to p, and defines
the function

The Rayleigh Noise MATLAB Function block maps the Sigma parameter to alpha, and defines the
function

The Rician Noise MATLAB Function block maps the Rician K-factor parameter to K and the Sigma
parameter to s, and defines the function

15 Various User Guide Topic Examples

15-30

The Uniform Noise MATLAB Function block maps the Noise lower bound parameter to lb and the
Noise upper bound parameter to ub, and defines the function

The model generates these histogram plots to show the noise distribution across the spectrum for
each noise generator.

 Random Noise Generators in Simulink

15-31

For further exploration, open the model and adjust one of the noise generation settings. For example,
the Rician noise generator has a K-factor of 10, which causes the mean value of the noise to be larger
than that of the Rayleigh distributed noise. Double-click the Rician Noise MATLAB Function block to
open the block mask and change the K-factor from 10 to 2. Rerun the model to see the noise spectrum
shift.

15 Various User Guide Topic Examples

15-32

Correct Phase and Frequency Offset for 16-QAM Using Coarse
and Fine Synchronization

Compensation of significant phase and frequency offsets for a 16-QAM signal in an AWGN channel is
accomplished in two steps. First, correct the coarse frequency offset using the estimate provided by
the coarse frequency compensator, and then fine-tune the correction using carrier synchronization.
Because of the coarse frequency correction, the carrier synchronizer converges quickly even though
the normalized bandwidth is set to a low value. Lower normalized bandwidth values enable better
correction for small residual carrier offsets. After applying phase and frequency offset corrections to
the received signal, resolve phase ambiguity using the preambles.

Define the simulation parameters.

fs = 10000; % Sample rate (Hz)
sps = 4; % Samples per symbol
M = 16; % Modulation order
k = log2(M); % Bits per symbol
rng(1996) % Set seed for repeatable results
barker = comm.BarkerCode(... % For preamble
 'Length',13,'SamplesPerFrame',13);
msgLen = 1e4;
numFrames = 10;
frameLen = msgLen/numFrames;

Generate data payloads and add the preamble to each frame. The preamble is later used for phase
ambiguity resolution.

preamble = (1+barker())/2; % Length 13, unipolar
data = zeros(msgLen, 1);
for idx = 1 : numFrames
 payload = randi([0 M-1],frameLen-barker.Length,1);
 data((idx-1)*frameLen + (1:frameLen)) = [preamble; payload];
end

Create a System object™ for the transmit pulse shape filtering, the receive pulse shape filtering, the
QAM coarse frequency compensation, the carrier synchronization, and a constellation diagram.

txFilter = comm.RaisedCosineTransmitFilter(...
 'OutputSamplesPerSymbol',sps);
rxFilter = comm.RaisedCosineReceiveFilter(...
 'InputSamplesPerSymbol',sps, ...
 'DecimationFactor',sps);
coarse = comm.CoarseFrequencyCompensator(...
 'SampleRate',fs, ...
 'FrequencyResolution',10);
fine = comm.CarrierSynchronizer(...
 'DampingFactor',0.4, ...
 'NormalizedLoopBandwidth',0.001, ...
 'SamplesPerSymbol',1, ...
 'Modulation','QAM');
axislimits = [-6 6];
constDiagram = comm.ConstellationDiagram(...
 'ReferenceConstellation',qammod(0:M-1,M), ...
 'ChannelNames',{'Before convergence','After convergence'}, ...
 'ShowLegend',true, ...

 Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization

15-33

 'XLimits',axislimits, ...
 'YLimits',axislimits);

Also create a System object for the AWGN channel, and the phase and frequency offset to add
impairments to the signal. A phase offset greater than 90 degrees is added to induce a phase
ambiguity that results in a constellation quadrant shift.

ebn0 = 8;
freqoffset = 110;
phaseoffset = 110;
awgnChannel = comm.AWGNChannel(...
 'EbNo',ebn0, ...
 'BitsPerSymbol',k, ...
 'SamplesPerSymbol',sps);
pfo = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',freqoffset, ...
 'PhaseOffset',phaseoffset, ...
 'SampleRate',fs);

Generate random data symbols, apply 16-QAM modulation, and pass the modulated signal through
the transmit pulse shaping filter.

txMod = qammod(data,M);
txSig = txFilter(txMod);

Apply phase and frequency offsets using the pfo System object, and then pass the signal through an
AWGN channel to add white Gaussian noise.

txSigOffset = pfo(txSig);
rxSig = awgnChannel(txSigOffset);

The coarse frequency compensator System object provides a rough correction for the frequency
offset. For the conditions in this example, correcting the frequency offset of the received signal
correction to within 10 Hz of the transmitted signal is sufficient.

syncCoarse = coarse(rxSig);

Pass the signal through the receive pulse shaping filter, and apply fine frequency correction.

rxFiltSig = fine(rxFilter(syncCoarse));

Display the constellation diagram of the first and last 1000 symbols in the signal. Before convergence
of the synchronization loop, the spiral nature of the diagram indicates that the frequency offset is not
corrected. After the carrier synchronizer has converged to a solution, the symbols are aligned with
the reference constellation.

constDiagram([rxFiltSig(1:1000) rxFiltSig(9001:end)])

15 Various User Guide Topic Examples

15-34

Demodulate the signal. Account for the signal delay caused by the transmit and receive filters to align
the received data with the transmitted data. Compute and display the total bit errors and BER. When
checking the bit errors, use the later portion of the received signal to be sure the synchronization
loop has converged.

rxData = qamdemod(rxFiltSig,M);
delay = (txFilter.FilterSpanInSymbols + ...
 rxFilter.FilterSpanInSymbols) / 2;
idxSync = 2000; % Check BER after synchronization loop has converged
[syncDataTtlErr,syncDataBER] = biterr(...
 data(idxSync:end-delay),rxData(idxSync+delay:end))

syncDataTtlErr = 16116

syncDataBER = 0.5042

 Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization

15-35

Depending on the random data used, there may be bit errors resulting from phase ambiguity in the
received signal after the synchronization loop converges and locks. In this case, you can use the
preamble to determine and then remove the phase ambiguity from the synchronized signal to reduce
bit errors. If phase ambiguity is minimal, the number of bit errors may be unchanged.

idx = 9000 + (1:barker.Length);
phOffset = angle(txMod(idx) .* conj(rxFiltSig(idx+delay)));

phOffsetEst = mean(phOffset);
disp(['Phase offset = ',num2str(rad2deg(phOffsetEst)),' degrees'])

Phase offset = -90.1401 degrees

resPhzSig = exp(1i*phOffsetEst) * rxFiltSig;

Demodulate the signal after resolving the phase ambiguity. Recompute the total bit errors and BER.

resPhzData = qamdemod(resPhzSig,M);
[resPhzTtlErr,resPhzBER] = biterr(...
 data(idxSync:end-delay),resPhzData(idxSync+delay:end))

resPhzTtlErr = 5

resPhzBER = 1.5643e-04

15 Various User Guide Topic Examples

15-36

Adjust Carrier Synchronizer Damping Factor to Correct
Frequency Offset

Attempt to correct for a frequency offset using the carrier synchronizer object. Increase the damping
factor of the synchronizer and determine if the offset was corrected.

Set the modulation order, sample rate, frequency offset, and signal-to-noise ratio parameters.

M = 8;
fs = 1e6;
foffset = 1000;
snrdb = 20;

Create a phase frequency offset object to introduce a frequency offset to a modulated signal. Create a
constellation diagram object.

pfo = comm.PhaseFrequencyOffset('SampleRate',fs, ...
 'FrequencyOffset',foffset);
constDiagram = comm.ConstellationDiagram(...
 'ReferenceConstellation',pskmod(0:M-1,M,pi/M));

Create a carrier synchronizer object to correct for the frequency offset.

carriersync = comm.CarrierSynchronizer('Modulation','8PSK', ...
 'DampingFactor',0.05,'NormalizedLoopBandwidth',0.01);

The main processing loop includes these steps:

• Generate random data.
• Apply 8-PSK modulation.
• Introduce a frequency offset.
• Pass the signal through an AWGN channel.
• Correct for the frequency offset.
• Display the constellation diagram.

for k = 1:200
 data = randi([0 M-1],1000,1);
 modSig = pskmod(data,M);
 txSig = pfo(modSig);
 rxSig = awgn(txSig,snrdb);
 syncOut = carriersync(rxSig);
 constDiagram(syncOut)
end

 Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset

15-37

The constellation points cannot be clearly identified indicating that the carrier synchronizer is unable
to compensate for the frequency offset.

Determine the normalized pull-in range, the maximum frequency lock delay, and the maximum phase
lock delay by using the info function.

syncInfo = info(carriersync)

syncInfo = struct with fields:
 NormalizedPullInRange: 0.0044
 MaxFrequencyLockDelay: 78.9568
 MaxPhaseLockDelay: 130

15 Various User Guide Topic Examples

15-38

Convert the normalized pull-in range from radians to cycles. Compare the normalized frequency
offset to the pull-in range.

[foffset/fs syncInfo.NormalizedPullInRange/(2*pi)]

ans = 1×2
10-3 ×

 1.0000 0.7071

The offset is greater than the pull-in range. This is reason that the carrier synchronizer failed to
correct the frequency offset.

Change the damping factor of the synchronizer to 0.707.

carriersync.DampingFactor = 0.707;

Repeat the main processing loop.

for k = 1:200
 data = randi([0 M-1],1000,1);
 modSig = pskmod(data,M);
 txSig = pfo(modSig);
 rxSig = awgn(txSig,snrdb);
 syncOut = carriersync(rxSig);
 constDiagram(syncOut)
end

 Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset

15-39

There are now eight observable clusters, which shows that the frequency offset was corrected.

Determine the new pull-in range. The normalized offset is less than the pull-in range. This explains
why the carrier synchronizer was able to correct the offset.

syncInfo = info(carriersync);
[foffset/fs syncInfo.NormalizedPullInRange/(2*pi)]

ans = 1×2

 0.0010 0.0100

15 Various User Guide Topic Examples

15-40

Modulate and Demodulate 8-PSK Signal

Use the Open model button to open the doc_8psk_model model. The model generates an 8-PSK
signal, applies white noise, displays the resulting constellation diagram, and computes the error
statistics.

Run the model.

The error statistics are collected in vector ErrorVec. Because Eb/No is 15 dB, there are no
measured symbol errors.

Number of symbol errors = 0

 Modulate and Demodulate 8-PSK Signal

15-41

Change the Eb/No of the AWGN Channel block from 15 dB to 5 dB. The increase in the noise is shown
in the constellation diagram.

Because of the increase in the noise level, the number of symbol errors is greater than zero.

Number of symbol errors = 21

15 Various User Guide Topic Examples

15-42

System Design

• “Source Coding” on page 16-2
• “Error Detection and Correction” on page 16-14
• “Interleaving” on page 16-116
• “Phase-Locked Loops” on page 16-130
• “Multiple-Input Multiple-Output (MIMO)” on page 16-133
• “Differential Pulse Code Modulation” on page 16-135
• “Quantize and Compand an Exponential Signal” on page 16-139
• “Quantization” on page 16-141

16

Source Coding
In this section...
“Represent Partitions” on page 16-2
“Represent Codebooks” on page 16-2
“Determine Which Interval Each Input Is In” on page 16-3
“Optimize Quantization Parameters” on page 16-3
“Differential Pulse Code Modulation” on page 16-4
“Optimize DPCM Parameters” on page 16-6
“Compand a Signal” on page 16-7
“Huffman Coding” on page 16-9
“Arithmetic Coding” on page 16-10
“Quantize a Signal” on page 16-11

Represent Partitions
Scalar quantization is a process that maps all inputs within a specified range to a common value. This
process maps inputs in a different range of values to a different common value. In effect, scalar
quantization digitizes an analog signal. Two parameters determine a quantization: a partition on page
16-2 and a codebook on page 16-2.

A quantization partition defines several contiguous, nonoverlapping ranges of values within the set of
real numbers. To specify a partition in the MATLAB environment, list the distinct endpoints of the
different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}
• {x: 0< x ≤ 1}
• {x: 1 < x ≤ 3}
• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall into each range of the
partition. Represent a codebook as a vector whose length is the same as the number of partition
intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

16 System Design

16-2

Determine Which Interval Each Input Is In
The quantiz function also returns a vector that tells which interval each input is in. For example, the
output below says that the input entries lie within the intervals labeled 0, 6, and 5, respectively. Here,
the 0th interval consists of real numbers less than or equal to 3; the 6th interval consists of real
numbers greater than 8 but less than or equal to 9; and the 5th interval consists of real numbers
greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

 0
 6
 5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase the example
more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters

• “Section Overview” on page 16-3
• “Example: Optimizing Quantization Parameters” on page 16-3

Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate partition and
codebook parameters. However, testing and selecting parameters for large signal sets with a fine
quantization scheme can be tedious. One way to produce partition and codebook parameters easily is
to optimize them according to a set of so-called training data.

Note The training data you use should be typical of the kinds of signals you will actually be
quantizing.

Example: Optimizing Quantization Parameters

The lloyds function optimizes the partition and codebook according to the Lloyd algorithm. The
code below optimizes the partition and codebook for one period of a sinusoidal signal, starting from a

 Source Coding

16-3

rough initial guess. Then it uses these parameters to quantize the original signal using the initial
guess parameters as well as the optimized parameters. The output shows that the mean square
distortion after quantizing is much less for the optimized parameters. The quantiz function
automatically computes the mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is

ans =

 0.0148 0.0024

Differential Pulse Code Modulation
• “Section Overview” on page 16-4
• “DPCM Terminology” on page 16-4
• “Represent Predictors” on page 16-5
• “Example: DPCM Encoding and Decoding” on page 16-5

Section Overview

The quantization in the section “Quantize a Signal” on page 16-11 requires no a priori knowledge
about the transmitted signal. In practice, you can often make educated guesses about the present
signal based on past signal transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization method is differential
pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM predictive
quantizer with a linear predictor.

DPCM Terminology

To determine an encoder for such a quantizer, you must supply not only a partition and codebook as
described in “Represent Partitions” on page 16-2 and “Represent Codebooks” on page 16-2, but also
a predictor. The predictor is a function that the DPCM encoder uses to produce the educated guess at
each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p is an m-tuple of real
numbers. Instead of quantizing x itself, the DPCM encoder quantizes the predictive error, x-y. The
integer m above is called the predictive order. The special case when m = 1 is called delta
modulation.

16 System Design

16-4

Represent Predictors

If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the vector as the polynomial
transfer function of a finite impulse response (FIR) filter.

Example: DPCM Encoding and Decoding

A simple special case of DPCM quantizes the difference between the signal's current value and its
value at the previous step. Thus the predictor is just y(k) = x (k - 1). The code below
implements this scheme. It encodes a sawtooth signal, decodes it, and plots both the original and
decoded signals. The solid line is the original signal, while the dashed line is the recovered signals.
The example also computes the mean square error between the original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0327

 Source Coding

16-5

Optimize DPCM Parameters

• “Section Overview” on page 16-6
• “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page 16-7

Section Overview

The section “Optimize Quantization Parameters” on page 16-3 describes how to use training data
with the lloyds function to help find quantization parameters that will minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction with the two
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note The training data you use with dpcmopt should be typical of the kinds of signals you will
actually be quantizing with dpcmenco.

16 System Design

16-6

Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example created
predictor, partition, and codebook in a straightforward but haphazard way, this example uses
the same codebook (now called initcodebook) as an initial guess for a new optimized codebook
parameter. This example also uses the predictive order, 1, as the desired order of the new optimized
predictor. The dpcmopt function creates these optimized parameters, using the sawtooth signal x as
training data. The example goes on to quantize the training data itself; in theory, the optimized
parameters are suitable for quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0063

Compand a Signal
• “Section Overview” on page 16-7
• “Compress and Expand Data Sequence Using Mu-Law” on page 16-7
• “Compress and Expand Data Sequence Using A-Law” on page 16-8

Section Overview

In certain applications, such as speech processing, it is common to use a logarithm computation,
called a compressor, before quantizing. The inverse operation of a compressor is called an expander.
The combination of a compressor and expander is called a compander.

For more information, see quantiz and compand.

Compress and Expand Data Sequence Using Mu-Law

Generate a data sequence.

data = 2:2:12

data = 1×6

 2 4 6 8 10 12

Compress the data sequence by using a mu-law compressor. Set the value for mu to 255. The
compressed data sequence now ranges between 8.1 and 12.

 Source Coding

16-7

compressed = compand(data,255,max(data),'mu/compressor')

compressed = 1×6

 8.1644 9.6394 10.5084 11.1268 11.6071 12.0000

Expand the compressed data sequence by using a mu-law expander. The expanded data sequence is
nearly identical to the original data sequence.

expanded = compand(compressed,255,max(data),'mu/expander')

expanded = 1×6

 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000

Calculate the difference between the original data sequence and the expanded sequence.

diffvalue = expanded - data

diffvalue = 1×6
10-14 ×

 -0.0444 0.1776 0.0888 0.1776 0.1776 -0.3553

Compress and Expand Data Sequence Using A-Law

Generate a data sequence.

data = 1:5;

Compress the data sequence by using an A-law compressor. Set the value for A to 87.6. The
compressed data sequence now ranges between 3.5 and 5.

compressed = compand(data,87.6,max(data),'A/compressor')

compressed = 1×5

 3.5296 4.1629 4.5333 4.7961 5.0000

Expand the compressed data sequence by using an A-law expander. The expanded data sequence is
nearly identical to the original data sequence.

expanded = compand(compressed,87.6,max(data),'A/expander')

expanded = 1×5

 1.0000 2.0000 3.0000 4.0000 5.0000

Calculate the difference between the original data sequence and the expanded sequence.

diffvalue = expanded - data

16 System Design

16-8

diffvalue = 1×5
10-14 ×

 0 0 0.1332 0.0888 0.0888

Huffman Coding
• “Section Overview” on page 16-9
• “Create a Huffman Code Dictionary Using MATLAB” on page 16-9
• “Create and Decode a Huffman Code Using MATLAB” on page 16-10

Section Overview

Huffman coding offers a way to compress data. The average length of a Huffman code depends on the
statistical frequency with which the source produces each symbol from its alphabet. A Huffman code
dictionary, which associates each data symbol with a codeword, has the property that no codeword in
the dictionary is a prefix of any other codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support Huffman coding and
decoding.

Note For long sequences from sources having skewed distributions and small alphabets, arithmetic
coding compresses better than Huffman coding. To learn how to use arithmetic coding, see
“Arithmetic Coding” on page 16-10.

Huffman coding requires statistical information about the source of the data being encoded. In
particular, the p input argument in the huffmandict function lists the probability with which the
source produces each symbol in its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s with probability 0.1,
and 3s with probability 0.8. The main computational step in encoding data from this source using a
Huffman code is to create a dictionary that associates each data symbol with a codeword. The
example here creates such a dictionary and then shows the codeword vector associated with a
particular value from the data source.

Create a Huffman Code Dictionary Using MATLAB

This example shows how to create a Huffman code dictionary using the huffmandict function.

Create a vector of data symbols and assign a probability to each.

symbols = [1 2 3];
prob = [0.1 0.1 0.8];

Create a Huffman code dictionary. The most probable data symbol, 3, is associated with a one-digit
codeword, while less probable data symbols are associated with two-digit codewords.

dict = huffmandict(symbols,prob)

dict=3×2 cell array
 {[1]} {[1 1]}

 Source Coding

16-9

 {[2]} {[1 0]}
 {[3]} {[0]}

Display the second row of the dictionary. The output also shows that a Huffman encoder receiving the
data symbol 2 substitutes the sequence 1 0.

dict{2,:}

ans = 2

ans = 1×2

 1 0

Create and Decode a Huffman Code Using MATLAB

The example performs Huffman encoding and decoding using a source whose alphabet has three
symbols. Notice that the huffmanenco and huffmandeco functions use the dictionary created by
huffmandict.

Generate a data sequence to encode.

sig = repmat([3 3 1 3 3 3 3 3 2 3],1,50);

Define the set of data symbols and the probability associated with each element.

symbols = [1 2 3];
p = [0.1 0.1 0.8];

Create the Huffman code dictionary.

dict = huffmandict(symbols,p);

Encode and decode the data. Verify that the original data, sig, and the decoded data, dhsig, are
identical.

hcode = huffmanenco(sig,dict);
dhsig = huffmandeco(hcode,dict);
isequal(sig,dhsig)

ans = logical
 1

Arithmetic Coding
• “Section Overview” on page 16-10
• “Represent Arithmetic Coding Parameters” on page 16-11
• “Create and Decode an Arithmetic Code Using MATLAB” on page 16-11

Section Overview

Arithmetic coding offers a way to compress data and can be useful for data sources having a small
alphabet. The length of an arithmetic code, instead of being fixed relative to the number of symbols

16 System Design

16-10

being encoded, depends on the statistical frequency with which the source produces each symbol
from its alphabet. For long sequences from sources having skewed distributions and small alphabets,
arithmetic coding compresses better than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and decoding.

Represent Arithmetic Coding Parameters

Arithmetic coding requires statistical information about the source of the data being encoded. In
particular, the counts input argument in the arithenco and arithdeco functions lists the
frequency with which the source produces each symbol in its alphabet. You can determine the
frequencies by studying a set of test data from the source. The set of test data can have any size you
choose, as long as each symbol in the alphabet has a nonzero frequency.

For example, before encoding data from a source that produces 10 x's, 10 y's, and 80 z's in a typical
100-symbol set of test data, define

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x's, 23 y's, and 185 z's, then
define

counts = [22 23 185];

Create and Decode an Arithmetic Code Using MATLAB

Encode and decode a sequence from a source having three symbols.

Create a sequence vector containing symbols from the set of {1,2,3}.

seq = [3 3 1 3 3 3 3 3 2 3];

Set the counts vector to define an encoder that produces 10 ones, 20 twos, and 70 threes from a
typical 100-symbol set of test data.

counts = [10 20 70];

Apply the arithmetic encoder and decoder functions.

code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq));

Verify that the decoder output matches the original input sequence.

isequal(seq,dseq)

ans = logical
 1

Quantize a Signal
• “Scalar Quantization Example 1” on page 16-12
• “Scalar Quantization Example 2” on page 16-12

 Source Coding

16-11

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map a real
vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

The output is below.

quantized =

 Columns 1 through 6

 -1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

 Columns 7 through 12

 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

 Column 13

 3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing a sampled
sine wave, it plots the original and quantized signals. The plot contrasts the x's that make up the sine
curve with the dots that make up the quantized signal. The vertical coordinate of each dot is a value
in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
legend('Original signal','Quantized signal');
axis([-.2 7 -1.2 1.2])

16 System Design

16-12

See Also
Functions
lloyds | quantiz | dpcmenco | dpcmdeco | dpcmopt

 Source Coding

16-13

Error Detection and Correction
In this section...
“Cyclic Redundancy Check Codes” on page 16-14
“Block Codes” on page 16-17
“Convolutional Codes” on page 16-30
“Linear Block Codes” on page 16-54
“Hamming Codes” on page 16-62
“BCH Codes” on page 16-67
“Reed-Solomon Codes” on page 16-72
“LDPC Codes” on page 16-81
“Galois Field Computations” on page 16-81
“Galois Fields of Odd Characteristic” on page 16-105

Cyclic Redundancy Check Codes

• “CRC-Code Features” on page 16-14
• “CRC Non-Direct Algorithm” on page 16-14
• “Example Using CRC Non-Direct Algorithm” on page 16-15
• “CRC Direct Algorithm” on page 16-16
• “Selected Bibliography for CRC Coding” on page 16-16

CRC-Code Features

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting errors that
occur when a message is transmitted. Unlike block or convolutional codes, CRC codes do not have a
built-in error-correction capability. Instead, when a communications system detects an error in a
received message word, the receiver requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create extra bits, called the
checksum, or syndrome, and then appends the checksum to the message word. After receiving a
transmitted word, the receiver applies the same rule to the received word. If the resulting checksum
is nonzero, an error has occurred, and the transmitter should resend the message word.

Open the Error Detection and Correction library by double-clicking its icon in the main
Communications Toolbox block library. Open the CRC sublibrary by double-clicking on its icon in the
Error Detection and Correction library.

Communications Toolbox supports CRC Coding using Simulink blocks, System objects, or MATLAB
objects. These CRC coding features are listed in “Error Detection and Correction”.

CRC Non-Direct Algorithm

The CRC non-direct algorithm accepts a binary data vector, corresponding to a polynomial M, and
appends a checksum of r bits, corresponding to a polynomial C. The concatenation of the input vector
and the checksum then corresponds to the polynomial T = M*xr + C, since multiplying by xr

16 System Design

16-14

corresponds to shifting the input vector r bits to the left. The algorithm chooses the checksum C so
that T is divisible by a predefined polynomial P of degree r, called the generator polynomial.

The algorithm divides T by P, and sets the checksum equal to the binary vector corresponding to the
remainder. That is, if T = Q*P + R, where R is a polynomial of degree less than r, the checksum is the
binary vector corresponding to R. If necessary, the algorithm prepends zeros to the checksum so that
it has length r.

The CRC generation feature, which implements the transmission phase of the CRC algorithm, does
the following:

1 Left shifts the input data vector by r bits and divides the corresponding polynomial by P.
2 Sets the checksum equal to the binary vector of length r, corresponding to the remainder from

step 1.
3 Appends the checksum to the input data vector. The result is the output vector.

The CRC detection feature computes the checksum for its entire input vector, as described above.

The CRC algorithm uses binary vectors to represent binary polynomials, in descending order of
powers. For example, the vector [1 1 0 1] represents the polynomial x3 + x2 + 1.

Note The implementation described in this section is one of many valid implementations of the CRC
algorithm. Different implementations can yield different numerical results.

Bits enter the linear feedback shift register (LFSR) from the lowest index bit to the highest index bit.
The sequence of input message bits represents the coefficients of a message polynomial in order of
decreasing powers. The message vector is augmented with r zeros to flush out the LFSR, where r is
the degree of the generator polynomial. If the output from the leftmost register stage d(1) is a 1, then
the bits in the shift register are XORed with the coefficients of the generator polynomial. When the
augmented message sequence is completely sent through the LFSR, the register contains the
checksum [d(1) d(2) . . . d(r)]. This is an implementation of binary long division, in which the message
sequence is the divisor (numerator) and the polynomial is the dividend (denominator). The CRC
checksum is the remainder of the division operation.

Example Using CRC Non-Direct Algorithm

Suppose the input frame is [1 1 0 0 1 1 0]', corresponding to the polynomial M = x6 +x 5 + x2 +
x, and the generator polynomial is P = x3 + x2 + 1, of degree r = 3. By polynomial division, M*x3 = (x6

+ x3 + x)*P + x. The remainder is R = x, so that the checksum is then [0 1 0]'. An extra 0 is added
on the left to make the checksum have length 3.

 Error Detection and Correction

16-15

CRC Direct Algorithm

where

Message Block Input is

m0, m1, ... , mk− 1
Code Word Output is

c0, c1, ... , cn− 1 = m0, m1, ... , mk− 1,︸
X

d0, d1, ... , dn− k− 1︸
Y

The initial step of the direct CRC encoding occurs with the three switches in position X. The
algorithm feeds k message bits to the encoder. These bits are the first k bits of the code word output.
Simultaneously, the algorithm sends k bits to the linear feedback shift register (LFSR). When the
system completely feeds the kth message bit to the LFSR, the switches move to position Y. Here, the
LFSR contains the mathematical remainder from the polynomial division. These bits are shifted out of
the LFSR and they are the remaining bits (checksum) of the code word output.

Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and Applications, Englewood Cliffs, NJ,
Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage, Upper Saddle
River, NJ, Prentice Hall, 1995.

16 System Design

16-16

Block Codes

• “Block-Coding Features” on page 16-17
• “Terminology” on page 16-18
• “Data Formats for Block Coding” on page 16-18
• “Using Block Encoders and Decoders Within a Model” on page 16-20
• “Examples of Block Coding” on page 16-20
• “Notes on Specific Block-Coding Techniques” on page 16-23
• “Shortening, Puncturing, and Erasures” on page 16-25
• “Reed-Solomon Code in Integer Format” on page 16-27
• “Find a Generator Polynomial” on page 16-28
• “Performing Other Block Code Tasks” on page 16-28
• “Selected Bibliography for Block Coding” on page 16-29

Block-Coding Features

Error-control coding techniques detect, and possibly correct, errors that occur when messages are
transmitted in a digital communication system. To accomplish this, the encoder transmits not only the
information symbols but also extra redundant symbols. The decoder interprets what it receives, using
the redundant symbols to detect and possibly correct whatever errors occurred during transmission.
You might use error-control coding if your transmission channel is very noisy or if your data is very
sensitive to noise. Depending on the nature of the data or noise, you might choose a specific type of
error-control coding.

Block coding is a special case of error-control coding. Block-coding techniques map a fixed number of
message symbols to a fixed number of code symbols. A block coder treats each block of data
independently and is a memoryless device. Communications Toolbox contains block-coding
capabilities by providing Simulink blocks, System objects, and MATLAB functions.

The class of block-coding techniques includes categories shown in the diagram below.

Communications Toolbox supports general linear block codes. It also process cyclic, BCH, Hamming,
and Reed-Solomon codes (which are all special kinds of linear block codes). Blocks in the product can
encode or decode a message using one of the previously mentioned techniques. The Reed-Solomon
and BCH decoders indicate how many errors they detected while decoding. The Reed-Solomon coding
blocks also let you decide whether to use symbols or bits as your data.

 Error Detection and Correction

16-17

Note The blocks and functions in Communications Toolbox are designed for error-control codes that
use an alphabet having 2 or 2m symbols.

Communications Toolbox Support Functions

Functions in Communications Toolbox can support simulation blocks by

• Determining characteristics of a technique, such as error-correction capability or possible
message lengths

• Performing lower-level computations associated with a technique, such as

• Computing a truth table
• Computing a generator or parity-check matrix
• Converting between generator and parity-check matrices
• Computing a generator polynomial

For more information about error-control coding capabilities, see Block Codes on page 16-17.

Terminology

Throughout this section, the information to be encoded consists of message symbols and the code
that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of N message symbols. K
is called the message length, N is called the codeword length, and the code is called an [N,K] code.

Data Formats for Block Coding

Each message or codeword is an ordered grouping of symbols. Each block in the Block Coding
sublibrary processes one word in each time step, as described in the following section, “Binary
Format (All Coding Methods)” on page 16-18. Reed-Solomon coding blocks also let you choose
between binary and integer data, as described in “Integer Format (Reed-Solomon Only)” on page 16-
19.

Binary Format (All Coding Methods)

You can structure messages and codewords as binary vector signals, where each vector represents a
message word or a codeword. At a given time, the encoder receives an entire message word, encodes
it, and outputs the entire codeword. The message and code signals operate over the same sample
time.

This example illustrates the encoder receiving a four-bit message and producing a five-bit codeword
at time 0. It repeats this process with a new message at time 1.

16 System Design

16-18

For all coding techniques except Reed-Solomon using binary input, the message vector must have
length K and the corresponding code vector has length N. For Reed-Solomon codes with binary input,
the symbols for the code are binary sequences of length M, corresponding to elements of the Galois
field GF(2M). In this case, the message vector must have length M*K and the corresponding code
vector has length M*N. The Binary-Input RS Encoder block and the Binary-Output RS Decoder block
use this format for messages and codewords.

If the input to a block-coding block is a frame-based vector, it must be a column vector instead of a
row vector.

To produce sample-based messages in the binary format, you can configure the Bernoulli Binary
Generator block so that its Probability of a zero parameter is a vector whose length is that of the
signal you want to create. To produce frame-based messages in the binary format, you can configure
the same block so that its Probability of a zero parameter is a scalar and its Samples per frame
parameter is the length of the signal you want to create.

Using Serial Signals

If you prefer to structure messages and codewords as scalar signals, where several samples jointly
form a message word or codeword, you can use the Buffer and Unbuffer blocks. Buffering involves
latency and multirate processing. If your model computes error rates, the initial delay in the coding-
buffering combination influences the Receive delay parameter in the Error Rate Calculation block.

You can display the sample times of signals in your model. On the Debug tab, expand Information
Overlays. In the Sample Time section, select Colors. Alternatively, you can attach Probe blocks to
connector lines to help evaluate sample timing, buffering, and delays.

Integer Format (Reed-Solomon Only)

A message word for an [N,K] Reed-Solomon code consists of M*K bits, which you can interpret as K
symbols from 0 to 2M. The symbols are binary sequences of length M, corresponding to elements of
the Galois field GF(2M), in descending order of powers. The integer format for Reed-Solomon codes
lets you structure messages and codewords as integer signals instead of binary signals. (The input
must be a frame-based column vector.)

Note In this context, Simulink expects the first bit to be the most significant bit in the symbol, as
well as the smallest index in a vector or the smallest time for a series of scalars.

The following figure illustrates the equivalence between binary and integer signals for a Reed-
Solomon encoder. The case for the decoder is similar.

 Error Detection and Correction

16-19

To produce sample-based messages in the integer format, you can configure the Random Integer
Generator block so that M-ary number and Initial seed parameters are vectors of the desired
length and all entries of the M-ary number vector are 2M. To produce frame-based messages in the
integer format, you can configure the same block so that its M-ary number and Initial seed
parameters are scalars and its Samples per frame parameter is the length of the signal you want to
create.

Using Block Encoders and Decoders Within a Model

Once you have configured the coding blocks, a few tips can help you place them correctly within your
model:

• If a block has multiple outputs, the first one is always the stream of coding data.

The Reed-Solomon and BCH blocks have an error counter as a second output.
• Be sure that the signal sizes are appropriate for the mask parameters. For example, if you use the

Binary Cyclic Encoder block and set Message length K to 4, the input signal must be a vector of
length 4.

You can display the size of signals in your model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

Examples of Block Coding
Example: Reed-Solomon Code in Integer Format

This example uses a Reed-Solomon code in integer format. It illustrates the appropriate vector
lengths of the code and message signals for the coding blocks. It also exhibits error correction, using
a simple way of introducing errors into each codeword.

16 System Design

16-20

To build the model, gather and configure these blocks:

• Random Integer Generator, with these updates to parameter settings:

• Set M-ary number to 15.
• Set Initial seed to a positive number, randn is chosen here.
• Check the Frame-based outputs check box.
• Set Samples per frame to 5.

• Integer-Input RS Encoder, with these updates to parameter settings:

• Set Codeword length N to 15.
• Set Message length K to 5.

• Gain, with these updates to parameter settings:

• Set Gain to [0; 0; 0; 0; 0; ones(10,1)].
• Integer-Output RS Decoder, with these updates to parameter settings:

• Set Codeword length N to 15.
• Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.
• Add, in the Simulink Math Operations library

• Set List of signs to |-+

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to 500. The Simulate section appears on multiple tabs.

You can display the vector length of signals in your model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

The encoder accepts a vector of length 5 (which is K in this case) and produces a vector of length 15
(which is N in this case). The decoder does the opposite.

Running the model produces the following scope images. The plotted error count will vary based on
the Initial Seed value used in the Random Integer Generator block. You can adjust the axis range
exactly match that of the first scope. Right-click the plot area in the second scope and select
Configuration Properties. On the Display tab, adjust the axes limits.

 Error Detection and Correction

16-21

Number of Errors Before Correction

The second plot is the number of errors that the decoder detected while trying to recover the
message. Often the number is five because the Gain block replaces the first five symbols in each
codeword with zeros. However, the number of errors is less than five whenever a correct codeword
contains one or more zeros in the first five places.

The first plot is the difference between the original message and the recovered message; since the
decoder was able to correct all errors that occurred, each of the five data streams in the plot is zero.

16 System Design

16-22

Notes on Specific Block-Coding Techniques

Although the Block Coding sublibrary is somewhat uniform in its look and feel, the various coding
techniques are not identical. This section describes special options and restrictions that apply to
parameters and signals for the coding technique categories in this sublibrary. Coding techniques
discussed below include - Generic Linear Block code, Cyclic code, Hamming code, BCH code, and
Reed-Solomon code.

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix. Decoding the
code requires the generator matrix and possibly a truth table. To use the Binary Linear Encoder and
Binary Linear Decoder blocks, you must understand the Generator matrix and Error-correction
truth table parameters.

Generator Matrix - The process of encoding a message into an [N,K] linear block code is determined
by a K-by-N generator matrix G. Specifically, a 1-by-K message vector v is encoded into the 1-by-N
codeword vector vG. If G has the form [Ik, P] or [P, Ik], where P is some K-by-(N-K) matrix and Ik is the
K-by-K identity matrix, G is said to be in standard form. (Some authors, such as Clark and Cain [2],
use the first standard form, while others, such as Lin and Costello [3], use the second.) The linear
block-coding blocks in this product require the Generator matrix mask parameter to be in standard
form.

Decoding Table - A decoding table tells a decoder how to correct errors that may have corrupted the
code during transmission. Hamming codes can correct any single-symbol error in any codeword.
Other codes can correct, or partially correct, errors that corrupt more than one symbol in a given
codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the Error-correction
truth table parameter. Represent a decoding table as a matrix with N columns and 2N-K rows. Each
row gives a correction vector for one received codeword vector.

You can avoid specifying a decoding table explicitly, by setting the Error-correction truth table
parameter to 0. When Error-correction truth table is 0, the block computes a decoding table using
the syndtable function.

Cyclic Codes

For cyclic codes, the codeword length N must have the form 2M-1, where M is an integer greater than
or equal to 3.

Generator Polynomials - Cyclic codes have special algebraic properties that allow a polynomial to
determine the coding process completely. This so-called generator polynomial is a degree-(N-K)
divisor of the polynomial xN-1. Van Lint [5] explains how a generator polynomial determines a cyclic
code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to specify a generator
polynomial as the second mask parameter, instead of specifying K there. The blocks represent a
generator polynomial using a vector that lists the coefficients of the polynomial in order of ascending
powers of the variable. You can find generator polynomials for cyclic codes using the cyclpoly
function.

If you do not want to specify a generator polynomial, set the second mask parameter to the value of
K.

 Error Detection and Correction

16-23

Hamming Codes

For Hamming codes, the codeword length N must have the form 2M-1, where M is an integer greater
than or equal to 3. The message length K must equal N-M.

Primitive Polynomials - Hamming codes rely on algebraic fields that have 2M elements (or, more
generally, pM elements for a prime number p). Elements of such fields are named relative to a
distinguished element of the field that is called a primitive element. The minimal polynomial of a
primitive element is called a primitive polynomial. The Hamming Encoder and Hamming Decoder
blocks allow you to specify a primitive polynomial for the finite field that they use for computations. If
you want to specify this polynomial, do so in the second mask parameter field. The blocks represent a
primitive polynomial using a vector that lists the coefficients of the polynomial in order of ascending
powers of the variable. You can find generator polynomials for Galois fields using the gfprimfd
function.

If you do not want to specify a primitive polynomial, set the second mask parameter to the value of K.

BCH Codes

BCH codes are cyclic error-correcting codes that are constructed using finite fields. For these codes,
the codeword length N must have the form 2M-1, where M is an integer from 3 to 9. The message
length K is restricted to particular values that depend on N. To see which values of K are valid for a
given N, see the comm.BCHEncoder System object reference page. No known analytic formula
describes the relationship among the codeword length, message length, and error-correction
capability for BCH codes.

Narrow-Sense BCH Codes

The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ..., m_2t(x)], where:

• LCM represents the least common multiple,
• m_i(x) represents the minimum polynomial corresponding to αi, α is a root of the default primitive

polynomial for the field GF(n+1),
• and t represents the error-correcting capability of the code.

Reed-Solomon Codes

Reed-Solomon codes are useful for correcting errors that occur in bursts. In the simplest case, the
length of codewords in a Reed-Solomon code is of the form N= 2M-1, where the 2M is the number of
symbols for the code. The error-correction capability of a Reed-Solomon code is floor((N-K)/2),
where K is the length of message words. The difference N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N is less than 2M-1. In this
case, the encoder appends 2M-1-N zero symbols to each message word and codeword. The error-
correction capability of a shortened Reed-Solomon code is also floor((N-K)/2). The
Communications Toolbox Reed-Solomon blocks can implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols - One difference between Reed-Solomon codes and the other codes
supported in this product is that Reed-Solomon codes process symbols in GF(2M) instead of GF(2). M
bits specify each symbol. The nonbinary nature of the Reed-Solomon code symbols causes the Reed-
Solomon blocks to differ from other coding blocks in these ways:

• You can use the integer format, via the Integer-Input RS Encoder and Integer-Output RS Decoder
blocks.

16 System Design

16-24

• The binary format expects the vector lengths to be an integer multiple of M*K (not K) for
messages and the same integer M*N (not N) for codewords.

Error Information - The Reed-Solomon decoding blocks (Binary-Output RS Decoder and Integer-
Output RS Decoder) return error-related information during the simulation. The second output signal
indicates the number of errors that the block detected in the input codeword. A -1 in the second
output indicates that the block detected more errors than it could correct using the coding scheme.

Shortening, Puncturing, and Erasures

Many standards utilize punctured codes, and digital receivers can easily output erasures. BCH and
RS performance improves significantly in fading channels where the receiver generates erasures.

A punctured codeword has only parity symbols removed, and a shortened codeword has only
information symbols removed. A codeword with erasures can have those erasures in either
information symbols or parity symbols.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening, puncturing, and
erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing

The following figure shows a representative example of a (7,3) Reed Solomon encoder with
shortening and puncturing.

In this figure, the message source outputs two information symbols, designated by I1I2. (For a BCH
example, the symbols are binary bits.) Because the code is a shortened (7,3) code, a zero must be
added ahead of the information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is RS encoded, and the added information zero is then removed, which yields a
result of I1I2P1P2P3P4. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011. Within the
puncture vector, a 1 means that the symbol is kept, and a 0 means that the symbol is thrown away. In

 Error Detection and Correction

16-25

this example, the puncturing operation removes the second parity symbol, yielding a final vector of
I1I2P1P3P4.

Decoder Example with Shortening and Puncturing

The following figure shows how the RS decoder operates on a shortened and punctured codeword.

This case corresponds to the encoder operations shown in the figure of the RS encoder with
shortening and puncturing. As shown in the preceding figure, the encoder receives a (5,2) codeword,
because it has been shortened from a (7,3) codeword by one symbol, and one symbol has also been
punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity position of the
codeword. This corresponds to the puncture vector 1011. Adding a zero accounts for shortening, in
the same way as shown in the preceding figure. The single erasure does not exceed the erasure-
correcting capability of the code, which can correct four erasures. The decoding operation results in
the three-symbol message DI1I2. The first symbol is truncated, as in the preceding figure, yielding a
final output of I1I2.

Decoder Example with Shortening, Puncturing, and Erasures

The following figure shows the decoder operating on the punctured, shortened codeword, while also
correcting erasures generated by the receiver.

16 System Design

16-26

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder sent. The demodulator
declares that two of the five received symbols are unreliable enough to be erased, such that symbols
2 and 5 are deemed to be erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be replaced with an erasure
symbol, and a 0 means that the symbol is passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the erasures indicated
by the vector 01001. Within the erasures vector, a 1 means that the symbol is to be replaced with an
erasure symbol, and a 0 means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding operation
(i.e., 1011). Thus, an erasure symbol is inserted between P1 and P3, yielding a codeword vector of
I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information vector accounts for
the shortening. The resulting vector is 0I1EP1EP3E, such that a (7,3) codeword is sent to the
Berlekamp algorithm.

This codeword is decoded, yielding a three-symbol message of DI1I2 (where D refers to a dummy
symbol). Finally, the removal of the D symbol from the message vector accounts for the shortening
and yields the original I1I2 vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and Shortening”
MATLAB example or the “Reed-Solomon Coding with Erasures, Punctures, and Shortening in
Simulink” on page 18-2 example.

Reed-Solomon Code in Integer Format

For a model that uses a Reed-Solomon code in integer format, see “Example: Reed-Solomon Code in
Integer Format” on page 16-20

 Error Detection and Correction

16-27

Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the cyclpoly,
bchgenpoly, or rsgenpoly function, respectively. The commands

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.
genpolyCyclic =

 1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

 1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector that lists the
polynomial's coefficients in order of ascending powers of the variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row vector that
lists the polynomial's coefficients in order of descending powers of the variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For more
information on the meaning of these coefficients, see “How Integers Correspond to Galois Field
Elements” on page 16-84 and “Polynomials over Galois Fields” on page 16-98.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the generator
polynomial. The syntaxes for functions in the example above also include options for retrieving
generator polynomials that satisfy certain constraints that you specify. See the functions' reference
pages for details about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form (X - Ab)(X - Ab
+1)...(X - Ab+2t-1), where A is a primitive element for an appropriate Galois field, and b and t are
integers. See the functions' reference pages for more information about this expression.

Performing Other Block Code Tasks

This section describes functions that compute typical parameters associated with linear block codes,
as well as functions that convert information from one format to another.

• Error Correction Versus Error Detection for Linear Block Codes

16 System Design

16-28

You can use a linear block code to detect dmin -1 errors or to correct t = 1
2(dmin− 1) errors.

If you compromise the error correction capability of a code, you can detect more than t errors. For
example, a code with dmin = 7 can correct t = 3 errors or it can detect up to 4 errors and correct
up to 2 errors.

• Finding the Error-Correction Capability

The bchgenpoly and rsgenpoly functions can return an optional second output argument that
indicates the error-correction capability of a BCH or Reed-Solomon code. For example, the
commands

[g,t] = bchgenpoly(31,16);
t
t =

 3

find that a [31, 16] BCH code can correct up to three errors in each codeword.
• Finding Generator and Parity-Check Matrices

To find a parity-check and generator matrix for a Hamming code with codeword length 2^m-1, use
the hammgen function as below. m must be at least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen function. You must
provide the codeword length and a valid generator polynomial. You can use the cyclpoly
function to produce one possible generator polynomial after you provide the codeword length and
message length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

• Converting Between Parity-Check and Generator Matrices

The gen2par function converts a generator matrix into a parity-check matrix, and vice versa. The
reference page for gen2par contains examples to illustrate this.

Selected Bibliography for Block Coding

[1] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital Communications, New
York, Plenum Press, 1981.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1983.

[4] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed., Cambridge, MA, MIT
Press, 1972.

[5] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage, Upper Saddle
River, NJ, Prentice Hall, 1995.

 Error Detection and Correction

16-29

[7] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA, MIT Press, 1963.

[8] Ryan, William E., “An introduction to LDPC codes,” Coding and Signal Processing for Magnetic
Recoding Systems (Vasic, B., ed.), CRC Press, 2004.

Convolutional Codes

• “Convolutional Code Features” on page 16-30
• “Polynomial Description of a Convolutional Code” on page 16-31
• “Trellis Description of a Convolutional Code” on page 16-34
• “Create and Decode Convolutional Codes” on page 16-36
• “Design a Rate-2/3 Feedforward Encoder Using MATLAB” on page 16-43
• “Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 16-45
• “Puncture a Convolutional Code Using MATLAB” on page 16-47
• “Implement a Systematic Encoder with Feedback Using Simulink” on page 16-48
• “Soft-Decision Decoding” on page 16-48
• “Tailbiting Encoding Using Feedback Encoders” on page 16-53
• “Selected Bibliography for Convolutional Coding” on page 16-54

Convolutional Code Features

Convolutional coding is a special case of error-control coding. Unlike a block coder, a convolutional
coder is not a memoryless device. Even though a convolutional coder accepts a fixed number of
message symbols and produces a fixed number of code symbols, its computations depend not only on
the current set of input symbols but on some of the previous input symbols.

Communications Toolbox provides convolutional coding capabilities as Simulink blocks, System
objects, and MATLAB functions. This product supports feedforward and feedback convolutional codes
that can be described by a trellis structure or a set of generator polynomials. It uses the Viterbi
algorithm to implement hard-decision and soft-decision decoding.

The product also includes an a posteriori probability decoder, which can be used for soft output
decoding of convolutional codes.

For background information about convolutional coding, see the works listed in Selected Bibliography
for Convolutional Coding on page 16-54.

Block Parameters for Convolutional Coding

To process convolutional codes, use the Convolutional Encoder, Viterbi Decoder, and/or APP Decoder
blocks in the Convolutional sublibrary. If a mask parameter is required in both the encoder and the
decoder, use the same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two different representations
of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and modulo-2 adders, you can
compute the code generator polynomial matrix and subsequently use the poly2trellis function
(in Communications Toolbox) to generate the corresponding trellis structure mask parameter

16 System Design

16-30

automatically. For an example, see “Design a Rate 2/3 Feedforward Encoder Using Simulink” on
page 16-45.

• If you design your encoder using a trellis diagram, you can construct the trellis structure in
MATLAB and use it as the mask parameter.

For more information about these representations, see Polynomial Description of a Convolutional
Code on page 16-31 and Trellis Description of a Convolutional Code on page 16-34.

Using the Polynomial Description in Blocks

To use the polynomial description with the Convolutional Encoder, Viterbi Decoder, or APP Decoder
blocks, use the utility function poly2trellis from Communications Toolbox. This function accepts a
polynomial description and converts it into a trellis description. For example, the following command
computes the trellis description of an encoder whose constraint length is 5 and whose generator
polynomials are 35 and 31:

trellis = poly2trellis(5,[35 31]);

To use this encoder with one of the convolutional-coding blocks, simply place a poly2trellis
command such as

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

Polynomial Description of a Convolutional Code

A polynomial description of a convolutional encoder describes the connections among shift registers
and modulo 2 adders. For example, the figure below depicts a feedforward convolutional encoder that
has one input, two outputs, and two shift registers.

A polynomial description of a convolutional encoder has either two or three components, depending
on whether the encoder is a feedforward or feedback type:

• Constraint lengths on page 16-31
• Generator polynomials on page 16-32
• Feedback connection polynomials on page 16-32 (for feedback encoders only)

Constraint Lengths

The constraint lengths of the encoder form a vector whose length is the number of inputs in the
encoder diagram. The elements of this vector indicate the number of bits stored in each shift register,
including the current input bits.

 Error Detection and Correction

16-31

In the figure above, the constraint length is three. It is a scalar because the encoder has one input
stream, and its value is one plus the number of shift registers for that input.

Generator Polynomials

If the encoder diagram has k inputs and n outputs, the code generator matrix is a k-by-n matrix. The
element in the ith row and jth column indicates how the ith input contributes to the jth output.

For systematic bits of a systematic feedback encoder, match the entry in the code generator matrix
with the corresponding element of the feedback connection vector. See “Feedback Connection
Polynomials” on page 16-32 below for details.

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where a connection line from
the shift register feeds into the adder, and a 0 elsewhere. The leftmost spot in the binary number
represents the current input, while the rightmost spot represents the oldest input that still
remains in the shift register.

2 Convert this binary representation into an octal representation by considering consecutive
triplets of bits, starting from the rightmost bit. The rightmost bit in each triplet is the least
significant. If the number of bits is not a multiple of three, place zero bits at the left end as
necessary. (For example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower adders in the figure above
are 110 and 111, respectively. These binary numbers are equivalent to the octal numbers 6 and 7,
respectively, so the generator polynomial matrix is [6 7].

Note You can perform the binary-to-octal conversion in MATLAB by using code like
str2num(dec2base(bin2dec('110'),8)).

For a table of some good convolutional code generators, refer to [2] in the section “Selected
Bibliography for Block Coding” on page 16-29, especially that book's appendices.

Feedback Connection Polynomials

If you are representing a feedback encoder, you need a vector of feedback connection polynomials.
The length of this vector is the number of inputs in the encoder diagram. The elements of this vector
indicate the feedback connection for each input, using an octal format. First build a binary number
representation as in step 1 above. Then convert the binary representation into an octal
representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, the code generator and feedback
connection parameters corresponding to the systematic bits must have the same values.

Use Trellis Structure for Rate 1/2 Feedback Convolutional Encoder

Create a trellis structure to represent the rate 1/2 systematic convolutional encoder with feedback
shown in this diagram.

16 System Design

16-32

This encoder has 5 for its constraint length, [37 33] as its generator polynomial matrix, and 37 for its
feedback connection polynomial.

The first generator polynomial is octal 37. The second generator polynomial is octal 33. The feedback
polynomial is octal 37. The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits.

The binary vector [1 1 1 1 1] represents octal 37 and corresponds to the upper row of binary digits in
the diagram. The binary vector [1 1 0 1 1] represents octal 33 and corresponds to the lower row of
binary digits in the diagram. These binary digits indicate connections from the outputs of the
registers to the two adders in the diagram. The initial 1 corresponds to the input bit.

Convert the polynomial to a trellis structure by using the poly2trellis function. When used with a
feedback polynomial, poly2trellis makes a feedback connection to the input of the trellis.

trellis = poly2trellis(5,[37 33],37)

trellis = struct with fields:
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 16
 nextStates: [16x2 double]
 outputs: [16x2 double]

Generate random binary data. Convolutionally encode the data by using the specified trellis
structure. Decode the coded data by using the Viterbi algorithm with the specified trellis structure,
34 for its traceback depth, truncated operation mode, and hard decisions.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
tbdepth = 34; % Traceback depth for Viterbi decoder
decodedData = vitdec(codedData,trellis,tbdepth,'trunc','hard');

Verify the decoded data has zero bit errors.

biterr(data,decodedData)

ans = 0

Using the Polynomial Description in MATLAB

To use the polynomial description with the functions convenc and vitdec, first convert it into a
trellis description using the poly2trellis function. For example, the command below computes the
trellis description of the encoder pictured in the section Polynomial Description of a Convolutional
Code on page 16-31.

 Error Detection and Correction

16-33

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc and vitdec.

Trellis Description of a Convolutional Code

A trellis description of a convolutional encoder shows how each possible input to the encoder
influences both the output and the state transitions of the encoder. This section describes trellises,
and how to represent on page 16-34 trellises in MATLAB, and gives an example of a MATLAB trellis
on page 16-36.

The figure below depicts a trellis for the convolutional encoder from the previous section. The
encoder has four states (numbered in binary from 00 to 11), a one-bit input, and a two-bit output.
(The ratio of input bits to output bits makes this encoder a rate-1/2 encoder.) Each solid arrow shows
how the encoder changes its state if the current input is zero, and each dashed arrow shows how the
encoder changes its state if the current input is one. The octal numbers above each arrow indicate
the current output of the encoder.

As an example of interpreting this trellis diagram, if the encoder is in the 10 state and receives an
input of zero, it outputs the code symbol 3 and changes to the 01 state. If it is in the 10 state and
receives an input of one, it outputs the code symbol 0 and changes to the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent to some trellis
description, although some trellises have no corresponding polynomial descriptions.

Specifying a Trellis in MATLAB

To specify a trellis in MATLAB, use a specific form of a MATLAB structure called a trellis structure. A
trellis structure must have five fields, as in the table below.

16 System Design

16-34

Fields of a Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning
numInputSymbols Scalar Number of input symbols to the

encoder: 2k

numOutputsymbols Scalar Number of output symbols from
the encoder: 2n

numStates Scalar Number of states in the encoder
nextStates numStates-by-2k matrix Next states for all combinations

of current state and current
input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current state
and current input

Note While your trellis structure can have any name, its fields must have the exact names as in the
table. Field names are case sensitive.

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The element in the
ith row and jth column denotes the next state when the starting state is i-1 and the input bits have
decimal representation j-1. To convert the input bits to a decimal value, use the first input bit as the
most significant bit (MSB). For example, the second column of the nextStates matrix stores the
next states when the current set of input values is {0,...,0,1}. To learn how to assign numbers to
states, see the reference page for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes the encoder's output when
the starting state is i-1 and the input bits have decimal representation j-1. To convert to decimal
value, use the first output bit as the MSB.

How to Create a MATLAB Trellis Structure

Once you know what information you want to put into each field, you can create a trellis structure in
any of these ways:

• Define each of the five fields individually, using structurename.fieldname notation. For
example, set the first field of a structure called s using the command below. Use additional
commands to define the other fields.

s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.
• Collect all field names and their values in a single struct command. For example:

s = struct('numInputSymbols',2,'numOutputSymbols',2,...
 'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the poly2trellis function to convert
it to a valid trellis structure. For more information , see Polynomial Description of a Convolutional
Code on page 16-31.

To check whether your structure is a valid trellis structure, use the istrellis function.

 Error Detection and Correction

16-35

Example: A MATLAB Trellis Structure

Consider the trellis shown below.

To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types of input path: the solid
arrow and the dashed arrow. The number of output symbols is 4 because the numbers above the
arrows can be either 0, 1, 2, or 3. The number of states is 4 because there are four bullets on the left
side of the trellis diagram (equivalently, four on the right side). To compute the matrix of next states,
create a matrix whose rows correspond to the four current states on the left side of the trellis, whose
columns correspond to the inputs of 0 and 1, and whose elements give the next states at the end of
the arrows on the right side of the trellis. To compute the matrix of outputs, create a matrix whose
rows and columns are as in the next states matrix, but whose elements give the octal outputs shown
above the arrows in the trellis.

Create and Decode Convolutional Codes

The functions for encoding and decoding convolutional codes are convenc and vitdec. This section
discusses using these functions to create and decode convolutional codes.

Encoding

A simple way to use convenc to create a convolutional code is shown in the commands below.

% Define a trellis.
t = poly2trellis([4 3],[4 5 17;7 4 2]);
% Encode a vector of ones.
x = ones(100,1);
code = convenc(x,t);

The first command converts a polynomial description of a feedforward convolutional encoder to the
corresponding trellis description. The second command encodes 100 bits, or 50 two-bit symbols.
Because the code rate in this example is 2/3, the output vector code contains 150 bits (that is, 100
input bits times 3/2).

16 System Design

16-36

To check whether your trellis corresponds to a catastrophic convolutional code, use the
iscatastrophic function.

Hard-Decision Decoding

To decode using hard decisions, use the vitdec function with the flag 'hard' and with binary input
data. Because the output of convenc is binary, hard-decision decoding can use the output of
convenc directly, without additional processing. This example extends the previous example and
implements hard-decision decoding.

Define a trellis.

t = poly2trellis([4 3],[4 5 17;7 4 2]);
Encode a vector of ones.

code = convenc(ones(100,1),t);
Set the traceback length for decoding and decode using vitdec.

tb = 2;
decoded = vitdec(code,t,tb,'trunc','hard');
Verify that the decoded data is a vector of 100 ones.

isequal(decoded,ones(100,1))

ans = logical
 1

Soft-Decision Decoding

To decode using soft decisions, use the vitdec function with the flag 'soft'. Specify the number,
nsdec, of soft-decision bits and use input data consisting of integers between 0 and 2^nsdec-1.

An input of 0 represents the most confident 0, while an input of 2^nsdec-1 represents the most
confident 1. Other values represent less confident decisions. For example, the table below lists
interpretations of values for 3-bit soft decisions.

Input Values for 3-bit Soft Decisions

Input Value Interpretation
0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Implement Soft-Decision Decoding Using MATLAB

The script below illustrates decoding with 3-bit soft decisions. First it creates a convolutional code
with convenc and adds white Gaussian noise to the code with awgn. Then, to prepare for soft-

 Error Detection and Correction

16-37

decision decoding, the example uses quantiz to map the noisy data values to appropriate decision-
value integers between 0 and 7. The second argument in quantiz is a partition vector that
determines which data values map to 0, 1, 2, etc. The partition is chosen so that values near 0 map to
0, and values near 1 map to 7. (You can refine the partition to obtain better decoding performance if
your application requires it.) Finally, the example decodes the code and computes the bit error rate.
When comparing the decoded data with the original message, the example must take the decoding
delay into account. The continuous operation mode of vitdec causes a delay equal to the traceback
length, so msg(1) corresponds to decoded(tblen+1) rather than to decoded(1).

s = RandStream.create('mt19937ar', 'seed',94384);
prevStream = RandStream.setGlobalStream(s);
msg = randi([0 1],4000,1); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
% Create a ConvolutionalEncoder System object
hConvEnc = comm.ConvolutionalEncoder(t);
% Create an AWGNChannel System object.
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SNR', 6);
% Create a ViterbiDecoder System object
hVitDec = comm.ViterbiDecoder(t, 'InputFormat', 'Soft', ...
 'SoftInputWordLength', 3, 'TracebackDepth', 48, ...
 'TerminationMethod', 'Continuous');
% Create a ErrorRate Calculator System object. Account for the receive
% delay caused by the traceback length of the viterbi decoder.
hErrorCalc = comm.ErrorRate('ReceiveDelay', 48);
ber = zeros(3,1); % Store BER values
code = step(hConvEnc,msg); % Encode the data.
hChan.SignalPower = (code'*code)/length(code);
ncode = step(hChan,code); % Add noise.

% Quantize to prepare for soft-decision decoding.
qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length
decoded = step(hVitDec,qcode); % Decode.

% Compute bit error rate.
ber = step(hErrorCalc, msg, decoded);
ratio = ber(1)
number = ber(2)
RandStream.setGlobalStream(prevStream);

The output is below.

number =

 5

ratio =

 0.0013

Implement Soft-Decision Decoding Using Simulink

This example creates a rate 1/2 convolutional code using the model described in Overview of the
Simulation on page 16-49. It uses a quantizer and the Viterbi Decoder block to perform soft-decision
decoding.

16 System Design

16-38

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

The encoder's constraint length is a scalar since the encoder has one input. The value of the
constraint length is the number of bits stored in the shift register, including the current input. There
are six memory registers, and the current input is one bit. Thus the constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input and two
outputs. The first element in the matrix indicates which input values contribute to the first output,
and the second element in the matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the rightmost and the
four leftmost elements in the diagram's array of input values. The seven-digit binary number 1111001
captures this information, and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of bits uses the leftmost bit as
the most significant bit. The second output corresponds to the binary number 1011011, which is
equivalent to the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block which code to
use when processing data. In this case, the poly2trellis function, in Communications Toolbox,
converts the constraint length and the pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream, the encoded
data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex numbers that
are close to -1 and 1. In order to reconstruct the original binary message, the receiver part of the
model must decode the convolutional code. The Viterbi Decoder block in this model expects its input
data to be integers between 0 and 7. The demodulator, a custom subsystem in this model, transforms
the received data into a format that the Viterbi Decoder block can interpret properly. More
specifically, the demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary part. It is reasonable
to assume that the imaginary part of the received data does not contain essential information,
because the imaginary part of the transmitted data is zero (ignoring small roundoff errors) and
because the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the noise estimate and then
multiplying by -1.

 Error Detection and Correction

16-39

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block's decision mapping reverses the
BPSK modulation that the BPSK Modulator Baseband block performs on the transmitting side of this
model. To examine the demodulator subsystem in more detail, double-click the icon labeled Soft-
Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values, the Viterbi
Decoder block decodes it. The block uses a soft-decision algorithm with 23 different input values
because the Decision type parameter is Soft Decision and the Number of soft decision bits
parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block requires
input values between 0 and 2b-1, where b is the Number of soft decision bits parameter. The block
interprets 0 as the most confident decision that the codeword bit is a 0 and interprets 2b-1 as the
most confident decision that the codeword bit is a 1. The values in between these extremes represent
less confident decisions. The following table lists the interpretations of the eight possible input values
for this example.

Decision Value Interpretation
0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Traceback and Decoding Delay

The traceback depth influences the decoding delay. The decoding delay is the number of zero symbols
that precede the first decoded symbol in the output.

• For the continuous operating mode, the decoding delay is equal to the number of traceback depth
symbols.

• For the truncated or terminated operating mode, the decoding delay is zero. In this case, the
traceback depth must be less than or equal to the number of symbols in each input.

Traceback Depth Estimate

As a general estimate, a typical traceback depth value is approximately two to three times
(ConstraintLength – 1) / (1 – coderate). The constraint length of the code, ConstraintLength, is equal
to (log2(trellis.numStates) + 1). The coderate is equal to (K / N) × (length(PuncturePattern) /
sum(PuncturePattern).

16 System Design

16-40

K is the number of input symbols, N is the number of output symbols, and PuncturePattern is the
puncture pattern vector.

For example, applying this general estimate, results in these approximate traceback depths.

• A rate 1/2 code has a traceback depth of 5(ConstraintLength – 1).
• A rate 2/3 code has a traceback depth of 7.5(ConstraintLength – 1).
• A rate 3/4 code has a traceback depth of 10(ConstraintLength – 1).
• A rate 5/6 code has a traceback depth of 15(ConstraintLength – 1).

The Traceback depth parameter in the Viterbi Decoder block represents the length of the decoding
delay. Some hardware implementations offer options of 48 and 96. This example chooses 48 because
that is closer to the estimated target for a rate ½ code with a constraint length of 7.

Delay in Received Data

The Receive delay parameter of the Error Rate Calculation block is nonzero because a given
message bit and its corresponding recovered bit are separated in time by a nonzero amount of
simulation time. The Receive delay parameter tells the block which elements of its input signals to
compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (48).

Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the bit error rate that
would theoretically result from unquantized decoding. The process includes these steps

• Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional code in this model,
you can use this estimate based on unquantized-decision decoding:

Pb < ∑
d = f

∞
cdPd

In this estimate, cd is the sum of bit errors for error events of distance d, and f is the free distance
of the code. The quantity Pd is the pairwise error probability, given by

Pd = 1
2erfc dR

Eb
N0

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function, defined
by

erfc(x) = 2
π∫x

∞
e−t2dt

Values for the coefficients cd and the free distance f are in published articles such as
"Convolutional Codes with Optimum Distance Spectrum" [3]. The free distance for this code is
f = 10.

 Error Detection and Correction

16-41

The following commands calculate the values of Pb for Eb/N0 values in the range from 1 to 4, in
increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...
 3322763 0 21292910 0 134365911 0 843425871 0];
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29
 P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

• Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the simulation
from the MATLAB command line. For example, the following code calculates the bit error rate at
bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of 0.5 dB. It collects all bit
error rates from these simulations in the matrix BERVec. It also plots the bit error rates in a figure
window along with the theoretical bounds computed in the preceding code fragment.

This example simulates a rate 1/2 convolutional code using the model described in Overview of the
Simulation on page 16-49. In the code sample below, the model name doc_softdecision
represents the model described in Overview of the Simulation on page 16-49.

% Plot theoretical bounds and set up figure.
figure;
semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');
xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');
title('Bit Error Rate (BER)');
l = legend('Theoretical bound on BER','Actual BER');
l.AutoUpdate = 'off';
axis([1 4 1e-5 1]);
hold on;

BERVec = [];
% Make the noise level variable.
set_param('doc_softdecision/AWGN Channel',...
 'EsNodB','EbNodB+10*log10(1/2)');
% Simulate multiple times.
for n = 1:length(EbNoVec)
 EbNodB = EbNoVec(n);
 sim('doc_softdecision',5000000);
 BERVec(n,:) = BER_Data;
 semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.
 drawnow;
end
hold off;

16 System Design

16-42

Note The estimate for Pb assumes that the decoder uses unquantized data, that is, an infinitely
fine quantization. By contrast, the simulation in this example uses 8-level (3-bit) quantization.
Because of this quantization, the simulated bit error rate is not quite as low as the bound when
the signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual BER
points might vary because the simulation involves random numbers.

Design a Rate-2/3 Feedforward Encoder Using MATLAB

The example below uses the rate 2/3 feedforward encoder depicted in this schematic. The
accompanying description explains how to determine the trellis structure parameter from a
schematic of the encoder and then how to perform coding using this encoder.

 Error Detection and Correction

16-43

Determining Coding Parameters

The convenc and vitdec functions can implement this code if their parameters have the
appropriate values.

The encoder's constraint length is a vector of length 2 because the encoder has two inputs. The
elements of this vector indicate the number of bits stored in each shift register, including the current
input bits. Counting memory spaces in each shift register in the diagram and adding one for the
current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the element in
the ith row and jth column to indicate how the ith input contributes to the jth output. For example, to
compute the element in the second row and third column, the leftmost and two rightmost elements in
the second shift register of the diagram feed into the sum that forms the third output. Capture this
information as the binary number 1011, which is equivalent to the octal number 13. The full value of
the code generator matrix is [23 35 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc and vitdec functions,
use the poly2trellis function to convert those parameters into a trellis structure. The command to
do this is below.

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Define trellis.

Using the Encoder

Below is a script that uses this encoder.

len = 1000;

msg = randi([0 1],2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Trellis
% Create a ConvolutionalEncoder System object
hConvEnc = comm.ConvolutionalEncoder(trel);
% Create a ViterbiDecoder System object
hVitDec = comm.ViterbiDecoder(trel, 'InputFormat', 'hard', ...
 'TracebackDepth', 34, 'TerminationMethod', 'Continuous');
% Create a ErrorRate Calculator System object. Since each symbol represents

16 System Design

16-44

% two bits, the receive delay for this object is twice the traceback length
% of the viterbi decoder.
hErrorCalc = comm.ErrorRate('ReceiveDelay', 68);
ber = zeros(3,1); % Store BER values
code = step(hConvEnc,msg); % Encode the message.
ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = step(hVitDec, ncode); % Decode.
ber = step(hErrorCalc, msg, decoded);

convenc accepts a vector containing 2-bit symbols and produces a vector containing 3-bit symbols,
while vitdec does the opposite. Also notice that biterr ignores the first 68 elements of decoded.
That is, the decoding delay is 68, which is the number of bits per symbol (2) of the recovered message
times the traceback depth value (34) in the vitdec function. The first 68 elements of decoded are
0s, while subsequent elements represent the decoded messages.

Design a Rate 2/3 Feedforward Encoder Using Simulink

This example uses the rate 2/3 feedforward convolutional encoder depicted in the following figure.
The description explains how to determine the coding blocks' parameters from a schematic of a rate
2/3 feedforward encoder. This example also illustrates the use of the Error Rate Calculation block
with a receive delay.

How to Determine Coding Parameters

The Convolutional Encoder and Viterbi Decoder blocks can implement this code if their parameters
have the appropriate values.

The encoder's constraint length is a vector of length 2 since the encoder has two inputs. The
elements of this vector indicate the number of bits stored in each shift register, including the current
input bits. Counting memory spaces in each shift register in the diagram and adding one for the
current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the element in
the ith row and jth column to indicate how the ith input contributes to the jth output. For example, to
compute the element in the second row and third column, notice that the leftmost and two rightmost
elements in the second shift register of the diagram feed into the sum that forms the third output.

 Error Detection and Correction

16-45

Capture this information as the binary number 1011, which is equivalent to the octal number 13. The
full value of the code generator matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the Convolutional Encoder and Viterbi
Decoder blocks, use the poly2trellis function to convert those parameters into a trellis structure.
How to Simulate the Encoder

The following model simulates this encoder.

To build the model, gather and configure these blocks:

• Bernoulli Binary Generator, with these updates to parameter settings:

• Set Probability of a zero to .5.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Set Sample time to .5.
• Check the Frame-based outputs check box.
• Set Samples per frame to 2.

• Convolutional Encoder, with these updates to parameter settings:

• Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
• Binary Symmetric Channel, in the Channels library

• Set Error probability to 0.02.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Clear the Output error vector check box.

• Viterbi Decoder, with these updates to parameter settings:

• Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
• Set Decision type to Hard decision.

• Error Rate Calculation, with these updates to parameter settings:

• Set Receive delay to 68.
• Set Output data to Port.
• Check the Stop simulation check box.
• Set Target number of errors to 100.

• Display

• Drag the bottom edge of the icon to make the display big enough for three entries.

Connect the blocks as shown in the preceding figure. On the Simulation tab, in the Simulate
section, set Stop time to inf. The Simulate section appears on multiple tabs.

16 System Design

16-46

Notes on the Model

You can display the matrix size of signals in your model. On the Debug tab, expand Information
Overlays. In the Signals section, select Signal Dimensions.

The encoder accepts a 2-by-1 column vector and produces a 3-by-1 column vector, while the decoder
does the opposite. The Samples per frame parameter in the Bernoulli Binary Generator block is 2
because the block must generate a message word of length 2.

The Receive delay parameter in the Error Rate Calculation block is 68, which is the vector length (2)
of the recovered message times the Traceback depth value (34) in the Viterbi Decoder block. If you
examine the transmitted and received signals as matrices in the MATLAB workspace, you see that the
first 34 rows of the recovered message consist of zeros, while subsequent rows are the decoded
messages. Thus the delay in the received signal is 34 vectors of length 2, or 68 samples.

Running the model produces display output consisting of three numbers: the error rate, the total
number of errors, and the total number of comparisons that the Error Rate Calculation block makes
during the simulation. (The first two numbers vary depending on your Initial seed values in the
Bernoulli Binary Generator and Binary Symmetric Channel blocks.) The simulation stops after 100
errors occur, because Target number of errors is set to 100 in the Error Rate Calculation block.
The error rate is much less than 0.02, the Error probability in the Binary Symmetric Channel block.

Puncture a Convolutional Code Using MATLAB

This example processes a punctured convolutional code. It begins by generating 30,000 random bits
and encoding them using a rate-3/4 convolutional encoder with a puncture pattern of [1 1 1 0 0 1].
The resulting vector contains 40,000 bits, which are mapped to values of -1 and 1 for transmission.
The punctured code, punctcode, passes through an additive white Gaussian noise channel. Then
vitdec decodes the noisy vector using the 'unquant' decision type.

Finally, the example computes the bit error rate and the number of bit errors.

len = 30000; msg = randi([0 1], len, 1); % Random data
t = poly2trellis(7, [133 171]); % Define trellis.
% Create a ConvolutionalEncoder System object
hConvEnc = comm.ConvolutionalEncoder(t, ...
 'PuncturePatternSource', 'Property', ...
 'PuncturePattern', [1;1;1;0;0;1]);
% Create an AWGNChannel System object.
hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
 'SNR', 3);
% Create a ViterbiDecoder System object
hVitDec = comm.ViterbiDecoder(t, 'InputFormat', 'Unquantized', ...
 'TracebackDepth', 96, 'TerminationMethod', 'Truncated', ...
 'PuncturePatternSource', 'Property', ...
 'PuncturePattern', [1;1;1;0;0;1]);
% Create a ErrorRate Calculator System object.
hErrorCalc = comm.ErrorRate;
berP = zeros(3,1); berPE = berP; % Store BER values
punctcode = step(hConvEnc,msg); % Length is (2*len)*2/3.
tcode = 1-2*punctcode; % Map "0" bit to 1 and "1" bit to -1
hChan.SignalPower = (tcode'*tcode)/length(tcode);
ncode = step(hChan,tcode); % Add noise.

% Decode the punctured code
decoded = step(hVitDec,ncode); % Decode.

 Error Detection and Correction

16-47

berP = step(hErrorCalc, msg, decoded);% Bit error rate
% Erase the least reliable 100 symbols, then decode
release(hVitDec); reset(hErrorCalc)
hVitDec.ErasuresInputPort = true;
[dummy idx] = sort(abs(ncode));
erasures = zeros(size(ncode)); erasures(idx(1:100)) = 1;
decoded = step(hVitDec,ncode, erasures); % Decode.
berPE = step(hErrorCalc, msg, decoded);% Bit error rate

fprintf('Number of errors with puncturing: %d\n', berP(2))
fprintf('Number of errors with puncturing and erasures: %d\n', berPE(2))

Implement a Systematic Encoder with Feedback Using Simulink

This section explains how to use the Convolutional Encoder block to implement a systematic encoder
with feedback. A code is systematic if the actual message words appear as part of the codewords. The
following diagram shows an example of a systematic encoder.

To implement this encoder, set the Trellis structure parameter in the Convolutional Encoder block
to poly2trellis(5, [37 33], 37). This setting corresponds to

• Constraint length: 5
• Generator polynomial pair: [37 33]
• Feedback polynomial: 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1], corresponding to the upper
row of binary digits. These digits indicate connections from the outputs of the registers to the adder.
The initial 1 corresponds to the input bit. The octal representation of the binary number 11111 is 37.

To implement a systematic code, set the first generator polynomial to be the same as the feedback
polynomial in the Trellis structure parameter of the Convolutional Encoder block. In this example,
both polynomials have the octal representation 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1], corresponding to the
lower row of binary digits. The octal number corresponding to the binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional Encoder block, see
Polynomial Description of a Convolutional Code on page 16-31.

Soft-Decision Decoding

16 System Design

16-48

This example creates a rate 1/2 convolutional code. It uses a quantizer and the Viterbi Decoder block
to perform soft-decision decoding. This description covers these topics:

• “Overview of the Simulation” on page 16-49
• “Defining the Convolutional Code” on page 16-49
• “Mapping the Received Data” on page 16-50
• “Decoding the Convolutional Code” on page 16-51
• “Delay in Received Data” on page 16-51
• “Comparing Simulation Results with Theoretical Results” on page 16-51

Overview of the Simulation

The simulation creates a random binary message signal, encodes the message into a convolutional
code, modulates the code using the binary phase shift keying (BPSK) technique, and adds white
Gaussian noise to the modulated data in order to simulate a noisy channel. Then, the simulation
prepares the received data for the decoding block and decodes. Finally, the simulation compares the
decoded information with the original message signal in order to compute the bit error rate. The
Convolutional encoder is configured as a rate 1/2 encoder. For every 2 bits, the encoder adds another
2 redundant bits. To accommodate this, and add the correct amount of noise, the Eb/No (dB)
parameter of the AWGN block is in effect halved by subtracting 10*log10(2). The simulation ends
after processing 100 bit errors or 107 message bits, whichever comes first.

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

 Error Detection and Correction

16-49

The encoder's constraint length is a scalar since the encoder has one input. The value of the
constraint length is the number of bits stored in the shift register, including the current input. There
are six memory registers, and the current input is one bit. Thus the constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input and two
outputs. The first element in the matrix indicates which input values contribute to the first output,
and the second element in the matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the rightmost and the
four leftmost elements in the diagram's array of input values. The seven-digit binary number 1111001
captures this information, and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of bits uses the leftmost bit as
the most significant bit. The second output corresponds to the binary number 1011011, which is
equivalent to the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block which code to
use when processing data. In this case, the poly2trellis function, in Communications Toolbox,
converts the constraint length and the pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream, the encoded
data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex numbers that
are close to -1 and 1. In order to reconstruct the original binary message, the receiver part of the
model must decode the convolutional code. The Viterbi Decoder block in this model expects its input
data to be integers between 0 and 7. The demodulator, a custom subsystem in this model, transforms
the received data into a format that the Viterbi Decoder block can interpret properly. More
specifically, the demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary part. It is reasonable
to assume that the imaginary part of the received data does not contain essential information,
because the imaginary part of the transmitted data is zero (ignoring small roundoff errors) and
because the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the noise estimate and then
multiplying by -1.

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block's decision mapping reverses the
BPSK modulation that the BPSK Modulator Baseband block performs on the transmitting side of this

16 System Design

16-50

model. To examine the demodulator subsystem in more detail, double-click the icon labeled Soft-
Output BPSK Demodulator.
Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values, the Viterbi
Decoder block decodes it. The block uses a soft-decision algorithm with 23 different input values
because the Decision type parameter is Soft Decision and the Number of soft decision bits
parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block requires
input values between 0 and 2b-1, where b is the Number of soft decision bits parameter. The block
interprets 0 as the most confident decision that the codeword bit is a 0 and interprets 2b-1 as the
most confident decision that the codeword bit is a 1. The values in between these extremes represent
less confident decisions. The following table lists the interpretations of the eight possible input values
for this example.

Decision Value Interpretation
0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents the length of the decoding
delay. Typical values for a traceback depth are about five or six times the constraint length, which
would be 35 or 42 in this example. However, some hardware implementations offer options of 48 and
96. This example chooses 48 because that is closer to the targets (35 and 42) than 96 is.
Delay in Received Data

The Receive delay parameter of the Error Rate Calculation block is nonzero because a given
message bit and its corresponding recovered bit are separated in time by a nonzero amount of
simulation time. The Receive delay parameter tells the block which elements of its input signals to
compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (48).
Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the bit error rate that
would theoretically result from unquantized decoding. The process includes a few steps, described in
these sections:

Computing Theoretical Bounds for the Bit Error Rate

 Error Detection and Correction

16-51

To calculate theoretical bounds for the bit error rate Pb of the convolutional code in this model, you
can use this estimate based on unquantized-decision decoding:

Pb < ∑
d = f

∞
cdPd

In this estimate, cd is the sum of bit errors for error events of distance d, and f is the free distance of
the code. The quantity Pd is the pairwise error probability, given by

Pd = 1
2erfc dR

Eb
N0

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function, defined by

erfc(x) = 2
π∫x

∞
e−t2dt

Values for the coefficients cd and the free distance f are in published articles such as "Convolutional
Codes with Optimum Distance Spectrum" [3]. The free distance for this code is f = 10.

The following commands calculate the values of Pb for Eb/N0 values in the range from 1 to 4, in
increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...
 3322763 0 21292910 0 134365911 0 843425871 0];
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29
 P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the simulation
from the MATLAB command line. For example, the following code calculates the bit error rate at bit
energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of 0.5 dB. It collects all bit error rates
from these simulations in the matrix BERVec. It also plots the bit error rates in a figure window along
with the theoretical bounds computed in the preceding code fragment.

In the code sample below, the model name doc_softdecision represents the model described in
Overview of the Simulation on page 16-49.

Note The estimate for Pb assumes that the decoder uses unquantized data, that is, an infinitely fine
quantization. By contrast, the simulation in this example uses 8-level (3-bit) quantization. Because of

16 System Design

16-52

this quantization, the simulated bit error rate is not quite as low as the bound when the signal-to-
noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual BER points
might vary because the simulation involves random numbers.

Tailbiting Encoding Using Feedback Encoders

This example demonstrates Tailbiting encoding using feedback encoders. For feedback encoders, the
ending state depends on the entire block of data. To accomplish tailbiting, you must calculate for a
given information vector (of N bits), the initial state, that leads to the same ending state after the
block of data is encoded.

This is achieved in two steps:

• The first step is to determine the zero-state response for a given block of data. The encoder starts
in the all-zeros state. The whole block of data is input and the output bits are ignored. After N bits,
the encoder is in a state XN [zs]. From this state, we calculate the corresponding initial state X0 and
initialize the encoder with X0.

• The second step is the actual encoding. The encoder starts with the initial state X0, the data block
is input and a valid codeword is output which conforms to the same state boundary condition.

Refer to [8] for a theoretical calculation of the initial state X0 from XN [zs] using state-space
formulation. This is a one-time calculation which depends on the block length and in practice could be
implemented as a look-up table. Here we determine this mapping table by simulating all possible
entries for a chosen trellis and block length.

 Error Detection and Correction

16-53

Assemble blocks to build the model. In the code sample below, the model name
doc_mtailbiting_wfeedback represents the model described in the figure.

function mapStValues = getMapping(blkLen, trellis)
% The function returns the mapping value for the given block
length and trellis to be used for determining the initial
state from the zero-state response.

% All possible combinations of the mappings
mapStValuesTab = perms(0:trellis.numStates-1);

% Loop over all the combinations of the mapping entries:
for i = 1:length(mapStValuesTab)
mapStValues = mapStValuesTab(i,:);

% Model parameterized for the Block length
sim('mtailbiting_wfeedback');

% Check the boundary condition for each run
% if ending and starting states match, choose that mapping set
if unique(out)==0
 return
 end
end

Selecting the returned mapStValues for the Table data parameter of the Direct Lookup Table
(n-D) block in the Lookup subsystem will perform tailbiting encoding for the chosen block length
and trellis.

Selected Bibliography for Convolutional Coding

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital Communications, New
York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data Communications Principles,
New York, Plenum Press, 1992.

[3] Frenger, P., P. Orten, and T. Ottosson. “Convolutional Codes with Optimum Distance Spectrum.”
IEEE Communications Letters 3, no. 11 (November 1999): 317–19. https://doi.org/
10.1109/4234.803468.

Linear Block Codes
• “Represent Words for Linear Block Codes” on page 16-55

16 System Design

16-54

• “Configure Parameters for Linear Block Codes” on page 16-57
• “Create and Decode Linear Block Codes” on page 16-60

Represent Words for Linear Block Codes

The cyclic, Hamming, and generic linear block code functionality in this product offers you multiple
ways to organize bits in messages or codewords. These topics explain the available formats:

• “Use MATLAB to Create Messages and Codewords in Binary Vector Format” on page 16-55
• “Use MATLAB to Create Messages and Codewords in Binary Matrix Format” on page 16-56
• “Use MATLAB to Create Messages and Codewords in Decimal Vector Format” on page 16-56

To learn how to represent words for BCH or Reed-Solomon codes, see “Represent Words for BCH
Codes” on page 16-68 or “Represent Words for Reed-Solomon Codes” on page 16-73.
Use MATLAB to Create Messages and Codewords in Binary Vector Format

Your messages and codewords can take the form of vectors containing 0s and 1s. For example,
messages and codes might look like msg and code in the lines below.

n = 6; k = 4; % Set codeword length and message length
% for a [6,4] code.
msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.
code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'
code'

The output is below.

ans =

 Columns 1 through 5

 1 0 0 1 1

 Columns 6 through 10

 0 1 0 1 0

 Columns 11 through 12

 1 1

ans =

 Columns 1 through 5

 1 1 1 0 0

 Columns 6 through 10

 1 0 0 1 0

 Columns 11 through 15

 1 0 0 1 1

 Error Detection and Correction

16-55

 Columns 16 through 18

 0 1 1

In this example, msg consists of 12 entries, which are interpreted as three 4-digit (because k = 4)
messages. The resulting vector code comprises three 6-digit (because n = 6) codewords, which are
concatenated to form a vector of length 18. The parity bits are at the beginning of each codeword.

Use MATLAB to Create Messages and Codewords in Binary Matrix Format

You can organize coding information so as to emphasize the grouping of digits into messages and
codewords. If you use this approach, each message or codeword occupies a row in a binary matrix.
The example below illustrates this approach by listing each 4-bit message on a distinct row in msg
and each 6-bit codeword on a distinct row in code.

n = 6; k = 4; % Set codeword length and message length.
msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg
code

The output is below.

msg =

 1 0 0 1
 1 0 1 0
 1 0 1 1

code =

 1 1 1 0 0 1
 0 0 1 0 1 0
 0 1 1 0 1 1

Note In the binary matrix format, the message matrix must have k columns. The corresponding code
matrix has n columns. The parity bits are at the beginning of each row.

Use MATLAB to Create Messages and Codewords in Decimal Vector Format

Your messages and codewords can take the form of vectors containing integers. Each element of the
vector gives the decimal representation of the bits in one message or one codeword.

Note If 2^n or 2^k is very large, you should use the default binary format instead of the decimal
format. This is because the function uses a binary format internally, while the roundoff error
associated with converting many bits to large decimal numbers and back might be substantial.

Note When you use the decimal vector format, encode expects the leftmost bit to be the least
significant bit.

16 System Design

16-56

The syntax for the encode command must mention the decimal format explicitly, as in the example
below. Notice that /decimal is appended to the fourth argument in the encode command.

n = 6; k = 4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.
code = encode(msg,n,k,'cyclic/decimal')

The output is below.

code =

 39
 20
 54

Note The three examples above used cyclic coding. The formats for messages and codes are similar
for Hamming and generic linear block codes.

Configure Parameters for Linear Block Codes

This subsection describes the items that you might need in order to process [n,k] cyclic, Hamming,
and generic linear block codes. The table below lists the items and the coding techniques for which
they are most relevant.

Parameters Used in Block Coding Techniques

Parameter Block Coding Technique
“Generator Matrix” on page 16-57 Generic linear block
“Parity-Check Matrix” on page 16-57 Generic linear block
“Generator Polynomial” on page 16-59 Cyclic
“Use Decoding Table in MATLAB” on page 16-59 Generic linear block, Hamming

Generator Matrix

The process of encoding a message into an [n,k] linear block code is determined by a k-by-n
generator matrix G. Specifically, the 1-by-k message vector v is encoded into the 1-by-n codeword
vector vG. If G has the form [Ik P] or [P Ik], where P is some k-by-(n-k) matrix and Ik is the k-by-k
identity matrix, G is said to be in standard form. (Some authors, e.g., Clark and Cain [2], use the first
standard form, while others, e.g., Lin and Costello [3], use the second.) Most functions in this toolbox
assume that a generator matrix is in standard form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check Matrix” on page 16-57.

Parity-Check Matrix

Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix H. It satisfies GHtr = 0
(mod 2), where Htr denotes the matrix transpose of H, G is the code's generator matrix, and this zero
matrix is k-by-(n-k). If G = [Ik P] then H = [-Ptr In-k]. Most functions in this product assume that a
parity-check matrix is in standard form when you use it as an input argument.

The table below summarizes the standard forms of the generator and parity-check matrices for an
[n,k] binary linear block code.

 Error Detection and Correction

16-57

Type of Matrix Standard Form Dimensions
Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

Ik is the identity matrix of size k and the ' symbol indicates matrix transpose. (For binary codes, the
minus signs in the parity-check form listed above are irrelevant; that is, -1 = 1 in the binary field.)

Examples

In the command below, parmat is a parity-check matrix and genmat is a generator matrix for a
Hamming code in which [n,k] = [23-1, n-3] = [7,4]. genmat has the standard form [P Ik].

[parmat,genmat] = hammgen(3)
parmat =

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

genmat =

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic code. The cyclpoly
function is mentioned below in “Generator Polynomial” on page 16-59.

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)
parmat =

 1 0 0 0 1 1 0
 0 1 0 0 0 1 1
 0 0 1 0 1 1 1
 0 0 0 1 1 0 1

genmat =

 1 0 1 1 1 0 0
 1 1 1 0 0 1 0
 0 1 1 1 0 0 1

The example below converts a generator matrix for a [5,3] linear block code into the corresponding
parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];
parmat = gen2par(genmat)

parmat =

 1 1 0 1 0
 0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a generator matrix.

16 System Design

16-58

Generator Polynomial

Cyclic codes have algebraic properties that allow a polynomial to determine the coding process
completely. This so-called generator polynomial is a degree-(n-k) divisor of the polynomial xn-1. Van
Lint [5] explains how a generator polynomial determines a cyclic code.

The cyclpoly function produces generator polynomials for cyclic codes. cyclpoly represents a
generator polynomial using a row vector that lists the polynomial's coefficients in order of ascending
powers of the variable. For example, the command

genpoly = cyclpoly(7,3)

genpoly =

 1 0 1 1 1

finds that one valid generator polynomial for a [7,3] cyclic code is 1 + x2 + x3 + x4.

Use Decoding Table in MATLAB

A decoding table tells a decoder how to correct errors that might have corrupted the code during
transmission. Hamming codes can correct any single-symbol error in any codeword. Other codes can
correct, or partially correct, errors that corrupt more than one symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and 2^(n-k) rows. Each row
gives a correction vector for one received codeword vector. A Hamming decoding table has n+1 rows.
The syndtable function generates a decoding table for a given parity-check matrix.

This example uses a Hamming decoding table to correct an error in a received message. The
hammgen function produces the parity-check matrix and the syndtable function produces the
decoding table. To determine the syndrome, the transpose of the parity-check matrix is multiplied on
the left by the received codeword. The decoding table helps determine the correction vector. The
corrected codeword is the sum (modulo 2) of the correction vector and the received codeword.

Set parameters for a [7,4] Hamming code.

m = 3;
n = 2^m-1;
k = n-m;

Produce a parity-check matrix and decoding table.

parmat = hammgen(m);
trt = syndtable(parmat);

Specify a vector of received data.

recd = [1 0 0 1 1 1 1]

recd = 1×7

 1 0 0 1 1 1 1

Calculate the syndrome, and then display the decimal and binary value for the syndrome.

 Error Detection and Correction

16-59

syndrome = rem(recd * parmat',2);
syndrome_int = bit2int(syndrome',m); % Convert to decimal.
disp(['Syndrome = ',num2str(syndrome_int),...
 ' (decimal), ',num2str(syndrome),' (binary)'])

Syndrome = 3 (decimal), 0 1 1 (binary)

Determine the correction vector by using the decoding table and syndrome, and then compute the
corrected codeword by using the correction vector.

corrvect = trt(1+syndrome_int,:)

corrvect = 1×7

 0 0 0 0 1 0 0

correctedcode = rem(corrvect+recd,2)

correctedcode = 1×7

 1 0 0 1 0 1 1

Create and Decode Linear Block Codes

The functions for encoding and decoding cyclic, Hamming, and generic linear block codes are
encode and decode. This section discusses how to use these functions to create and decode generic
linear block on page 16-60 codes, cyclic on page 16-61 codes, and Hamming on page 16-62 codes.

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix. If you have
defined variables msg, n, k, and genmat, either of the commands

code = encode(msg,n,k,'linear',genmat);
code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix genmat determines.
The /decimal option, suitable when 2^n and 2^k are not very large, indicates that msg contains
nonnegative decimal integers rather than their binary representations. See “Represent Words for
Linear Block Codes” on page 16-55 or the reference page for encode for a description of the formats
of msg and code.

Decoding the code requires the generator matrix and possibly a decoding table. If you have defined
variables code, n, k, genmat, and possibly also trt, then the commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);
newmsg = decode(code,n,k,'linear',genmat,trt);
newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat determines.
decode also corrects errors according to instructions in the decoding table that trt represents.

Example: Generic Linear Block Coding

16 System Design

16-60

The example below encodes a message, artificially adds some noise, decodes the noisy code, and
keeps track of errors that the decoder detects along the way. Because the decoding table contains
only zeros, the decoder does not correct any errors.

n = 4; k = 2;
genmat = [[1 1; 1 0], eye(2)]; % Generator matrix
msg = [0 1; 0 0; 1 0]; % Three messages, two bits each
% Create three codewords, four bits each.
code = encode(msg,n,k,'linear',genmat);
noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2^(n-k),n); % No correction of errors
% Decode, keeping track of all detected errors.
[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your results might vary
because this example uses random numbers as errors.

err_words =

 1
 2

Cyclic Codes

A cyclic code is a linear block code with the property that cyclic shifts of a codeword (expressed as a
series of bits) are also codewords. An alternative characterization of cyclic codes is based on its
generator polynomial, as mentioned in “Generator Polynomial” on page 16-59 and discussed in [5].

Encoding a message using a cyclic code requires a generator polynomial. If you have defined
variables msg, n, k, and genpoly, then either of the commands

code = encode(msg,n,k,'cyclic',genpoly);
code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the generator polynomial
genpoly. genpoly is an optional argument for encode. The default generator polynomial is
cyclpoly(n,k). The /decimal option, suitable when 2^n and 2^k are not very large, indicates that
msg contains nonnegative decimal integers rather than their binary representations. See “Represent
Words for Linear Block Codes” on page 16-55 or the reference page for encode for a description of
the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding table. If you have
defined variables code, n, k, genpoly, and trt, then the commands

newmsg = decode(code,n,k,'cyclic',genpoly);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly);
newmsg = decode(code,n,k,'cyclic',genpoly,trt);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat determines.
decode also corrects errors according to instructions in the decoding table that trt represents.
genpoly is an optional argument in the first two syntaxes above. The default generator polynomial is
cyclpoly(n,k).

Example

 Error Detection and Correction

16-61

You can modify the example in “Generic Linear Block Codes” on page 16-60 so that it uses the cyclic
coding technique, instead of the linear block code with the generator matrix genmat. Make the
changes listed below:

• Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x^2

• In the fifth and ninth lines (encode and decode commands), replace genmat by genpoly and
replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference page for encode.

Hamming Codes

The reference pages for encode and decode contain examples of encoding and decoding Hamming
codes. Also, the section “Use Decoding Table in MATLAB” on page 16-59 illustrates error correction
in a Hamming code.

Hamming Codes
• “Create a Hamming Code in Binary Format Using Simulink” on page 16-62
• “Reduce the Error Rate Using a Hamming Code” on page 16-63

Create a Hamming Code in Binary Format Using Simulink

This example shows very simply how to use an encoder and decoder. It illustrates the appropriate
vector lengths of the code and message signals for the coding blocks. Because the Error Rate
Calculation block accepts only scalars or frame-based column vectors as the transmitted and received
signals, this example uses frame-based column vectors throughout. (It thus avoids having to change
signal attributes using a block such as Convert 1-D to 2-D.)

To build the model, gather and configure these blocks:

• Bernoulli Binary Generator, with these updates to parameter settings:

• Set Probability of a zero to .5.
• Set Initial seed to any positive integer scalar, preferably the output of the randn function.
• Check the Frame-based outputs check box.
• Set Samples per frame to 4.

• Hamming Encoder, with default parameter values
• Hamming Decoder, with default parameter values
• Error Rate Calculation, with default parameter values

16 System Design

16-62

Connect the blocks as in the preceding figure. You can display the vector length of signals in your
model. On the Debug tab, expand Information Overlays. In the Signals section, select Signal
Dimensions. After updating the diagram, if necessary, press Ctrl+D to compile the model and check
error statistics.

The connector lines show relevant signal attributes. The connector lines are double lines to indicate
frame-based signals, and the annotations next to the lines show that the signals are column vectors of
appropriate sizes.

Reduce the Error Rate Using a Hamming Code

This section describes how to reduce the error rate by adding an error-correcting code. This figure
shows model that uses a Hamming code.

Building the Hamming Code Model

Build the Hamming code model and save the model as my_hamming in the folder where you keep
your work. files by following these steps:

1 Open a new model window and expand the window area as desired to accommodate the model.
Type block names in the model window and add Bernoulli Binary GeneratorHamming Encoder,
Binary Symmetric Channel, Hamming Decoder, Error Rate Calculation, and Display blocks:

2 Arrange and connect the blocks to create a model that resemble this one.

Using the Hamming Encoder and Decoder Blocks

The Hamming Encoder block encodes the data before it is sent through the channel. The default code
is the [7,4] Hamming code, which encodes message words of length 4 into codewords of length 7. As
a result, the block converts frames of size 4 into frames of size 7. The code can correct one error in
each transmitted codeword.

For an [n,k] code, the input to the Hamming Encoder block must consist of vectors of size k. In this
example, k = 4.

The Hamming Decoder block decodes the data after it is sent through the channel. If at most one
error is created in a codeword by the channel, the block decodes the word correctly. However, if more
than one error occurs, the Hamming Decoder block might decode incorrectly.

 Error Detection and Correction

16-63

To learn more about block coding features, see Block Codes on page 16-17.

Setting Parameters in the Hamming Code Model

Double-click the Bernoulli Binary Generator block and make the following changes to the parameter
settings in the block's dialog box, as shown in the following figure:

1 Set Samples per frame to 4. This converts the output of the block into frames of size 4, in order
to meet the input requirement of the Hamming Encoder Block. See “Sample-Based and Frame-
Based Processing” on page 10-4 for more information about frames.

Note Many blocks, such as the Hamming Encoder block, require their input to be a vector of a
specific size. If you connect a source block, such as the Bernoulli Binary Generator block, to one
of these blocks, set Samples per frame to the required value. For this model the Samples per
frame parameter of the Bernoulli Binary Generator block must be a multiple of the Message
Length K parameter of the Hamming Encoder block.

Labeling the Display Block

You can change the label that appears below a block to make it more informative. For example, to
change the label below the Display block to 'Error Rate Display', first select the label with the
mouse. This causes a box to appear around the text. Enter the changes to the text in the box.

Running the Hamming Code Model

To run the model, select Simulation > Run. The model terminates after 100 errors occur. The error
rate, displayed in the top window of the Display block, is approximately .001. You get slightly
different results if you change the Initial seed parameters in the model or run a simulation for a
different length of time.

You expect an error rate of approximately .001 for the following reason: The probability of two or
more errors occurring in a codeword of length 7 is

1 – (0.99)7 – 7(0.99)6(0.01) = 0.002

If the codewords with two or more errors are decoded randomly, you expect about half the bits in the
decoded message words to be incorrect. This indicates that .001 is a reasonable value for the bit
error rate.

To obtain a lower error rate for the same probability of error, try using a Hamming code with larger
parameters. To do this, change the parameters Codeword length and Message length in the
Hamming Encoder and Hamming Decoder block dialog boxes. You also have to make the appropriate
changes to the parameters of the Bernoulli Binary Generator block and the Binary Symmetric
Channel block.

Displaying Frame Sizes

You can display the sizes of data frames in different parts in your model. On the Debug tab, expand
Information Overlays. In the Signals section, select Signal Dimensions. The line leading out of
the Bernoulli Binary Generator block is labeled [4x1], indicating that its output consists of column
vectors of size 4. Because the Hamming Encoder block uses a [7,4] code, it converts frames of size 4
into frames of size 7, so its output is labeled [7x1].

16 System Design

16-64

Adding a Scope to the Model

To display the channel errors produced by the Binary Symmetric Channel block, add a Scope block to
the model. This is a good way to see whether your model is functioning correctly. The example shown
in the following figure shows where to insert the Scope block into the model.

To build this model from the one shown in the figure “Reduce the Error Rate Using a Hamming Code”
on page 16-63, follow these steps:

1 Type block names in the model window and add these blocks:

• Relational Operator
• Scope
• Two copies of the Unbuffer

2 Double-click the Binary Symmetric Channel block to open its dialog box, and select Output
error vector. This creates a second output port for the block, which carries the error vector.

3 Double-click the Scope block, under View > Configuration Properties, set Number of input
ports to 2. Select Layout and highlight two blocks vertically. Click OK.

4 Connect the blocks as shown in the preceding figure.

Setting Parameters in the Expanded Model

Make the following changes to the parameters for the blocks you added to the model.

• Error Rate Calculation Block – Double-click the Error Rate Calculation block and clear the box
next to Stop simulation in the block's dialog box.

• Scope Block – The Scope block displays the channel errors and uncorrected errors. To configure
the block,

1 Double-click the Scope block, select View > Configuration Properties.
2 Select the Time tab and set Time span to 5000.

 Error Detection and Correction

16-65

3 Select the Logging tab and set Limit data points to last to 30000.
4 Click OK.
5 The scope should now appear as shown.

6 To configure the axes, follow these steps:

a Right-click the vertical axis at the left side of the upper scope.
b In the context menu, select Configuration Properties.
c Set Y-limits (Minimum) to -1.
d Set Y-limits (Maximum) to 2, and click OK.
e Repeat the same steps for the vertical axis of the lower scope.
f Widen the scope window until it is roughly three times as wide as it is high. You can do

this by clicking the right border of the window and dragging the border to the right,
while pressing the left-mouse button.

• Relational Operator – Set Relational Operator to ~= in the block's dialog box. The Relational
Operator block compares the transmitted signal, coming from the Bernoulli Random Generator
block, with the received signal, coming from the Hamming Decoder block. The block outputs a 0
when the two signals agree and a 1 when they disagree.

Observing Channel Errors with the Scope

When you run the model, the scope displays the error data. At the end of each 5000 time steps, the
scope appears as shown this figure. The scope then clears the displayed data and displays the next
5000 data points.

16 System Design

16-66

The upper scope shows the channel errors generated by the Binary Symmetric Channel block. The
lower scope shows errors that are not corrected by channel coding.

Click the Stop button on the toolbar at the top of the model window to stop the scope.

You can see individual errors by zooming in on the scope. First click the middle magnifying glass
button at the top left of the Scope window. Then click one of the lines in the lower scope. This zooms
in horizontally on the line. Continue clicking the lines in the lower scope until the horizontal scale is
fine enough to detect individual errors. A typical example of what you might see is shown in the
figure below.

The wider rectangular pulse in the middle of the upper scope represents two 1s. These two errors,
which occur in a single codeword, are not corrected. This accounts for the uncorrected errors in the
lower scope. The narrower rectangular pulse to the right of the upper scope represents a single error,
which is corrected.

When you are done observing the errors, select Simulation > Stop.

“Export Data to MATLAB” on page 9-3 explains how to send the error data to the MATLAB workspace
for more detailed analysis.

BCH Codes
• “Represent Words for BCH Codes” on page 16-68
• “Parameters for BCH Codes” on page 16-68
• “Create and Decode BCH Codes” on page 16-68
• “Algorithms for BCH and RS Errors-only Decoding” on page 16-70

 Error Detection and Correction

16-67

Represent Words for BCH Codes

A message for an [n,k] BCH code must be a k-column binary Galois field array. The code that
corresponds to that message is an n-column binary Galois field array. Each row of these Galois field
arrays represents one word.

The example below illustrates how to represent words for a [15, 11] BCH code.

msg = [1 0 0 1 0; 1 0 1 1 1]; % Messages in a Galois array
obj = comm.BCHEncoder;
c1 = step(obj, msg(1,:)');
c2 = step(obj, msg(2,:)');
cbch = [c1 c2].'

The output is

 Columns 1 through 5

 1 0 0 1 0
 1 0 1 1 1

 Columns 6 through 10

 0 0 1 1 1
 0 0 0 0 1

 Columns 11 through 15

 1 0 1 0 1
 0 1 0 0 1

Parameters for BCH Codes

BCH codes use special values of n and k:

• n, the codeword length, is an integer of the form 2m-1 for some integer m > 2.
• k, the message length, is a positive integer less than n. However, only some positive integers less

than n are valid choices for k. See the BCH Encoder block reference page for a list of some valid
values of k corresponding to values of n up to 511.

Create and Decode BCH Codes

The BCH Encoder and BCH Decoder System objects create and decode BCH codes, using the data
described in “Represent Words for BCH Codes” on page 16-68 and “Parameters for BCH Codes” on
page 16-68.

The topics are

• “Example: BCH Coding Syntaxes” on page 16-68
• “Detect and Correct Errors in a BCH Code Using MATLAB” on page 16-69

Example: BCH Coding Syntaxes

The example below illustrates how to encode and decode data using a [15, 5] BCH code.

n = 15; k = 5; % Codeword length and message length
msg = randi([0 1],4*k,1); % Four random binary messages

16 System Design

16-68

% Simplest syntax for encoding
enc = comm.BCHEncoder(n,k);
dec = comm.BCHDecoder(n,k);
c1 = step(enc,msg); % BCH encoding
d1 = step(dec,c1); % BCH decoding

% Check that the decoding worked correctly.
chk = isequal(d1,msg)

% The following code shows how to perform the encoding and decoding
% operations if one chooses to prepend the parity symbols.

% Steps for converting encoded data with appended parity symbols
% to encoded data with prepended parity symbols
c11 = reshape(c1, n, []);
c12 = circshift(c11,n-k);
c1_prepend = c12(:); % BCH encoded data with prepended parity symbols

% Steps for converting encoded data with prepended parity symbols
% to encoded data with appended parity symbols prior to decoding
c21 = reshape(c1_prepend, n, []);
c22 = circshift(c21,k);
c1_append = c22(:); % BCH encoded data with appended parity symbols

% Check that the prepend-to-append conversion worked correctly.
d1_append = step(dec,c1_append);
chk = isequal(msg,d1_append)

The output is below.

chk =

 1

Detect and Correct Errors in a BCH Code Using MATLAB

The following example illustrates the decoding results for a corrupted code. The example encodes
some data, introduces errors in each codeword, and attempts to decode the noisy code using the BCH
Decoder System object.

n = 15; k = 5; % Codeword length and message length
[gp,t] = bchgenpoly(n,k); % t is error-correction capability.
nw = 4; % Number of words to process
msgw = randi([0 1], nw*k, 1); % Random k-symbol messages
enc = comm.BCHEncoder(n,k,gp);
dec = comm.BCHDecoder(n,k,gp);
c = step(enc, msgw); % Encode the data.
noise = randerr(nw,n,t); % t errors per codeword
noisy = noise';
noisy = noisy(:);
cnoisy = mod(c + noisy,2); % Add noise to the code.
[dc, nerrs] = step(dec, cnoisy); % Decode cnoisy.

% Check that the decoding worked correctly.
chk2 = isequal(dc,msgw)
nerrs % Find out how many errors have been corrected.

 Error Detection and Correction

16-69

Notice that the array of noise values contains binary values, and that the addition operation
c + noise takes place in the Galois field GF(2) because c is a Galois field array in GF(2).

The output from the example is below. The nonzero value of ans indicates that the decoder was able
to correct the corrupted codewords and recover the original message. The values in the vector nerrs
indicate that the decoder corrected t errors in each codeword.

chk2 =

 1

nerrs =

 3
 3
 3
 3

Excessive Noise in BCH Codewords

In the previous example, the BCH Decoder System object corrected all the errors. However, each
BCH code has a finite error-correction capability. To learn more about how the BCH Decoder System
object behaves when the noise is excessive, see the analogous discussion for Reed-Solomon codes in
“Excessive Noise in Reed-Solomon Codewords” on page 16-76.

Algorithms for BCH and RS Errors-only Decoding
Overview

The errors-only decoding algorithm used for BCH and RS codes can be described by the following
steps (sections 5.3.2, 5.4, and 5.6 in [2]).

1 Calculate the first 2t terms of the infinite degree syndrome polynomial, S(z).
2 If those 2t terms of S(z) are all equal to 0, then the code has no errors , no correction needs to be

performed, and the decoding algorithm ends.
3 If one or more terms of S(z) are nonzero, calculate the error locator polynomial, Λ(z), via the

Berlekamp algorithm.
4 Calculate the error evaluator polynomial, Ω z , via

Λ z S z = Ω z modz2t

5 Correct an error in the codeword according to

eim = Ω(α−im)
Λ′(α−im)

where eim is the error magnitude in the imth position in the codeword, m is a value less than the
error-correcting capability of the code, Ω z is the error magnitude polynomial, Λ'(z) is the formal
derivative [5] of the error locator polynomial, Λ(z), and α is the primitive element of the Galois
field of the code.

Further description of several of the steps is given in the following sections.

16 System Design

16-70

Syndrome Calculation

For narrow-sense codes, the 2t terms of S(z) are calculated by evaluating the received codeword at
successive powers of α (the field’s primitive element) from 0 to 2t-1. In other words, if we assume
one-based indexing of codewords C(z) and the syndrome polynomial S(z), and that codewords are of
the form [c1 c1 ... cN], then each term Si of S(z) is given as

Si = ∑
i = 1

N
ciαN − 1− i

Error Locator Polynomial Calculation

The error locator polynomial, Λ(z), is found using the Berlekamp algorithm. A complete description of
this algorithm is found in [2], but we summarize the algorithm as follows.

We define the following variables.

Variable Description
n Iterator variable
k Iterator variable
L Length of the feedback register used to generate the first 2t terms

of S(z)
D(z) Correction polynomial
d Discrepancy

The following diagram shows the iterative procedure (i.e., the Berlekamp algorithm) used to find Λ(z).

 Error Detection and Correction

16-71

Error Evaluator Polynomial Calculation

The error evaluator polynomial, Ω z , is simply the convolution of Λ(z) and S(z).

Reed-Solomon Codes
• “Represent Words for Reed-Solomon Codes” on page 16-73
• “Parameters for Reed-Solomon Codes” on page 16-73
• “Create and Decode Reed-Solomon Codes” on page 16-74

16 System Design

16-72

• “Find a Generator Polynomial” on page 16-77
• “Reed Solomon Examples with Shortening, Puncturing, and Erasures” on page 16-78

Represent Words for Reed-Solomon Codes

This toolbox supports Reed-Solomon codes that use m-bit symbols instead of bits. A message for an
[n,k] Reed-Solomon code must be a k-column Galois field array in the field GF(2m). Each array entry
must be an integer between 0 and 2m-1. The code corresponding to that message is an n-column
Galois field array in GF(2m). The codeword length n must be between 3 and 2m-1.

Note For information about Galois field arrays and how to create them, see “Representing Elements
of Galois Fields” on page 16-82 or the reference page for the gf function.

The example below illustrates how to represent words for a [7,3] Reed-Solomon code.

n = 7; k = 3; % Codeword length and message length
m = 3; % Number of bits in each symbol
msg = [1 6 4; 0 4 3]; % Message is a Galois array.
obj = comm.RSEncoder(n, k);
c1 = step(obj, msg(1,:)');
c2 = step(obj, msg(2,:)');
c = [c1 c2].'

The output is

C =

 1 6 4 4 3 6 3
 0 4 3 3 7 4 7

Parameters for Reed-Solomon Codes

This section describes several integers related to Reed-Solomon codes and discusses how to find
generator polynomials on page 16-73.
Allowable Values of Integer Parameters

The table below summarizes the meanings and allowable values of some positive integer quantities
related to Reed-Solomon codes as supported in this toolbox. The quantities n and k are input
parameters for Reed-Solomon functions in this toolbox.

Symbol Meaning Value or Range
m Number of bits per symbol Integer between 3 and 16
n Number of symbols per

codeword
Integer between 3 and 2m-1

k Number of symbols per message Positive integer less than n,
such that n-k is even

t Error-correction capability of
the code

(n-k)/2

Generator Polynomial

The rsgenpoly function produces generator polynomials for Reed-Solomon codes. rsgenpoly
represents a generator polynomial using a Galois row vector that lists the polynomial's coefficients in

 Error Detection and Correction

16-73

order of descending powers of the variable. If each symbol has m bits, the Galois row vector is in the
field GF(2m). For example, the command

r = rsgenpoly(15,13)

r = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 6 8

finds that one generator polynomial for a [15,13] Reed-Solomon code is X2 + (A2 + A)X + (A3), where
A is a root of the default primitive polynomial for GF(16).

Algebraic Expression for Generator Polynomials

The generator polynomials that rsgenpoly produces have the form (X - Ab)(X - Ab+1)...(X - Ab+2t-1),
where b is an integer, A is a root of the primitive polynomial for the Galois field, and t is (n-k)/2.
The default value of b is 1. The output from rsgenpoly is the result of multiplying the factors and
collecting like powers of X. The example below checks this formula for the case of a [15,13] Reed-
Solomon code, using b = 1.

n = 15;
a = gf(2,log2(n+1)); % Root of primitive polynomial
f1 = [1 a]; f2 = [1 a^2]; % Factors that form generator polynomial
f = conv(f1,f2) % Generator polynomial, same as r above.

Create and Decode Reed-Solomon Codes

The RS Encoder and RS Decoder System objects create and decode Reed-Solomon codes, using the
data described in “Represent Words for Reed-Solomon Codes” on page 16-73 and “Parameters for
Reed-Solomon Codes” on page 16-73.

This section illustrates how to use the RS Encoder and RS Decoder System objects. The topics are

• “Reed-Solomon Coding Syntaxes in MATLAB” on page 16-74
• “Detect and Correct Errors in a Reed-Solomon Code Using MATLAB” on page 16-76
• “Excessive Noise in Reed-Solomon Codewords” on page 16-76
• “Create Shortened Reed-Solomon Codes” on page 16-77

Reed-Solomon Coding Syntaxes in MATLAB

The example below illustrates multiple ways to encode and decode data using a [15,13] Reed-
Solomon code. The example shows that you can

• Vary the generator polynomial for the code, using rsgenpoly to produce a different generator
polynomial.

• Vary the primitive polynomial for the Galois field that contains the symbols, using an input
argument in gf.

• Vary the position of the parity symbols within the codewords, choosing either the end (default) or
beginning.

This example also shows that corresponding syntaxes of the RS Encoder and RS Decoder System
objects use the same input arguments, except for the first input argument.

16 System Design

16-74

m = 4; % Number of bits in each symbol
n = 2^m-1; k = 13; % Codeword length and message length
msg = randi([0 m-1],4*k,1); % Four random integer messages

% Simplest syntax for encoding
hEnc = comm.RSEncoder(n,k);
hDec = comm.RSDecoder(n,k);
c1 = step(hEnc, msg);
d1 = step(hDec, c1);

% Vary the generator polynomial for the code.
release(hEnc), release(hDec)
hEnc.GeneratorPolynomialSource = 'Property';
hDec.GeneratorPolynomialSource = 'Property';
hEnc.GeneratorPolynomial = rsgenpoly(n,k,19,2);
hDec.GeneratorPolynomial = rsgenpoly(n,k,19,2);
c2 = step(hEnc, msg);
d2 = step(hDec, c2);

% Vary the primitive polynomial for GF(16).
release(hEnc), release(hDec)
hEnc.PrimitivePolynomialSource = 'Property';
hDec.PrimitivePolynomialSource = 'Property';
hEnc.GeneratorPolynomialSource = 'Auto';
hDec.GeneratorPolynomialSource = 'Auto';
hEnc.PrimitivePolynomial = [1 1 0 0 1];
hDec.PrimitivePolynomial = [1 1 0 0 1];
c3 = step(hEnc, msg);
d3 = step(hDec, c3);

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg) & isequal(d3,msg)

% The following code shows how to perform the encoding and decoding
% operations if one chooses to prepend the parity symbols.

% Steps for converting encoded data with appended parity symbols
% to encoded data with prepended parity symbols
c31 = reshape(c3, n, []);
c32 = circshift(c31,n-k);
c3_prepend = c32(:); % RS encoded data with prepended parity symbols

% Steps for converting encoded data with prepended parity symbols
% to encoded data with appended parity symbols prior to decoding
c34 = reshape(c3_prepend, n, []);
c35 = circshift(c34,k);
c3_append = c35(:); % RS encoded data with appended parity symbols

% Check that the prepend-to-append conversion worked correctly.
d3_append = step(hDec,c3_append);
chk = isequal(msg,d3_append)

The output is

chk =

 1

 Error Detection and Correction

16-75

Detect and Correct Errors in a Reed-Solomon Code Using MATLAB

The example below illustrates the decoding results for a corrupted code. The example encodes some
data, introduces errors in each codeword, and attempts to decode the noisy code using the RS
Decoder System object.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Codeword length and message length
t = (n-k)/2; % Error-correction capability of the code
nw = 4; % Number of words to process
msgw = randi([0 n],nw*k,1); % Random k-symbol messages
hEnc = comm.RSEncoder(n,k);
hDec = comm.RSDecoder(n,k);
c = step(hEnc, msgw); % Encode the data.
noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t); % t errors per codeword
noisy = noise';
noisy = noisy(:);
cnoisy = gf(c,m) + noisy; % Add noise to the code under gf(m) arithmetic.
[dc nerrs] = step(hDec, cnoisy.x); % Decode the noisy code.
% Check that the decoding worked correctly.
isequal(dc,msgw)
nerrs % Find out how many errors hDec corrected.

The array of noise values contains integers between 1 and 2^m, and the addition operation
c + noise takes place in the Galois field GF(2^m) because c is a Galois field array in GF(2^m).

The output from the example is below. The nonzero value of ans indicates that the decoder was able
to correct the corrupted codewords and recover the original message. The values in the vector nerrs
indicates that the decoder corrected t errors in each codeword.

ans =

 1

nerrs =

 2
 2
 2
 2

Excessive Noise in Reed-Solomon Codewords

In the previous example, RS Encoder System object corrected all of the errors. However, each Reed-
Solomon code has a finite error-correction capability. If the noise is so great that the corrupted
codeword is too far in Hamming distance from the correct codeword, that means either

• The corrupted codeword is close to a valid codeword other than the correct codeword. The
decoder returns the message that corresponds to the other codeword.

• The corrupted codeword is not close enough to any codeword for successful decoding. This
situation is called a decoding failure. The decoder removes the symbols in parity positions from
the corrupted codeword and returns the remaining symbols.

In both cases, the decoder returns the wrong message. However, you can tell when a decoding failure
occurs because RS Decoder System object also returns a value of -1 in its second output.

16 System Design

16-76

To examine cases in which codewords are too noisy for successful decoding, change the previous
example so that the definition of noise is

noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t+1); % t+1 errors/row

Create Shortened Reed-Solomon Codes

Every Reed-Solomon encoder uses a codeword length that equals 2m-1 for an integer m. A shortened
Reed-Solomon code is one in which the codeword length is not 2m-1. A shortened [n,k] Reed-Solomon
code implicitly uses an [n1,k1] encoder, where

• n1 = 2m - 1, where m is the number of bits per symbol
• k1 = k + (n1 - n)

The RS Encoder System object supports shortened codes using the same syntaxes it uses for
nonshortened codes. You do not need to indicate explicitly that you want to use a shortened code.

hEnc = comm.RSEncoder(7,5);
ordinarycode = step(hEnc,[1 1 1 1 1]');
hEnc = comm.RSEncoder(5,3);
shortenedcode = step(hEnc,[1 1 1]');

How the RS Encoder System Object Creates a Shortened Code

When creating a shortened code, the RS Encoder System object performs these steps:

• Pads each message by prepending zeros
• Encodes each padded message using a Reed-Solomon encoder having an allowable codeword

length and the desired error-correction capability
• Removes the extra zeros from the nonparity symbols of each codeword

The following example illustrates this process.

n = 12; k = 8; % Lengths for the shortened code
m = ceil(log2(n+1)); % Number of bits per symbol
msg = randi([0 2^m-1],3*k,1); % Random array of 3 k-symbol words
hEnc = comm.RSEncoder(n,k);
code = step(hEnc, msg); % Create a shortened code.

% Do the shortening manually, just to show how it works.
n_pad = 2^m-1; % Codeword length in the actual encoder
k_pad = k+(n_pad-n); % Messageword length in the actual encoder
hEnc = comm.RSEncoder(n_pad,k_pad);
mw = reshape(msg,k,[]); % Each column vector represents a messageword
msg_pad = [zeros(n_pad-n,3); mw]; % Prepend zeros to each word.
msg_pad = msg_pad(:);
code_pad = step(hEnc,msg_pad); % Encode padded words.
cw = reshape(code_pad,2^m-1,[]); % Each column vector represents a codeword
code_eqv = cw(n_pad-n+1:n_pad,:); % Remove extra zeros.
code_eqv = code_eqv(:);
ck = isequal(code_eqv,code); % Returns true (1).

Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the cyclpoly,
bchgenpoly, or rsgenpoly function, respectively. The commands

 Error Detection and Correction

16-77

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.

genpolyCyclic =

 1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

 1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector that lists the
polynomial's coefficients in order of ascending powers of the variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row vector that
lists the polynomial's coefficients in order of descending powers of the variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For more
information on the meaning of these coefficients, see “How Integers Correspond to Galois Field
Elements” on page 16-84 and “Polynomials over Galois Fields” on page 16-98.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the generator
polynomial. The syntaxes for functions in the example above also include options for retrieving
generator polynomials that satisfy certain constraints that you specify. See the functions' reference
pages for details about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form (X - Ab)(X - Ab
+1)...(X - Ab+2t-1), where A is a primitive element for an appropriate Galois field, and b and t are
integers. See the functions' reference pages for more information about this expression.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening, puncturing, and
erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing

The following figure shows a representative example of a (7,3) Reed Solomon encoder with
shortening and puncturing.

16 System Design

16-78

In this figure, the message source outputs two information symbols, designated by I1I2. (For a BCH
example, the symbols are simply binary bits.) Because the code is a shortened (7,3) code, a zero must
be added ahead of the information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is then RS encoded, and the added information zero is subsequently removed,
which yields a result of I1I2P1P2P3P4. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011. Within the
puncture vector, a 1 means that the symbol is kept, and a 0 means that the symbol is thrown away. In
this example, the puncturing operation removes the second parity symbol, yielding a final vector of
I1I2P1P3P4.

Decoder Example with Shortening and Puncturing

The following figure shows how the RS encoder operates on a shortened and punctured codeword.

 Error Detection and Correction

16-79

This case corresponds to the encoder operations shown in the figure of the RS encoder with
shortening and puncturing. As shown in the preceding figure, the encoder receives a (5,2) codeword,
because it has been shortened from a (7,3) codeword by one symbol, and one symbol has also been
punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity position of the
codeword. This corresponds to the puncture vector 1011. Adding a zero accounts for shortening, in
the same way as shown in the preceding figure. The single erasure does not exceed the erasure-
correcting capability of the code, which can correct four erasures. The decoding operation results in
the three-symbol message DI1I2. The first symbol is truncated, as in the preceding figure, yielding a
final output of I1I2.

Encoder Example with Shortening, Puncturing, and Erasures

The following figure shows the decoder operating on the punctured, shortened codeword, while also
correcting erasures generated by the receiver.

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder sent. The demodulator
declares that two of the five received symbols are unreliable enough to be erased, such that symbols
2 and 5 are deemed to be erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be replaced with an erasure
symbol, and a 0 means that the symbol is passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the erasures indicated
by the vector 01001. Within the erasures vector, a 1 means that the symbol is to be replaced with an
erasure symbol, and a 0 means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding operation
(i.e., 1011). Thus, an erasure symbol is inserted between P1 and P3, yielding a codeword vector of
I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information vector accounts for
the shortening. The resulting vector is 0I1EP1EP3E, such that a (7,3) codeword is sent to the
Berlekamp algorithm.

16 System Design

16-80

This codeword is decoded, yielding a three-symbol message of DI1I2 (where D refers to a dummy
symbol). Finally, the removal of the D symbol from the message vector accounts for the shortening
and yields the original I1I2 vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and Shortening
in Simulink” on page 18-2 example.

LDPC Codes
Low-Density Parity-Check (LDPC) codes are linear error control codes with:

• Sparse parity-check matrices
• Long block lengths that can attain performance near the Shannon limit (see LDPC Encoder and

LDPC Decoder)

Communications Toolbox performs LDPC Coding using Simulink blocks and MATLAB objects.

The decoding process is done iteratively. If the number of iterations is too small, the algorithm may
not converge. You may need to experiment with the number of iterations to find an appropriate value
for your model. For details on the decoding algorithm, see Decoding Algorithm.

Unlike some other codecs, you cannot connect an LDPC decoder directly to the output of an LDPC
encoder, because the decoder requires log-likelihood ratios (LLR). Thus, you may use a demodulator
to compute the LLRs.

Also, unlike other decoders, it is possible (although rare) that the output of the LDPC decoder does
not satisfy all parity checks.

Galois Field Computations

A Galois field is an algebraic field that has a finite number of members. Galois fields having 2m

members are used in error-control coding and are denoted GF(2m). This section describes how to
work with fields that have 2m members, where m is an integer between 1 and 16. The subsections in
this section are as follows.

• “Galois Field Terminology” on page 16-82
• “Representing Elements of Galois Fields” on page 16-82
• “Arithmetic in Galois Fields” on page 16-87
• “Logical Operations in Galois Fields” on page 16-91
• “Matrix Manipulation in Galois Fields” on page 16-93
• “Linear Algebra in Galois Fields” on page 16-94
• “Signal Processing Operations in Galois Fields” on page 16-96
• “Polynomials over Galois Fields” on page 16-98
• “Manipulating Galois Variables” on page 16-101

 Error Detection and Correction

16-81

• “Speed and Nondefault Primitive Polynomials” on page 16-104
• “Selected Bibliography for Galois Fields” on page 16-104

If you need to use Galois fields having an odd number of elements, see “Galois Fields of Odd
Characteristic” on page 16-105.

For more details about specific functions that process arrays of Galois field elements, see the online
reference pages in the documentation for MATLAB or for Communications Toolbox software.

Note Please note that the Galois field objects do not support the copy method.

MATLAB functions whose generalization to Galois fields is straightforward to describe do not have
reference pages in this manual because the entries would be identical to those in the MATLAB
documentation.

Galois Field Terminology

The discussion of Galois fields in this document uses a few terms that are not used consistently in the
literature. The definitions adopted here appear in van Lint [4]:

• A primitive element of GF(2m) is a cyclic generator of the group of nonzero elements of GF(2m).
This means that every nonzero element of the field can be expressed as the primitive element
raised to some integer power.

• A primitive polynomial for GF(2m) is the minimal polynomial of some primitive element of GF(2m).
It is the binary-coefficient polynomial of smallest nonzero degree having a certain primitive
element as a root in GF(2m). As a consequence, a primitive polynomial has degree m and is
irreducible.

The definitions imply that a primitive element is a root of a corresponding primitive polynomial.

Representing Elements of Galois Fields

• “Section Overview” on page 16-82
• “Creating a Galois field array” on page 16-83
• “Example: Creating Galois Field Variables” on page 16-83
• “Example: Representing Elements of GF(8)” on page 16-84
• “How Integers Correspond to Galois Field Elements” on page 16-84
• “Example: Representing a Primitive Element” on page 16-85
• “Primitive Polynomials and Element Representations” on page 16-85

Section Overview

This section describes how to create a Galois field array, which is a MATLAB expression that
represents the elements of a Galois field. This section also describes how MATLAB technical
computing software interprets the numbers that you use in the representation, and includes several
examples.

16 System Design

16-82

Creating a Galois field array

To begin working with data from a Galois field GF(2^m), you must set the context by associating the
data with crucial information about the field. The gf function performs this association and creates a
Galois field array in MATLAB. This function accepts as inputs

• The Galois field data, x, which is a MATLAB array whose elements are integers between 0 and
2^m-1.

• (Optional) An integer, m, that indicates x is in the field GF(2^m). Valid values of m are between 1
and 16. The default is 1, which means that the field is GF(2).

• (Optional) A positive integer that indicates which primitive polynomial for GF(2^m) you are using
in the representations in x. If you omit this input argument, gf uses a default primitive polynomial
for GF(2^m). For information about this argument, see “Primitive Polynomials and Element
Representations” on page 16-85.

The output of the gf function is a variable that MATLAB recognizes as a Galois field array, rather
than an array of integers. As a result, when you manipulate the variable, MATLAB works within the
Galois field you have specified. For example, if you apply the log function to a Galois field array,
MATLAB computes the logarithm in the Galois field and not in the field of real or complex numbers.

When MATLAB Implicitly Creates a Galois field array

Some operations on Galois field arrays require multiple arguments. If you specify one argument that
is a Galois field array and another that is an ordinary MATLAB array, MATLAB interprets both as
Galois field arrays in the same field. It implicitly invokes the gf function on the ordinary MATLAB
array. This implicit invocation simplifies your syntax because you can omit some references to the gf
function. For an example of the simplification, see “Example: Addition and Subtraction” on page 16-
88.
Example: Creating Galois Field Variables

The code below creates a row vector whose entries are in the field GF(4), and then adds the row to
itself.

x = 0:3; % A row vector containing integers
m = 2; % Work in the field GF(2^2), or, GF(4).
a = gf(x,m) % Create a Galois array in GF(2^m).

b = a + a % Add a to itself, creating b.

The output is

a = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 1 2 3

b = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 0 0 0

The output shows the values of the Galois field arrays named a and b. Each output section indicates

 Error Detection and Correction

16-83

• The field containing the variable, namely, GF(2^2) = GF(4).
• The primitive polynomial for the field. In this case, it is the toolbox's default primitive polynomial

for GF(4).
• The array of Galois field values that the variable contains. In particular, the array elements in a

are exactly the elements of the vector x, and the array elements in b are four instances of the zero
element in GF(4).

The command that creates b shows how, having defined the variable a as a Galois field array, you can
add a to itself by using the ordinary + operator. MATLAB performs the vectorized addition operation
in the field GF(4). The output shows that

• Compared to a, b is in the same field and uses the same primitive polynomial. It is not necessary
to indicate the field when defining the sum, b, because MATLAB remembers that information from
the definition of the addends, a.

• The array elements of b are zeros because the sum of any value with itself, in a Galois field of
characteristic two, is zero. This result differs from the sum x + x, which represents an addition
operation in the infinite field of integers.

Example: Representing Elements of GF(8)

To illustrate what the array elements in a Galois field array mean, the table below lists the elements
of the field GF(8) as integers and as polynomials in a primitive element, A. The table should help you
interpret a Galois field array like

gf8 = gf([0:7],3); % Galois vector in GF(2^3)

Integer Representation Binary Representation Element of GF(8)
0 000 0
1 001 1
2 010 A
3 011 A + 1
4 100 A2

5 101 A2 + 1
6 110 A2 + A
7 111 A2 + A + 1

How Integers Correspond to Galois Field Elements

Building on the GF(8) example above on page 16-84, this section explains the interpretation of array
elements in a Galois field array in greater generality. The field GF(2^m) has 2^m distinct elements,
which this toolbox labels as 0, 1, 2,..., 2^m-1. These integer labels correspond to elements of the
Galois field via a polynomial expression involving a primitive element of the field. More specifically,
each integer between 0 and 2^m-1 has a binary representation in m bits. Using the bits in the binary
representation as coefficients in a polynomial, where the least significant bit is the constant term,
leads to a binary polynomial whose order is at most m-1. Evaluating the binary polynomial at a
primitive element of GF(2^m) leads to an element of the field.

16 System Design

16-84

Conversely, any element of GF(2^m) can be expressed as a binary polynomial of order at most m-1,
evaluated at a primitive element of the field. The m-tuple of coefficients of the polynomial corresponds
to the binary representation of an integer between 0 and 2^m.

Below is a symbolic illustration of the correspondence of an integer X, representable in binary form,
with a Galois field element. Each bk is either zero or one, while A is a primitive element.

X = bm− 1 ⋅ 2m− 1 +⋯+ b2 ⋅ 4 + b1 ⋅ 2 + b0

bm− 1 ⋅ Am− 1 +⋯+ b2 ⋅ A2 + b1 ⋅ A + b0

Example: Representing a Primitive Element

The code below defines a variable alph that represents a primitive element of the field GF(24).

m = 4; % Or choose any positive integer value of m.
alph = gf(2,m) % Primitive element in GF(2^m)

The output is

alph = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 2

The Galois field array alph represents a primitive element because of the correspondence among

• The integer 2, specified in the gf syntax
• The binary representation of 2, which is 10 (or 0010 using four bits)
• The polynomial A + 0, where A is a primitive element in this field (or 0A3 + 0A2 + A + 0 using the

four lowest powers of A)

Primitive Polynomials and Element Representations

This section builds on the discussion in “Creating a Galois field array” on page 16-83 by describing
how to specify your own primitive polynomial when you create a Galois field array. The topics are

If you perform many computations using a nondefault primitive polynomial, see “Speed and
Nondefault Primitive Polynomials” on page 16-104.

Specifying the Primitive Polynomial

The discussion in “How Integers Correspond to Galois Field Elements” on page 16-84 refers to a
primitive element, which is a root of a primitive polynomial of the field. When you use the gf function
to create a Galois field array, the function interprets the integers in the array with respect to a
specific default primitive polynomial for that field, unless you explicitly provide a different primitive
polynomial. A list of the default primitive polynomials is on the reference page for the gf function.

To specify your own primitive polynomial when creating a Galois field array, use a syntax like

c = gf(5,4,25) % 25 indicates the primitive polynomial for GF(16).

instead of

c1= gf(5,4); % Use default primitive polynomial for GF(16).

 Error Detection and Correction

16-85

The extra input argument, 25 in this case, specifies the primitive polynomial for the field GF(2^m) in a
way similar to the representation described in “How Integers Correspond to Galois Field Elements”
on page 16-84. In this case, the integer 25 corresponds to a binary representation of 11001, which in
turn corresponds to the polynomial D4 + D3 + 1.

Note When you specify the primitive polynomial, the input argument must have a binary
representation using exactly m+1 bits, not including unnecessary leading zeros. In other words, a
primitive polynomial for GF(2^m) always has order m.

When you use an input argument to specify the primitive polynomial, the output reflects your choice
by showing the integer value as well as the polynomial representation.

d = gf([1 2 3],4,25)

d = GF(2^4) array. Primitive polynomial = D^4+D^3+1 (25 decimal)

Array elements =

 1 2 3

Note After you have defined a Galois field array, you cannot change the primitive polynomial with
respect to which MATLAB interprets the array elements.

Finding Primitive Polynomials

You can use the primpoly function to find primitive polynomials for GF(2^m) and the isprimitive
function to determine whether a polynomial is primitive for GF(2^m). The code below illustrates.

m = 4;
defaultprimpoly = primpoly(m) % Default primitive poly for GF(16)
allprimpolys = primpoly(m,'all') % All primitive polys for GF(16)
i1 = isprimitive(25) % Can 25 be the prim_poly input in gf(...)?
i2 = isprimitive(21) % Can 21 be the prim_poly input in gf(...)?

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

defaultprimpoly =

 19

Primitive polynomial(s) =

D^4+D^1+1
D^4+D^3+1

allprimpolys =

 19
 25

16 System Design

16-86

i1 =

 1

i2 =

 0

Effect of Nondefault Primitive Polynomials on Numerical Results

Most fields offer multiple choices for the primitive polynomial that helps define the representation of
members of the field. When you use the gf function, changing the primitive polynomial changes the
interpretation of the array elements and, in turn, changes the results of some subsequent operations
on the Galois field array. For example, exponentiation of a primitive element makes it easy to see how
the primitive polynomial affects the representations of field elements.

a11 = gf(2,3); % Use default primitive polynomial of 11.
a13 = gf(2,3,13); % Use D^3+D^2+1 as the primitive polynomial.
z = a13.^3 + a13.^2 + 1 % 0 because a13 satisfies the equation
nz = a11.^3 + a11.^2 + 1 % Nonzero. a11 does not satisfy equation.

The output below shows that when the primitive polynomial has integer representation 13, the Galois
field array satisfies a certain equation. By contrast, when the primitive polynomial has integer
representation 11, the Galois field array fails to satisfy the equation.

z = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

 0

nz = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 6

The output when you try this example might also include a warning about lookup tables. This is
normal if you did not use the gftable function to optimize computations involving a nondefault
primitive polynomial of 13.

Arithmetic in Galois Fields

• “Section Overview” on page 16-88
• “Example: Addition and Subtraction” on page 16-88
• “Example: Multiplication” on page 16-89
• “Example: Division” on page 16-90
• “Example: Exponentiation” on page 16-90
• “Example: Elementwise Logarithm” on page 16-91

 Error Detection and Correction

16-87

Section Overview

You can perform arithmetic operations on Galois field arrays by using familiar MATLAB operators,
listed in the table below. Whenever you operate on a pair of Galois field arrays, both arrays must be in
the same Galois field.

Operation Operator
Addition +
Subtraction -
Elementwise multiplication .*
Matrix multiplication *
Elementwise left division ./
Elementwise right division .\
Matrix left division /
Matrix right division \
Elementwise exponentiation .^
Elementwise logarithm log()
Exponentiation of a square Galois matrix by a
scalar integer

^

For multiplication and division of polynomials over a Galois field, see “Addition and Subtraction of
Polynomials” on page 16-99.
Example: Addition and Subtraction

The code below adds two Galois field arrays to create an addition table for GF(8). Addition uses the
ordinary + operator. The code below also shows how to index into the array addtb to find the result
of adding 1 to the elements of GF(8).

m = 3;
e = repmat([0:2^m-1],2^m,1);
f = gf(e,m); % Create a Galois array.
addtb = f + f' % Add f to its own matrix transpose.

addone = addtb(2,:); % Assign 2nd row to the Galois vector addone.

The output is below.

addtb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 0 1 2 3 4 5 6 7
 1 0 3 2 5 4 7 6
 2 3 0 1 6 7 4 5
 3 2 1 0 7 6 5 4
 4 5 6 7 0 1 2 3
 5 4 7 6 1 0 3 2
 6 7 4 5 2 3 0 1
 7 6 5 4 3 2 1 0

As an example of reading this addition table, the (7,4) entry in the addtb array shows that gf(6,3)
plus gf(3,3) equals gf(5,3). Equivalently, the element A2+A plus the element A+1 equals the

16 System Design

16-88

element A2+1. The equivalence arises from the binary representation of 6 as 110, 3 as 011, and 5 as
101.

The subtraction table, which you can obtain by replacing + by -, is the same as addtb. This is
because subtraction and addition are identical operations in a field of characteristic two. In fact, the
zeros along the main diagonal of addtb illustrate this fact for GF(8).

Simplifying the Syntax

The code below illustrates scalar expansion and the implicit creation of a Galois field array from an
ordinary MATLAB array. The Galois field arrays h and h1 are identical, but the creation of h uses a
simpler syntax.

g = gf(ones(2,3),4); % Create a Galois array explicitly.
h = g + 5; % Add gf(5,4) to each element of g.
h1 = g + gf(5*ones(2,3),4) % Same as h.

The output is below.

h1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 4 4 4
 4 4 4

Notice that 1+5 is reported as 4 in the Galois field. This is true because the 5 represents the
polynomial expression A2+1, and 1+(A2+1) in GF(16) is A2. Furthermore, the integer that represents
the polynomial expression A2 is 4.
Example: Multiplication

The example below multiplies individual elements in a Galois field array using the .* operator. It then
performs matrix multiplication using the * operator. The elementwise multiplication produces an
array whose size matches that of the inputs. By contrast, the matrix multiplication produces a Galois
scalar because it is the matrix product of a row vector with a column vector.

m = 5;
row1 = gf([1:2:9],m); row2 = gf([2:2:10],m);
col = row2'; % Transpose to create a column array.
ep = row1 .* row2; % Elementwise product.
mp = row1 * col; % Matrix product.

Multiplication Table for GF(8)

As another example, the code below multiplies two Galois vectors using matrix multiplication. The
result is a multiplication table for GF(8).

m = 3;
els = gf([0:2^m-1]',m);
multb = els * els' % Multiply els by its own matrix transpose.

The output is below.

multb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 Error Detection and Correction

16-89

 0 0 0 0 0 0 0 0
 0 1 2 3 4 5 6 7
 0 2 4 6 3 1 7 5
 0 3 6 5 7 4 1 2
 0 4 3 7 6 2 5 1
 0 5 1 4 2 7 3 6
 0 6 7 1 5 3 2 4
 0 7 5 2 1 6 4 3

Example: Division

The examples below illustrate the four division operators in a Galois field by computing multiplicative
inverses of individual elements and of an array. You can also compute inverses using inv or using
exponentiation by -1.

Elementwise Division

This example divides 1 by each of the individual elements in a Galois field array using the ./ and .\
operators. These two operators differ only in their sequence of input arguments. Each quotient vector
lists the multiplicative inverses of the nonzero elements of the field. In this example, MATLAB
expands the scalar 1 to the size of nz before computing; alternatively, you can use as arguments two
arrays of the same size.

m = 5;
nz = gf([1:2^m-1],m); % Nonzero elements of the field
inv1 = 1 ./ nz; % Divide 1 by each element.
inv2 = nz .\ 1; % Obtain same result using .\ operator.

Matrix Division

This example divides the identity array by the square Galois field array mat using the / and \
operators. Each quotient matrix is the multiplicative inverse of mat. Notice how the transpose
operator (') appears in the equivalent operation using \. For square matrices, the sequence of
transpose operations is unnecessary, but for nonsquare matrices, it is necessary.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minv1 = eye(3) / mat; % Compute matrix inverse.
minv2 = (mat' \ eye(3)')'; % Obtain same result using \ operator.

Example: Exponentiation

The examples below illustrate how to compute integer powers of a Galois field array. To perform
matrix exponentiation on a Galois field array, you must use a square Galois field array as the base and
an ordinary (not Galois) integer scalar as the exponent.

Elementwise Exponentiation

This example computes powers of a primitive element, A, of a Galois field. It then uses these
separately computed powers to evaluate the default primitive polynomial at A. The answer of zero
shows that A is a root of the primitive polynomial. The .^ operator exponentiates each array element
independently.

m = 3;
av = gf(2*ones(1,m+1),m); % Row containing primitive element
expa = av .^ [0:m]; % Raise element to different powers.
evp = expa(4)+expa(2)+expa(1) % Evaluate D^3 + D + 1.

16 System Design

16-90

The output is below.

evp = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 0

Matrix Exponentiation

This example computes the inverse of a square matrix by raising the matrix to the power -1. It also
raises the square matrix to the powers 2 and -2.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minvs = mat ^ (-1); % Matrix inverse
matsq = mat^2; % Same as mat * mat
matinvssq = mat^(-2); % Same as minvs * minvs

Example: Elementwise Logarithm

The code below computes the logarithm of the elements of a Galois field array. The output indicates
how to express each nonzero element of GF(8) as a power of the primitive element. The logarithm of
the zero element of the field is undefined.

gf8_nonzero = gf([1:7],3); % Vector of nonzero elements of GF(8)
expformat = log(gf8_nonzero) % Logarithm of each element

The output is

expformat =

 0 1 3 2 6 4 5

As an example of how to interpret the output, consider the last entry in each vector in this example.
You can infer that the element gf(7,3) in GF(8) can be expressed as either

• A5, using the last element of expformat
• A2+A+1, using the binary representation of 7 as 111. See “Example: Representing Elements of

GF(8)” on page 16-84 for more details.

Logical Operations in Galois Fields

• “Section Overview” on page 16-91
• “Testing for Equality” on page 16-91
• “Testing for Nonzero Values” on page 16-92

Section Overview

You can apply logical tests to Galois field arrays and obtain a logical array. Some important types of
tests are testing for the equality of two Galois field arrays and testing for nonzero values on page 16-
92 in a Galois field array.
Testing for Equality

To compare corresponding elements of two Galois field arrays that have the same size, use the
operators == and ~=. The result is a logical array, each element of which indicates the truth or falsity

 Error Detection and Correction

16-91

of the corresponding elementwise comparison. If you use the same operators to compare a scalar
with a Galois field array, MATLAB technical computing software compares the scalar with each
element of the array, producing a logical array of the same size.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg1 = (r1 .* r2 == [1 1 1]) % Does each element equal one?
lg2 = (r1 .* r2 == 1) % Same as above, using scalar expansion
lg3 = (r1 ~= r2) % Does each element differ from its inverse?

The output is below.

lg1 =

 1 1 1

lg2 =

 1 1 1

lg3 =

 0 1 1

Comparison of isequal and ==

To compare entire arrays and obtain a logical scalar result rather than a logical array, use the built-in
isequal function. However, isequal uses strict rules for its comparison, and returns a value of 0
(false) if you compare

• A Galois field array with an ordinary MATLAB array, even if the values of the underlying array
elements match

• A scalar with a nonscalar array, even if all elements in the array match the scalar

The example below illustrates this difference between == and isequal.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg4 = isequal(r1 .* r2, [1 1 1]); % False
lg5 = isequal(r1 .* r2, gf(1,m)); % False
lg6 = isequal(r1 .* r2, gf([1 1 1],m)); % True

Testing for Nonzero Values

To test for nonzero values in a Galois vector, or in the columns of a Galois field array that has more
than one row, use the any or all function. These two functions behave just like the ordinary MATLAB
functions any and all, except that they consider only the underlying array elements while ignoring
information about which Galois field the elements are in. Examples are below.

m = 3; randels = gf(randi([0 2^m-1],6,1),m);
if all(randels) % If all elements are invertible
 invels = randels .\ 1; % Compute inverses of elements.
else
 disp('At least one element was not invertible.');
end
alph = gf(2,4);
poly = 1 + alph + alph^3;

16 System Design

16-92

if any(poly) % If poly contains a nonzero value
 disp('alph is not a root of 1 + D + D^3.');
end
code = [0:4 4 0; 3:7 4 5]
if all(code,2) % Is each row entirely nonzero?
 disp('Both codewords are entirely nonzero.');
else
 disp('At least one codeword contains a zero.');
end

Matrix Manipulation in Galois Fields

• “Basic Manipulations of Galois Field Arrays” on page 16-93
• “Basic Information About Galois Field Arrays” on page 16-93

Basic Manipulations of Galois Field Arrays

Basic array operations on Galois field arrays are in the table below. The functionality of these
operations is analogous to the MATLAB operations having the same syntax.

Operation Syntax
Index into array, possibly using colon operator
instead of a vector of explicit indices

a(vector) or a(vector,vector1), where
vector and/or vector1 can be ":" instead of a
vector

Transpose array a'
Concatenate matrices [a,b] or [a;b]
Create array having specified diagonal elements diag(vector) or diag(vector,k)
Extract diagonal elements diag(a) or diag(a,k)
Extract lower triangular part tril(a) or tril(a,k)
Extract upper triangular part triu(a) or triu(a,k)
Change shape of array reshape(a,k1,k2)

The code below uses some of these syntaxes.

m = 4; a = gf([0:15],m);
a(1:2) = [13 13]; % Replace some elements of the vector a.
b = reshape(a,2,8); % Create 2-by-8 matrix.
c = [b([1 1 2],1:3); a(4:6)]; % Create 4-by-3 matrix.
d = [c, a(1:4)']; % Create 4-by-4 matrix.
dvec = diag(d); % Extract main diagonal of d.
dmat = diag(a(5:9)); % Create 5-by-5 diagonal matrix
dtril = tril(d); % Extract upper and lower triangular
dtriu = triu(d); % parts of d.

Basic Information About Galois Field Arrays

You can determine the length of a Galois vector or the size of any Galois field array using the length
and size functions. The functionality for Galois field arrays is analogous to that of the MATLAB
operations on ordinary arrays, except that the output arguments from size and length are always
integers, not Galois field arrays. The code below illustrates the use of these functions.

m = 4; e = gf([0:5],m); f = reshape(e,2,3);
lne = length(e); % Vector length of e

 Error Detection and Correction

16-93

szf = size(f); % Size of f, returned as a two-element row
[nr,nc] = size(f); % Size of f, returned as two scalars
nc2 = size(f,2); % Another way to compute number of columns

Positions of Nonzero Elements

Another type of information you might want to determine from a Galois field array are the positions of
nonzero elements. For an ordinary MATLAB array, you might use the find function. However, for a
Galois field array, you should use find in conjunction with the ~= operator, as illustrated.

x = [0 1 2 1 0 2]; m = 2; g = gf(x,m);
nzx = find(x); % Find nonzero values in the ordinary array x.
nzg = find(g~=0); % Find nonzero values in the Galois array g.

Linear Algebra in Galois Fields

• “Inverting Matrices and Computing Determinants” on page 16-94
• “Computing Ranks” on page 16-95
• “Factoring Square Matrices” on page 16-95
• “Solving Linear Equations” on page 16-95

Inverting Matrices and Computing Determinants

To invert a square Galois field array, use the inv function. Related is the det function, which
computes the determinant of a Galois field array. Both inv and det behave like their ordinary
MATLAB counterparts, except that they perform computations in the Galois field instead of in the
field of complex numbers.

Note A Galois field array is singular if and only if its determinant is exactly zero. It is not necessary
to consider roundoff errors, as in the case of real and complex arrays.

The code below illustrates matrix inversion and determinant computation.

m = 4;
randommatrix = gf(randi([0 2^m-1],4,4),m);
gfid = gf(eye(4),m);
if det(randommatrix) ~= 0
 invmatrix = inv(randommatrix);
 check1 = invmatrix * randommatrix;
 check2 = randommatrix * invmatrix;
 if (isequal(check1,gfid) & isequal(check2,gfid))
 disp('inv found the correct matrix inverse.');
 end
else
 disp('The matrix is not invertible.');
end

The output from this example is either of these two messages, depending on whether the randomly
generated matrix is nonsingular or singular.

inv found the correct matrix inverse.
The matrix is not invertible.

16 System Design

16-94

Computing Ranks

To compute the rank of a Galois field array, use the rank function. It behaves like the ordinary
MATLAB rank function when given exactly one input argument. The example below illustrates how to
find the rank of square and nonsquare Galois field arrays.

m = 3;
asquare = gf([4 7 6; 4 6 5; 0 6 1],m);
r1 = rank(asquare);
anonsquare = gf([4 7 6 3; 4 6 5 1; 0 6 1 1],m);
r2 = rank(anonsquare);
[r1 r2]

The output is

ans =

 2 3

The values of r1 and r2 indicate that asquare has less than full rank but that anonsquare has full
rank.

Factoring Square Matrices

To express a square Galois field array (or a permutation of it) as the product of a lower triangular
Galois field array and an upper triangular Galois field array, use the lu function. This function
accepts one input argument and produces exactly two or three output arguments. It behaves like the
ordinary MATLAB lu function when given the same syntax. The example below illustrates how to
factor using lu.

tofactor = gf([6 5 7 6; 5 6 2 5; 0 1 7 7; 1 0 5 1],3);
[L,U]=lu(tofactor); % lu with two output arguments
c1 = isequal(L*U, tofactor) % True
tofactor2 = gf([1 2 3 4;1 2 3 0;2 5 2 1; 0 5 0 0],3);
[L2,U2,P] = lu(tofactor2); % lu with three output arguments
c2 = isequal(L2*U2, P*tofactor2) % True

Solving Linear Equations

To find a particular solution of a linear equation in a Galois field, use the \ or / operator on Galois
field arrays. The table below indicates the equation that each operator addresses, assuming that A
and B are previously defined Galois field arrays.

Operator Linear Equation Syntax Equivalent Syntax Using \
Backslash (\) A * x = B x = A \ B Not applicable
Slash (/) x * A = B x = B / A x = (A'\B')'

The results of the syntax in the table depend on characteristics of the Galois field array A:

• If A is square and nonsingular, the output x is the unique solution to the linear equation.
• If A is square and singular, the syntax in the table produces an error.
• If A is not square, MATLAB attempts to find a particular solution. If A'*A or A*A' is a singular

array, or if A is a matrix, where the rows outnumber the columns, that represents an
overdetermined system, the attempt might fail.

 Error Detection and Correction

16-95

Note An error message does not necessarily indicate that the linear equation has no solution. You
might be able to find a solution by rephrasing the problem. For example, gf([1 2; 0 0],3) \
gf([1; 0],3) produces an error but the mathematically equivalent gf([1 2],3) \ gf([1],3)
does not. The first syntax fails because gf([1 2; 0 0],3) is a singular square matrix.

Example: Solving Linear Equations

The examples below illustrate how to find particular solutions of linear equations over a Galois field.

m = 4;
A = gf(magic(3),m); % Square nonsingular matrix
Awide=[A, 2*A(:,3)]; % 3-by-4 matrix with redundancy on the right
Atall = Awide'; % 4-by-3 matrix with redundancy at the bottom
B = gf([0:2]',m);
C = [B; 2*B(3)];
D = [B; B(3)+1];
thesolution = A \ B; % Solution of A * x = B
thesolution2 = B' / A; % Solution of x * A = B'
ck1 = all(A * thesolution == B) % Check validity of solutions.
ck2 = all(thesolution2 * A == B')
% Awide * x = B has infinitely many solutions. Find one.
onesolution = Awide \ B;
ck3 = all(Awide * onesolution == B) % Check validity of solution.
% Atall * x = C has a solution.
asolution = Atall \ C;
ck4 = all(Atall * asolution == C) % Check validity of solution.
% Atall * x = D has no solution.
notasolution = Atall \ D;
ck5 = all(Atall * notasolution == D) % It is not a valid solution.

The output from this example indicates that the validity checks are all true (1), except for ck5, which
is false (0).

Signal Processing Operations in Galois Fields

• “Section Overview” on page 16-96
• “Filtering” on page 16-96
• “Convolution” on page 16-97
• “Discrete Fourier Transform” on page 16-98

Section Overview

You can perform some signal-processing operations on Galois field arrays, such as filtering on page
16-96, convolution on page 16-97, and the discrete Fourier transform on page 16-98.

This section describes how to perform these operations.

Other information about the corresponding operations for ordinary real vectors is in the Signal
Processing Toolbox™ documentation.
Filtering

To filter a Galois vector, use the filter function. It behaves like the ordinary MATLAB filter
function when given exactly three input arguments.

The code and diagram below give the impulse response of a particular filter over GF(2).

16 System Design

16-96

m = 1; % Work in GF(2).
b = gf([1 0 0 1 0 1 0 1],m); % Numerator
a = gf([1 0 1 1],m); % Denominator
x = gf([1,zeros(1,19)],m);
y = filter(b,a,x); % Filter x.
figure; stem(y.x); % Create stem plot.
axis([0 20 -.1 1.1])

Convolution

Communications Toolbox software offers two equivalent ways to convolve a pair of Galois vectors:

• Use the conv function, as described in “Multiplication and Division of Polynomials” on page 16-
99. This works because convolving two vectors is equivalent to multiplying the two polynomials
whose coefficients are the entries of the vectors.

• Use the convmtx function to compute the convolution matrix of one of the vectors, and then
multiply that matrix by the other vector. This works because convolving two vectors is equivalent
to filtering one of the vectors by the other. The equivalence permits the representation of a digital
filter as a convolution matrix, which you can then multiply by any Galois vector of appropriate
length.

Tip If you need to convolve large Galois vectors, multiplying by the convolution matrix might be
faster than using conv.

Example

Computes the convolution matrix for a vector b in GF(4). Represent the numerator coefficients for a
digital filter, and then illustrate the two equivalent ways to convolve b with x over the Galois field.

m = 2; b = gf([1 2 3]',m);
n = 3; x = gf(randi([0 2^m-1],n,1),m);

 Error Detection and Correction

16-97

C = convmtx(b,n); % Compute convolution matrix.
v1 = conv(b,x); % Use conv to convolve b with x
v2 = C*x; % Use C to convolve b with x.

Discrete Fourier Transform

The discrete Fourier transform is an important tool in digital signal processing. This toolbox offers
these tools to help you process discrete Fourier transforms:

• fft, which transforms a Galois vector
• ifft, which inverts the discrete Fourier transform on a Galois vector
• dftmtx, which returns a Galois field array that you can use to perform or invert the discrete

Fourier transform on a Galois vector

In all cases, the vector being transformed must be a Galois vector of length 2m-1 in the field GF(2m).
The following example illustrates the use of these functions. You can check, using the isequal
function, that y equals y1, z equals z1, and z equals x.

m = 4;
x = gf(randi([0 2^m-1],2^m-1,1),m); % A vector to transform
alph = gf(2,m);
dm = dftmtx(alph);
idm = dftmtx(1/alph);
y = dm*x; % Transform x using the result of dftmtx.
y1 = fft(x); % Transform x using fft.
z = idm*y; % Recover x using the result of dftmtx(1/alph).
z1 = ifft(y1); % Recover x using ifft.

Tip If you have many vectors that you want to transform (in the same field), it might be faster to use
dftmtx once and matrix multiplication many times, instead of using fft many times.

Polynomials over Galois Fields

• “Section Overview” on page 16-98
• “Addition and Subtraction of Polynomials” on page 16-99
• “Multiplication and Division of Polynomials” on page 16-99
• “Evaluating Polynomials” on page 16-99
• “Roots of Polynomials” on page 16-100
• “Roots of Binary Polynomials” on page 16-100
• “Minimal Polynomials” on page 16-101

Section Overview

You can use Galois vectors to represent polynomials in an indeterminate quantity x, with coefficients
in a Galois field. Form the representation by listing the coefficients of the polynomial in a vector in
order of descending powers of x. For example, the vector

gf([2 1 0 3],4)

represents the polynomial Ax3 + 1x2 + 0x + (A+1), where

• A is a primitive element in the field GF(24).

16 System Design

16-98

• x is the indeterminate quantity in the polynomial.

You can then use such a Galois vector to perform arithmetic with, evaluate on page 16-99, and find
roots on page 16-100 of polynomials. You can also find minimal polynomials on page 16-101 of
elements of a Galois field.

Addition and Subtraction of Polynomials

To add and subtract polynomials, use + and - on equal-length Galois vectors that represent the
polynomials. If one polynomial has lower degree than the other, you must pad the shorter vector with
zeros at the beginning so the two vectors have the same length. The example below shows how to add
a degree-one and a degree-two polynomial.

lin = gf([4 2],3); % A^2 x + A, which is linear in x
linpadded = gf([0 4 2],3); % The same polynomial, zero-padded
quadr = gf([1 4 2],3); % x^2 + A^2 x + A, which is quadratic in x
% Can't do lin + quadr because they have different vector lengths.
sumpoly = [0, lin] + quadr; % Sum of the two polynomials
sumpoly2 = linpadded + quadr; % The same sum

Multiplication and Division of Polynomials

To multiply and divide polynomials, use conv and deconv on Galois vectors that represent the
polynomials. Multiplication and division of polynomials is equivalent to convolution and deconvolution
of vectors. The deconv function returns the quotient of the two polynomials as well as the remainder
polynomial. Examples are below.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
bpoly = gf([1 1],m); % x + 1
xpoly = gf([1 0],m); % x
% Product is A^2 x^3 + x^2 + (A^2 + A) x + (A + 1).
cpoly = conv(apoly,bpoly);
[a2,remd] = deconv(cpoly,bpoly); % a2==apoly. remd is zero.
[otherpol,remd2] = deconv(cpoly,xpoly); % remd is nonzero.

The multiplication and division operators in “Arithmetic in Galois Fields” on page 16-87 multiply
elements or matrices, not polynomials.

Evaluating Polynomials

To evaluate a polynomial at an element of a Galois field, use polyval. It behaves like the ordinary
MATLAB polyval function when given exactly two input arguments. The example below evaluates a
polynomial at several elements in a field and checks the results using .^ and .* in the field.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
x0 = gf([0 1 2],m); % Points at which to evaluate the polynomial
y = polyval(apoly,x0)

a = gf(2,m); % Primitive element of the field, corresponding to A.
y2 = a.^2.*x0.^2 + (a.^2+1).*x0 + (a+1) % Check the result.

The output is below.

y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 Error Detection and Correction

16-99

 3 2 10

y2 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 3 2 10

The first element of y evaluates the polynomial at 0 and, therefore, returns the polynomial's constant
term of 3.
Roots of Polynomials

To find the roots of a polynomial in a Galois field, use the roots function on a Galois vector that
represents the polynomial. This function finds roots that are in the same field that the Galois vector is
in. The number of times an entry appears in the output vector from roots is exactly its multiplicity as
a root of the polynomial.

Note If the Galois vector is in GF(2m), the polynomial it represents might have additional roots in
some extension field GF((2m)k). However, roots does not find those additional roots or indicate their
existence.

The examples below find roots of cubic polynomials in GF(8).

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3
 root = rts(ii);
 rootsquared = gfmul(root,root,field);
 rootcubed = gfmul(root,rootsquared,field);
 answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
 % Recall that 1 is really alpha to the zero power.
 % If answer = -Inf, then the variable root represents
 % a root of the polynomial.
end
answer

Roots of Binary Polynomials

In the special case of a polynomial having binary coefficients, it is also easy to find roots that exist in
an extension field. This is because the elements 0 and 1 have the same unambiguous representation
in all fields of characteristic two. To find roots of a binary polynomial in an extension field, apply the
roots function to a Galois vector in the extension field whose array elements are the binary
coefficients of the polynomial.

The example below seeks the roots of a binary polynomial in various fields.

gf2poly = gf([1 1 1],1); % x^2 + x + 1 in GF(2)
noroots = roots(gf2poly); % No roots in the ground field, GF(2)
gf4poly = gf([1 1 1],2); % x^2 + x + 1 in GF(4)

16 System Design

16-100

roots4 = roots(gf4poly); % The roots are A and A+1, in GF(4).
gf16poly = gf([1 1 1],4); % x^2 + x + 1 in GF(16)
roots16 = roots(gf16poly); % Roots in GF(16)
checkanswer4 = polyval(gf4poly,roots4); % Zero vector
checkanswer16 = polyval(gf16poly,roots16); % Zero vector

The roots of the polynomial do not exist in GF(2), so noroots is an empty array. However, the roots
of the polynomial exist in GF(4) as well as in GF(16), so roots4 and roots16 are nonempty.

Notice that roots4 and roots16 are not equal to each other. They differ in these ways:

• roots4 is a GF(4) array, while roots16 is a GF(16) array. MATLAB keeps track of the underlying
field of a Galois field array.

• The array elements in roots4 and roots16 differ because they use representations with respect
to different primitive polynomials. For example, 2 (which represents a primitive element) is an
element of the vector roots4 because the default primitive polynomial for GF(4) is the same
polynomial that gf4poly represents. On the other hand, 2 is not an element of roots16 because
the primitive element of GF(16) is not a root of the polynomial that gf16poly represents.

Minimal Polynomials

The minimal polynomial of an element of GF(2m) is the smallest degree nonzero binary-coefficient
polynomial having that element as a root in GF(2m). To find the minimal polynomial of an element or a
column vector of elements, use the minpol function.

The code below finds that the minimal polynomial of gf(6,4) is D2 + D + 1 and then checks that
gf(6,4) is indeed among the roots of that polynomial in the field GF(16).

m = 4;
e = gf(6,4);
em = minpol(e) % Find minimal polynomial of e. em is in GF(2).

emr = roots(gf([0 0 1 1 1],m)) % Roots of D^2+D+1 in GF(2^m)

The output is

em = GF(2) array.

Array elements =

 0 0 1 1 1

emr = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 6
 7

To find out which elements of a Galois field share the same minimal polynomial, use the cosets
function.

Manipulating Galois Variables

• “Section Overview” on page 16-102

 Error Detection and Correction

16-101

• “Determining Whether a Variable Is a Galois Field Array” on page 16-102
• “Extracting Information from a Galois Field Array” on page 16-102
• “Use Field Extension Suffixes Appended to Galois Field Array Variables” on page 16-102

Section Overview

This section describes techniques for manipulating Galois variables or for transferring information
between Galois field arrays and ordinary MATLAB arrays.

Note These techniques are particularly relevant if you write MATLAB file functions that process
Galois field arrays. For an example of this type of usage, enter edit gf/conv in the Command
Window and examine the first several lines of code in the editor window.

Determining Whether a Variable Is a Galois Field Array

To find out whether a variable is a Galois field array rather than an ordinary MATLAB array, use the
isa function. An illustration is below.

mlvar = eye(3);
gfvar = gf(mlvar,3);
no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
yes = isa(gfvar,'gf'); % True because gfvar is a Galois array

Extracting Information from a Galois Field Array

To extract the array elements, field order, or primitive polynomial from a variable that is a Galois field
array, append a suffix to the name of the variable. The table below lists the exact suffixes, which are
independent of the name of the variable.

Information Suffix Output Value
Array elements .x MATLAB array of type uint16

that contains the data values
from the Galois field array.

Field order .m Integer of type double that
indicates that the Galois field
array is in GF(2^m).

Primitive polynomial .prim_poly Integer of type uint32 that
represents the primitive
polynomial. The representation
is similar to the description in
“How Integers Correspond to
Galois Field Elements” on page
16-84.

Note If the output value is an integer data type and you want to convert it to double for later
manipulation, use the double function.

Use Field Extension Suffixes Appended to Galois Field Array Variables

16 System Design

16-102

Extract information from Galois field arrays by using field extension suffixes.

Array elements (.x)

Convert a Galois field array to doubles.

a = gf([1,0])

a = GF(2) array.

Array elements =

 1 0

b = double(a.x) % a.x is in uint16

b = 1×2

 1 0

Field Order (.m)

Check that e solves its own minimal polynomial. Create empr as a Galois field array in a field order
extension field (.m) by using a vector of binary coefficients of a polynomial (emp.x).

e = gf(6,4); % An element of GF(16)
emp = minpol(e); % Minimal polynomial is in GF(2)
empr = roots(gf(emp.x,e.m)) % Find roots of emp in GF(16)

empr = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 6
 7

Primitive polynomial (.prim_poly)

Check that the primitive element gf(2,m) is really a root of the primitive polynomial for the field by
confirming the output vector includes 2. Retrieve the primitive polynomial for the field and convert it
to a binary vector representation having the appropriate number of bits.

primpoly_int = double(e.prim_poly);
mval = e.m;
primpoly_vect = gf(int2bit(primpoly_int,mval+1)',mval);
containstwo = roots(primpoly_vect)

containstwo = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 2
 3

 Error Detection and Correction

16-103

 4
 5

Speed and Nondefault Primitive Polynomials

“Primitive Polynomials and Element Representations” on page 16-85 describes how to represent
elements of a Galois field with respect to a primitive polynomial of your choice. This section describes
how you can increase the speed of computations involving a Galois field array that uses a primitive
polynomial other than the default primitive polynomial. The technique is recommended if you perform
many such computations.

The mechanism for increasing the speed is a data file, userGftable.mat, that some computational
functions use to avoid performing certain computations repeatedly. To take advantage of this
mechanism for your combination of field order (m) and primitive polynomial (prim_poly):

1 Navigate in the MATLAB application to a folder to which you have write permission. You can use
either the cd function or the Current Folder feature to navigate.

2 Define m and prim_poly as workspace variables. For example:

m = 3; prim_poly = 13; % Examples of valid values
3 Invoke the gftable function:

gftable(m,prim_poly); % If you previously defined m and prim_poly

The function revises or creates userGftable.mat in your current working folder to include data
relating to your combination of field order and primitive polynomial. After you initially invest the time
to invoke gftable, subsequent computations using those values of m and prim_poly should be
faster.

Note If you change your current working directory after invoking gftable, you must place
userGftable.mat on your MATLAB path to ensure that MATLAB can see it. Do this by using the
addpath command to prefix the directory containing userGftable.mat to your MATLAB path. If
you have multiple copies of userGftable.mat on your path, use which('userGftable.mat','-
all') to find out where they are and which one MATLAB is using.

To see how much gftable improves the speed of your computations, you can surround your
computations with the tic and toc functions. See the gftable reference page for an example.

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA, Addison-Wesley,
1983, p. 105.

[2] Lang, Serge, Algebra, Third Edition, Reading, MA, Addison-Wesley, 1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

[5] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage, Upper Saddle
River, NJ, Prentice Hall, 1995.

16 System Design

16-104

Galois Fields of Odd Characteristic
A Galois field is an algebraic field having pm elements, where p is prime and m is a positive integer.
This section describes how to work with Galois fields in which p is odd. To work with Galois fields
having an even number of elements, see Galois Field Computations on page 16-81. The subsections in
this section are as follows.

• “Galois Field Terminology” on page 16-105
• “Representing Elements of Galois Fields” on page 16-105
• “Default Primitive Polynomials” on page 16-108
• “Converting and Simplifying Element Formats” on page 16-108
• “Arithmetic in Galois Fields” on page 16-111
• “Polynomials over Prime Fields” on page 16-112
• “Other Galois Field Functions” on page 16-115
• “Selected Bibliography for Galois Fields” on page 16-115

Galois Field Terminology

Throughout this section, p is an odd prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the literature. The definitions
adopted here appear in van Lint [5].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero elements of GF(pm).
This means that every nonzero element of the field can be expressed as the primitive element
raised to some integer power. Primitive elements are called A throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some primitive element of GF(pm).
As a consequence, it has degree m and is irreducible.

Representing Elements of Galois Fields

• “Section Overview” on page 16-105
• “Exponential Format” on page 16-106
• “Polynomial Format” on page 16-106
• “List of All Elements of a Galois Field” on page 16-106
• “Nonuniqueness of Representations” on page 16-107

Section Overview

This section discusses how to represent Galois field elements using this toolbox's exponential on page
16-106 format and polynomial on page 16-106 format. It also describes a way to list all elements on
page 16-106 of the Galois field, because some functions use such a list as an input argument. Finally,
it discusses the nonuniqueness on page 16-107 of representations of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least 2, GF(pm) is called an extension field. Integers alone cannot represent the
elements of GF(pm) in a straightforward way. MATLAB technical computing software uses two main
conventions for representing elements of GF(pm): the exponential format and the polynomial format.

 Error Detection and Correction

16-105

Note Both the exponential format and the polynomial format are relative to your choice of a
particular primitive element A of GF(pm).

Exponential Format

This format uses the property that every nonzero element of GF(pm) can be expressed as Ac for some
integer c between 0 and pm-2. Higher exponents are not needed, because the theory of Galois fields
implies that every nonzero element of GF(pm) satisfies the equation xq-1 = 1 where q = pm.

The use of the exponential format is shown in the table below.

Element of GF(pm) MATLAB Representation of the Element
0 -Inf
A0 = 1 0
A1 1
... ...
Aq-2 where q = pm q-2

Although -Inf is the standard exponential representation of the zero element, all negative integers
are equivalent to -Inf when used as input arguments in exponential format. This equivalence can be
useful; for example, see the concise line of code at the end of the section “Default Primitive
Polynomials” on page 16-108.

Note The equivalence of all negative integers and -Inf as exponential formats means that, for
example, -1 does not represent A-1, the multiplicative inverse of A. Instead, -1 represents the zero
element of the field.

Polynomial Format

The polynomial format uses the property that every element of GF(pm) can be expressed as a
polynomial in A with exponents between 0 and m-1, and coefficients in GF(p). In the polynomial
format, the element

A(1) + A(2) A + A(3) A2 + ... + A(m) Am-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note The Galois field functions in this toolbox represent a polynomial as a vector that lists the
coefficients in order of ascending powers of the variable. This is the opposite of the order that other
MATLAB functions use.

List of All Elements of a Galois Field

Some Galois field functions in this toolbox require an argument that lists all elements of an extension
field GF(pm). This is again relative to a particular primitive element A of GF(pm). The proper format
for the list of elements is that of a matrix having pm rows, one for each element of the field. The

16 System Design

16-106

matrix has m columns, one for each coefficient of a power of A in the polynomial format shown in
“Polynomial Format” on page 16-106 above. The first row contains only zeros because it corresponds
to the zero element in GF(pm). If k is between 2 and pm, then the kth row specifies the polynomial
format of the element Ak-2.

The minimal polynomial of A aids in the computation of this matrix, because it tells how to express Am

in terms of lower powers of A. For example, the table below lists the elements of GF(32), where A is a
root of the primitive polynomial 2 + 2x + x2. This polynomial allows repeated use of the substitution

A2 = -2 - 2A = 1 + A

when performing the computations in the middle column of the table.

Elements of GF(9)

Exponential Format Polynomial Format Row of MATLAB Matrix of
Elements

A-Inf 0 0 0
A0 1 1 0
A1 A 0 1
A2 1+A 1 1
A3 A + A2 = A + 1 + A = 1 + 2A 1 2
A4 A + 2A2 = A + 2 + 2A = 2 2 0
A5 2A 0 2
A6 2A2 = 2 + 2A 2 2
A7 2A + 2A2 = 2A + 2 + 2A = 2 + A 2 1

Example

An automatic way to generate the matrix whose rows are in the third column of the table above is to
use the code below.

p = 3; m = 2;
% Use the primitive polynomial 2 + 2x + x^2 for GF(9).
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);

The gftuple function is discussed in more detail in “Converting and Simplifying Element Formats”
on page 16-108.

Nonuniqueness of Representations

A given field has more than one primitive element. If two primitive elements have different minimal
polynomials, then the corresponding matrices of elements will have their rows in a different order. If
the two primitive elements share the same minimal polynomial, then the matrix of elements of the
field is the same.

Note You can use whatever primitive element you want, as long as you understand how the inputs
and outputs of Galois field functions depend on the choice of some primitive polynomial. It is usually
best to use the same primitive polynomial throughout a given script or function.

 Error Detection and Correction

16-107

Other ways in which representations of elements are not unique arise from the equations that Galois
field elements satisfy. For example, an exponential format of 8 in GF(9) is really the same as an
exponential format of 0, because A8 = 1 = A0 in GF(9). As another example, the substitution
mentioned just before the table Elements of GF(9) shows that the polynomial format [0 0 1] is really
the same as the polynomial format [1 1].

Default Primitive Polynomials

This toolbox provides a default primitive polynomial for each extension field. You can retrieve this
polynomial using the gfprimdf function. The command

prim_poly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal polynomial for GF(pm).

For example, the command below shows that the default primitive polynomial for GF(9) is 2 + x + x2,
not the polynomial used in “List of All Elements of a Galois Field” on page 16-106.

poly1=gfprimdf(2,3);

poly1 =

 2 1 1

To generate a list of elements of GF(pm) using the default primitive polynomial, use the command

field = gftuple([-1:p^m-2]',m,p);

Converting and Simplifying Element Formats

• “Converting to Simplest Polynomial Format” on page 16-108
• “Example: Generating a List of Galois Field Elements” on page 16-110
• “Converting to Simplest Exponential Format” on page 16-110

Converting to Simplest Polynomial Format

The gftuple function produces the simplest polynomial representation of an element of GF(pm),
given either an exponential representation or a polynomial representation of that element. This can
be useful for generating the list of elements of GF(pm) that other functions require.

Using gftuple requires three arguments: one representing an element of GF(pm), one indicating the
primitive polynomial that MATLAB technical computing software should use when computing the
output, and the prime p. The table below indicates how gftuple behaves when given the first two
arguments in various formats.

16 System Design

16-108

Behavior of gftuple Depending on Format of First Two Inputs
How to Specify Element How to Indicate Primitive

Polynomial
What gftuple Produces

Exponential format; c = any
integer

Integer m > 1 Polynomial format of Ac, where
A is a root of the default
primitive polynomial for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here
Exponential format; c = any
integer

Vector of coefficients of
primitive polynomial

Polynomial format of Ac, where
A is a root of the given primitive
polynomial

Example: polynomial = gfprimdf(2,3); tp = gftuple(6,polynomial,3); % c = 6
here
Polynomial format of any degree Integer m > 1 Polynomial format of degree <

m, using default primitive
polynomial for GF(pm) to
simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);
Polynomial format of any degree Vector of coefficients of

primitive polynomial
Polynomial format of degree <
m, using the given primitive
polynomial for GF(pm) to
simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0
1],polynomial,3);

The four examples that appear in the table above all produce the same vector tp = [2, 1], but
their different inputs to gftuple correspond to the lines of the table. Each example expresses the
fact that A6 = 2+A, where A is a root of the (default) primitive polynomial 2 + x+ x2 for GF(32).

Example

This example shows how gfconv and gftuple combine to multiply two polynomial-format elements
of GF(34). Initially, gfconv multiplies the two polynomials, treating the primitive element as if it were
a variable. This produces a high-order polynomial, which gftuple simplifies using the polynomial
equation that the primitive element satisfies. The final result is the simplest polynomial format of the
product.

p = 3; m = 4;
a = [1 2 0 1]; b = [2 2 1 2];
notsimple = gfconv(a,b,p) % a times b, using high powers of alpha
simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

The output is below.

notsimple =

 2 0 2 0 0 1 2

simple =

 2 1 0 1

 Error Detection and Correction

16-109

Example: Generating a List of Galois Field Elements

This example applies the conversion functionality to the task of generating a matrix that lists all
elements of a Galois field. A matrix that lists all field elements is an input argument in functions such
as gfadd and gfmul. The variables field1 and field2 below have the format that such functions
expect.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field1 = gftuple([-1:p^m-2]',m,p);

prim_poly = gfprimdf(m,p); % Or any primitive polynomial
% for GF(p^m)
field2 = gftuple([-1:p^m-2]',prim_poly,p);

Converting to Simplest Exponential Format

The same function gftuple also produces the simplest exponential representation of an element of
GF(pm), given either an exponential representation or a polynomial representation of that element. To
retrieve this output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in the table Behavior of gftuple Depending on
Format of First Two Inputs. In addition, the variable expformat contains the simplest exponential
format of the element represented in polyformat. It is simplest in the sense that the exponent is
either -Inf or a number between 0 and pm-2.

Example

To recover the exponential format of the element 2 + A that the previous section considered, use the
commands below. In this case, polyformat contains redundant information, while expformat
contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

 2 1

expformat =

 6

This output appears at first to contradict the information in the table Elements of GF(9) , but in fact it
does not. The table uses a different primitive element; two plus that primitive element has the
polynomial and exponential formats shown below.

prim_poly = [2 2 1];
[polyformat2, expformat2] = gftuple([2 1],prim_poly,3)

The output below reflects the information in the bottom line of the table.

polyformat2 =

 2 1

16 System Design

16-110

expformat2 =

 7

Arithmetic in Galois Fields

• “Section Overview” on page 16-111
• “Arithmetic in Prime Fields” on page 16-111
• “Arithmetic in Extension Fields” on page 16-111

Section Overview

You can add, subtract, multiply, and divide elements of Galois fields using the functions gfadd,
gfsub, gfmul, and gfdiv, respectively. Each of these functions has a mode for prime fields on page
16-111 and a mode for extension fields on page 16-111.

Arithmetic in Prime Fields

Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd, gfmul, gfsub, and
gfdiv accept two arguments that represent elements of GF(p) as integers between 0 and p-1. The
third argument specifies p.

Example: Addition Table for GF(5)

The code below constructs an addition table for GF(5). If a and b are between 0 and 4, then the
element gfp_add(a+1,b+1) represents the sum a+b in GF(5). For example, gfp_add(3,5) = 1
because 2+4 is 1 modulo 5.

p = 5;
row = 0:p-1;
table = ones(p,1)*row;
gfp_add = gfadd(table,table',p)

The output for this example follows.

gfp_add =

 0 1 2 3 4
 1 2 3 4 0
 2 3 4 0 1
 3 4 0 1 2
 4 0 1 2 3

Other values of p produce tables for different prime fields GF(p). Replacing gfadd by gfmul, gfsub,
or gfdiv produces a table for the corresponding arithmetic operation in GF(p).

Arithmetic in Extension Fields

The same arithmetic functions can add elements of GF(pm) when m > 1, but the format of the
arguments is more complicated than in the case above. In general, arithmetic in extension fields is
more complicated than arithmetic in prime fields; see the works listed in “Selected Bibliography for
Galois Fields” on page 16-115 for details about how the arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and gfdiv use the first two
arguments to represent elements of GF(pm) in exponential format. The third argument, which is

 Error Detection and Correction

16-111

required, lists all elements of GF(pm) as described in “List of All Elements of a Galois Field” on page
16-106. The result is in exponential format.

Example: Addition Table for GF(9)

The code below constructs an addition table for GF(32), using exponential formats relative to a root of
the default primitive polynomial for GF(9). If a and b are between -1 and 7, then the element
gfpm_add(a+2,b+2) represents the sum of Aa and Ab in GF(9). For example, gfpm_add(4,6) = 5
because

A2 + A4 = A5

Using the fourth and sixth rows of the matrix field, you can verify that

A2 + A4 = (1 + 2A) + (2 + 0A) = 3 + 2A = 0 + 2A = A5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).
field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.
row = -1:p^m-2;
table = ones(p^m,1)*row;
gfpm_add = gfadd(table,table',field)

The output is below.

gfpm_add =

 -Inf 0 1 2 3 4 5 6 7
 0 4 7 3 5 -Inf 2 1 6
 1 7 5 0 4 6 -Inf 3 2
 2 3 0 6 1 5 7 -Inf 4
 3 5 4 1 7 2 6 0 -Inf
 4 -Inf 6 5 2 0 3 7 1
 5 2 -Inf 7 6 3 1 4 0
 6 1 3 -Inf 0 7 4 2 5
 7 6 2 4 -Inf 1 0 5 3

Note If you used a different primitive polynomial, then the tables would look different. This makes
sense because the ordering of the rows and columns of the tables was based on that particular choice
of primitive polynomial and not on any natural ordering of the elements of GF(9).

Other values of p and m produce tables for different extension fields GF(p^m). Replacing gfadd by
gfmul, gfsub, or gfdiv produces a table for the corresponding arithmetic operation in GF(p^m).

Polynomials over Prime Fields

• “Section Overview” on page 16-113
• “Cosmetic Changes of Polynomials” on page 16-113
• “Polynomial Arithmetic” on page 16-113
• “Characterization of Polynomials” on page 16-114
• “Roots of Polynomials” on page 16-114

16 System Design

16-112

Section Overview

A polynomial over GF(p) is a polynomial whose coefficients are elements of GF(p). Communications
Toolbox software provides functions for

• Changing polynomials in cosmetic on page 16-113 ways
• Performing polynomial arithmetic on page 16-113
• Characterizing polynomials as primitive or irreducible on page 16-114
• Finding roots on page 16-114 of polynomials in a Galois field

Note The Galois field functions in this toolbox represent a polynomial over GF(p) for odd values of
p as a vector that lists the coefficients in order of ascending powers of the variable. This is the
opposite of the order that other MATLAB functions use.

Cosmetic Changes of Polynomials

To display the traditionally formatted polynomial that corresponds to a row vector containing
coefficients, use gfpretty. To truncate a polynomial by removing all zero-coefficient terms that have
exponents higher than the degree of the polynomial, use gftrunc. For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])
gfpretty(polynom)

The output is below.

polynom =

 1 20 394 10 0 0 29 3

 2 3 6 7
 1 + 20 X + 394 X + 10 X + 29 X + 3 X

Note If you do not use a fixed-width font, then the spacing in the display might not look correct.

Polynomial Arithmetic

The functions gfadd and gfsub add and subtract, respectively, polynomials over GF(p). The gfconv
function multiplies polynomials over GF(p). The gfdeconv function divides polynomials in GF(p),
producing a quotient polynomial and a remainder polynomial. For example, the commands below
show that 2 + x + x2 times 1 + x over the field GF(3) is 2 + 2x2 + x3.

a = gfconv([2 1 1],[1 1],3)
[quot, remd] = gfdeconv(a,[2 1 1],3)

The output is below.

a =

 2 0 2 1

quot =

 Error Detection and Correction

16-113

 1 1

remd =

 0

The previously discussed functions gfadd and gfsub add and subtract, respectively, polynomials.
Because it uses a vector of coefficients to represent a polynomial, MATLAB does not distinguish
between adding two polynomials and adding two row vectors elementwise.
Characterization of Polynomials

Given a polynomial over GF(p), the gfprimck function determines whether it is irreducible and/or
primitive. By definition, if it is primitive then it is irreducible; however, the reverse is not necessarily
true. The gfprimdf and gfprimfd functions return primitive polynomials.

Given an element of GF(pm), the gfminpol function computes its minimal polynomial over GF(p).

Example

For example, the code below reflects the irreducibility of all minimal polynomials. However, the
minimal polynomial of a nonprimitive element is not a primitive polynomial.

p = 3; m = 4;
% Use default primitive polynomial here.

prim_poly = gfminpol(1,m,p);
ckprim = gfprimck(prim_poly,p);
% ckprim = 1, since prim_poly represents a primitive polynomial.

notprimpoly = gfminpol(5,m,p);
cknotprim = gfprimck(notprimpoly,p);
% cknotprim = 0 (irreducible but not primitive)
% since alpha^5 is not a primitive element when p = 3.

ckreducible = gfprimck([0 1 1],p);
% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials

Given a polynomial over GF(p), the gfroots function finds the roots of the polynomial in a suitable
extension field GF(pm). There are two ways to tell MATLAB the degree m of the extension field
GF(pm), as shown in the following table.

Formats for Second Argument of gfroots
Second Argument Represents
A positive integer m as in GF(pm). MATLAB uses the default

primitive polynomial in its computations.
A row vector A primitive polynomial for GF(pm). Here m is the

degree of this primitive polynomial.

Example: Roots of a Polynomial in GF(9)

The code below finds roots of the polynomial 1 + x2 + x3 in GF(9) and then checks that they are
indeed roots. The exponential format of elements of GF(9) is used throughout.

16 System Design

16-114

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3
 root = rts(ii);
 rootsquared = gfmul(root,root,field);
 rootcubed = gfmul(root,rootsquared,field);
 answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
 % Recall that 1 is really alpha to the zero power.
 % If answer = -Inf, then the variable root represents
 % a root of the polynomial.
end
answer

The output shows that A0 (which equals 1), A5, and A7 are roots.

roots =

 0
 5
 7

answer =

 -Inf -Inf -Inf

See the reference page for gfroots to see how gfroots can also provide you with the polynomial
formats of the roots and the list of all elements of the field.

Other Galois Field Functions

See the online reference pages for information about these other Galois field functions in
Communications Toolbox software:

• gfcosets, which produces cyclotomic cosets
• gffilter, which filters data using GF(p) polynomials
• gfprimfd, which finds primitive polynomials
• gfrank, which computes the rank of a matrix over GF(p)
• gfrepcov, which converts one binary polynomial representation to another

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, Mass., Addison-Wesley,
1983.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley, 1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, N.J., Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

 Error Detection and Correction

16-115

Interleaving

In this section...
“Block Interleaving” on page 16-116
“Convolutional Interleaving” on page 16-120
“Selected Bibliography for Interleaving” on page 16-128

Block Interleaving

• “Block Interleaving Features” on page 16-116
• “Improve Error Rate Using Block Interleaving in MATLAB” on page 16-117
• “Improve Error Rate Using Block Interleaving in Simulink” on page 16-118

Block Interleaving Features

A block interleaver accepts a set of symbols and rearranges them, without repeating or omitting any
of the symbols in the set. The number of symbols in each set is fixed for a given interleaver. The
interleaver's operation on a set of symbols is independent of its operation on all other sets of symbols.

An interleaver permutes symbols according to a mapping. A corresponding deinterleaver uses the
inverse mapping to restore the original sequence of symbols. Interleaving and deinterleaving can be
useful for reducing errors caused by burst errors in a communication system.

Each interleaver function has a corresponding deinterleaver function. In typical usage of the
interleaver/deinterleaver pairs, the inputs of the deinterleaver match those of the interleaver, except
for the data being rearranged.

A block interleaver accepts a set of symbols and rearranges them, without repeating or omitting any
of the symbols in the set. The number of symbols in each set is fixed for a given interleaver.

The set of block interleavers in this toolbox includes a general block interleaver as well as several
special cases. Each special-case interleaver function uses the same computational code that the
general block interleaver function uses, but provides a syntax that is more suitable for the special
case. The interleaver functions are described below.

Type of Interleaver Interleaver Function Description
General block interleaver intrlv Uses the permutation table given

explicitly as an input argument.
Algebraic interleaver algintrlv Derives a permutation table

algebraically, using the Takeshita-
Costello or Welch-Costas method.
These methods are described in [4].

Helical scan interleaver helscanintrlv Fills a matrix with data row by row
and then sends the matrix contents to
the output in a helical fashion.

16 System Design

16-116

Type of Interleaver Interleaver Function Description
Matrix interleaver matintrlv Fills a matrix with data elements row

by row and then sends the matrix
contents to the output column by
column.

Random interleaver randintrlv Chooses a permutation table randomly
using the initial state input that you
provide.

Types of Block Interleavers

The set of block interleavers in this library includes a general interleaver/deinterleaver pair as well as
several special cases. Each special-case block uses the same computational code that its more
general counterpart uses, but provides an interface that is more suitable for the special case.

The Matrix Interleaver block accomplishes block interleaving by filling a matrix with the input
symbols row by row and then sending the matrix contents to the output port column by column. For
example, if the interleaver uses a 2-by-3 matrix to do its internal computations, then for an input of
[1 2 3 4 5 6], the block produces an output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using the Initial seed
parameter that you provide in the block mask. By using the same Initial seed value in the
corresponding Random Deinterleaver block, you can restore the permuted symbols to their original
ordering.

The Algebraic Interleaver block uses a permutation table that is algebraically derived. It supports
Takeshita-Costello interleavers and Welch-Costas interleavers. These interleavers are described in
[4].

Improve Error Rate Using Block Interleaving in MATLAB

The following example illustrates how an interleaver improves the error rate in a communication
system whose channel produces a burst of errors. A random interleaver rearranges the bits of
numerous codewords before two adjacent codewords are each corrupted by three errors.

Three errors exceed the error-correction capability of the Hamming code. However, the example
shows that when the Hamming code is combined with an interleaver, this system is able to recover
the original message despite the 6-bit burst of errors. The improvement in performance occurs
because the interleaving effectively spreads the errors among different codewords so that the number
of errors per codeword is within the error-correction capability of the code.

st1 = 27221; st2 = 4831; % States for random number generator
n = 7; k = 4; % Parameters for Hamming code
msg = randi([0 1],k*500,1); % Data to encode
code = encode(msg,n,k,'hamming/binary'); % Encoded data
% Create a burst error that will corrupt two adjacent codewords.
errors = zeros(size(code)); errors(n-2:n+3) = [1 1 1 1 1 1];

% With Interleaving
%------------------
inter = randintrlv(code,st2); % Interleave.
inter_err = bitxor(inter,errors); % Include burst error.
deinter = randdeintrlv(inter_err,st2); % Deinterleave.
decoded = decode(deinter,n,k,'hamming/binary'); % Decode.

 Interleaving

16-117

disp('Number of errors and error rate, with interleaving:');
[number_with,rate_with] = biterr(msg,decoded) % Error statistics

% Without Interleaving
%---------------------
code_err = bitxor(code,errors); % Include burst error.
decoded = decode(code_err,n,k,'hamming/binary'); % Decode.
disp('Number of errors and error rate, without interleaving:');
[number_without,rate_without] = biterr(msg,decoded) % Error statistics

The output from the example follows.

Number of errors and error rate, with interleaving:

number_with =

 0

rate_with =

 0

Number of errors and error rate, without interleaving:

number_without =

 4

rate_without =

 0.0020

Improve Error Rate Using Block Interleaving in Simulink

The following example shows how to use an interleaver to improve the error rate when the channel
produces bursts of errors.

Before running the model, you must create a binary vector that simulates bursts of errors, as
described in “Improve Error Rate Using Block Interleaving in Simulink” on page 16-118. The Signal
From Workspace block imports this vector from the MATLAB workspace into the model, where the
Logical Operator block performs an XOR of the vector with the signal.

To build the model, gather and configure these blocks:

16 System Design

16-118

• Bernoulli Binary Generator

• Check the box next to Frame-based outputs.
• Set Samples per frame to 4.

• Hamming Encoder, with default parameter settings.
• Buffer, with these updates to parameter settings:

• Set Output buffer size (per channel) to 84.
• Random Interleaver

• Set Number of elements to 84.
• Logical Operator, with these updates to parameter settings:

• Set Operator to XOR.
• Signal From Workspace, with these updates to parameter settings:

• Set Signal to errors.
• Set Sample time to 4/7.
• Set Samples per frame to 84.

• Random Deinterleaver, with these updates to parameter settings:

• Set Number of elements to 84.
• Buffer, with these updates to parameter settings:

• Set Output buffer size (per channel) to 7.
• Hamming Decoder, with default parameter settings.
• Error Rate Calculation, with these updates to parameter settings:

• Set Receive delay to (4/7)*84.
• Set Computation delay to 100.
• Set Output data to Port.

• Display, with default parameter settings.

On the Simulation tab, in the Simulate section, set Stop time to length(errors). The Simulate
section appears on multiple tabs.

Creating the Vector of Errors

Before running the model, use the following code to create a binary vector in the MATLAB
workspace. The model uses this vector to simulate bursts of errors. The vector contains blocks of
three 1s, representing bursts of errors, at random intervals. The distance between two consecutive
blocks of 1s is a random integer between 1 and 80.

errors=zeros(1,10^4);
n=1;
while n<10^4-80;
n=n+floor(79*rand(1))+3;
errors(n:n+2)=[1 1 1];
end

To determine the ratio of the number of 1s to the total number of symbols in the vector errors enter

 Interleaving

16-119

sum(errors)/length(errors)

Your answer should be approximately 3/43, or .0698, since after each sequence of three 1s, the
expected distance to the next sequence of 1s is 40. Consequently, you expect to see three 1s in 43
terms of the sequence. If there were no error correction in the model, the bit error rate would be
approximately .0698.

When you run a simulation with the model, the error rate is approximately .019, which shows the
improvement due to error correction and interleaving. You can see the effect of interleaving by
deleting the Random Interleaver and Random Deinterleaver blocks from the model, connecting the
lines, and running another simulation. The bit error rate is higher without interleaving because the
Hamming code can only correct one error in each codeword.

Convolutional Interleaving
• “Convolutional Interleaving Features” on page 16-120
• “Delays of Convolutional Interleavers” on page 16-122
• “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in

MATLAB” on page 16-125
• “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in

Simulink” on page 16-127

Convolutional Interleaving Features

A convolutional interleaver consists of a set of shift registers, each with a fixed delay. In a typical
convolutional interleaver, the delays are nonnegative integer multiples of a fixed integer (although a
general multiplexed interleaver allows unrestricted delay values). Each new symbol from an input
vector feeds into the next shift register and the oldest symbol in that register becomes part of the
output vector. A convolutional interleaver has memory; that is, its operation depends not only on
current symbols but also on previous symbols.

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers
• slope is the register length step

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

16 System Design

16-120

Communications Toolbox implements convolutional interleaving functionality using Simulink blocks,
System objects, and MATLAB functions. The convolutional interleavers in this toolbox have input
arguments that indicate the number of shift registers and the delay for each shift register.

The set of convolutional interleavers in this product includes a general interleaver/deinterleaver pair
as well as several special cases. Each special-case function uses the same computational code that its
more general counterpart uses, but provides a syntax that is more suitable for the special case. The
special cases are described below.

Type of Interleaver Interleaving Function Description
General multiplexed
interleaver

muxintrlv Allows unrestricted delay values for
the set of shift registers.

Convolutional interleaver convintrlv The delay values for the set of shift
registers are nonnegative integer
multiples of a fixed integer that you
specify.

Helical interleaver helintrlv Fills an array with input symbols in a
helical fashion and empties the array
row by row.

The helscanintrlv function and the helintrlv function both use a helical array for internal
computations. However, the two functions have some important differences:

• helintrlv uses an unlimited-row array, arranges input symbols in the array along columns,
outputs some symbols that are not from the current input, and leaves some input symbols in the
array without placing them in the output.

• helscanintrlv uses a fixed-size matrix, arranges input symbols in the array across rows, and
outputs all the input symbols without using any default values or values from a previous call.

Types of Convolutional Interleavers

The set of convolutional interleavers in this library includes a general interleaver/deinterleaver pair
as well as several special cases. Each special-case block uses the same computational code that its
more general counterpart uses, but provides an interface that is more suitable for the special case.

The most general block in this library is the General Multiplexed Interleaver block, which allows
arbitrary delay values for the set of shift registers. To implement the preceding schematic using this
block, use an Interleaver delay parameter of [D(1); D(2); ...; D(N)].

 Interleaving

16-121

More specific is the Convolutional Interleaver block, in which the delay value for the kth shift register
is (k-1) times the block's Register length step parameter. The number of shift registers in this block
is the value of the Rows of shift registers parameter.

Finally, the Helical Interleaver block supports a special case of convolutional interleaving that fills an
array with symbols in a helical fashion and empties the array row by row. To configure this
interleaver, use the Number of columns of helical array parameter to set the width of the array,
and use the Group size and Helical array step size parameters to determine how symbols are
placed in the array. See the reference page for the Helical Interleaver block for more details and an
example.

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a corresponding
convolutional deinterleaver, the restored sequence lags behind the original sequence. The delay,
measured in symbols, between the original and restored sequences is indicated in the table below.
The variable names in the second column (delay, nrows, slope, col, ngrp, and stp) refer to the
inputs named on each function's reference page.

Delays of Interleaver/Deinterleaver Pairs

Interleaver/Deinterleaver Pair Delay Between Original and Restored Sequences
muxintrlv, muxdeintrlv length(delay)*max(delay)
convintrlv, convdeintrlv nrows*(nrows-1)*slope
helintrlv, heldeintrlv col*ngrp*ceil(stp*(col-1)/ngrp)

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a corresponding
convolutional deinterleaver, the restored sequence lags behind the original sequence. The delay,
measured in symbols, between the original and restored sequences is

Number of shift registers × Maximum delay among all shift registers

for the most general multiplexed interleaver. If your model incurs an additional delay between the
interleaver output and the deinterleaver input, the restored sequence lags behind the original
sequence by the sum of the additional delay and the amount in the preceding formula.

Note For proper synchronization, the delay in your model between the interleaver output and the
deinterleaver input must be an integer multiple of the number of shift registers. You can use the DSP
System Toolbox Delay block to adjust delays manually, if necessary.

Convolutional Interleaver block

In the special case implemented by the Convolutional Interleaver/Convolutional Deinterleaver pair,
the number of shift registers is the Rows of shift registers parameter, while the maximum delay
among all shift registers is

B × (N-1)

where B is the Register length step parameter and N is the Rows of shift registers parameter.

16 System Design

16-122

Helical Interleaver block

In the special case implemented by the Helical Interleaver/Helical Deinterleaver pair, the delay
between the restored sequence and the original sequence is

CN s(C− 1)
N

where C is the Number of columns in helical array parameter, N is the Group size parameter,
and s is the Helical array step size parameter.
Effect of Delays on Recovery of Convolutionally Interleaved Data Using MATLAB

If you use a convolutional interleaver followed by a corresponding convolutional deinterleaver, then a
nonzero delay means that the recovered data (that is, the output from the deinterleaver) is not the
same as the original data (that is, the input to the interleaver). If you compare the two data sets
directly, then you must take the delay into account by using appropriate truncating or padding
operations.

Here are some typical ways to compensate for a delay of D in an interleaver/deinterleaver pair:

• Interleave a version of the original data that is padded with D extra symbols at the end. Before
comparing the original data with the recovered data, omit the first D symbols of the recovered
data. In this approach, all the original symbols appear in the recovered data.

• Before comparing the original data with the recovered data, omit the last D symbols of the original
data and the first D symbols of the recovered data. In this approach, some of the original symbols
are left in the deinterleaver's shift registers and do not appear in the recovered data.

The following code illustrates these approaches by computing a symbol error rate for the
interleaving/deinterleaving operation.

x = randi([0 63],20,1); % Original data
nrows = 3; slope = 2; % Interleaver parameters
D = nrows*(nrows-1)*slope; % Delay of interleaver/deinterleaver pair
hInt = comm.ConvolutionalInterleaver('NumRegisters', nrows, ...
 'RegisterLengthStep', slope);
hDeint = comm.ConvolutionalDeinterleaver('NumRegisters', nrows, ...
 'RegisterLengthStep', slope);

% First approach.
x_padded = [x; zeros(D,1)]; % Pad x at the end before interleaving.
a1 = step(hInt, x_padded); % Interleave padded data.

b1 = step(hDeint, a1)
% Omit input padding and the first D symbols of the recovered data and
% compare
servec1 = step(comm.ErrorRate('ReceiveDelay',D),x_padded,b1);
ser1 = servec1(1)

% Second approach.
release(hInt); release(hDeint)
a2 = step(hInt,x); % Interleave original data.
b2 = step(hDeint,a2)
% Omit the last D symbols of the original data and the first D symbols of
% the recovered data and compare.
servec2 = step(comm.ErrorRate('ReceiveDelay',D),x,b2);
ser2 = servec2(1)

 Interleaving

16-123

The output is shown below. The zero values of ser1 and ser2 indicate that the script correctly
aligned the original and recovered data before computing the symbol error rates. However, notice
from the lengths of b1 and b2 that the two approaches to alignment result in different amounts of
deinterleaved data.

b1 =

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 59
 42
 1
 28
 52
 54
 43
 8
 56
 5
 35
 37
 48
 17
 28
 62
 10
 31
 61
 39

ser1 =

 0

b2 =

 0
 0
 0
 0
 0
 0
 0
 0
 0

16 System Design

16-124

 0
 0
 0
 59
 42
 1
 28
 52
 54
 43
 8

ser2 =

 0

Combining Interleaving Delays and Other Delays

If you use convolutional interleavers in a script that incurs an additional delay, d, between the
interleaver output and the deinterleaver input (for example, a delay from a filter), then the restored
sequence lags behind the original sequence by the sum of d and the amount from the table Delays of
Interleaver/Deinterleaver Pairs on page 16-122. In this case, d must be an integer multiple of the
number of shift registers, or else the convolutional deinterleaver cannot recover the original symbols
properly. If d is not naturally an integer multiple of the number of shift registers, then you can adjust
the delay manually by padding the vector that forms the input to the deinterleaver.

Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in
MATLAB

The example below illustrates convolutional interleaving and deinterleaving using a sequence of
consecutive integers. It also illustrates the inherent delay of the interleaver/deinterleaver pair.

x = [1:10]'; % Original data
delay = [0; 1; 2]; % Set delays of three shift registers.
hInt = comm.MultiplexedInterleaver('Delay', delay);
hDeint = comm.MultiplexedDeinterleaver('Delay', delay);
y = step(hInt,x) % Interleave.
z = step(hDeint,y) % Deinterleave.

In this example, the muxintrlv function initializes the three shift registers to the values [], [0],
and [0 0], respectively. Then the function processes the input data [1:10]', performing internal
computations as indicated in the table below.

Current Input Current Shift Register Current Output Contents of Shift
Registers

1 1 1 []
[0]
[0 0]

2 2 0 []
[2]
[0 0]

 Interleaving

16-125

Current Input Current Shift Register Current Output Contents of Shift
Registers

3 3 0 []
[2]
[0 3]

4 1 4 []
[2]
[0 3]

5 2 2 []
[5]
[0 3]

6 3 0 []
[5]
[3 6]

7 1 7 []
[5]
[3 6]

8 2 5 []
[8]
[3 6]

9 3 3 []
[8]
[6 9]

10 1 10 []
[8]
[6 9]

The output from the example is below.

y =

 1
 0
 0
 4
 2
 0
 7
 5
 3
 10

state_y =

 value: {3x1 cell}
 index: 2

z =

16 System Design

16-126

 0
 0
 0
 0
 0
 0
 1
 2
 3
 4

Notice that the “Current Output” column of the table above agrees with the values in the vector y.
Also, the last row of the table above indicates that the last shift register processed for the given data
set is the first shift register. This agrees with the value of 2 for state_y.index, which indicates that
any additional input data would be directed to the second shift register. You can optionally check that
the state values listed in state_y.value match the “Contents of Shift Registers” entry in the last
row of the table by typing state_y.value{:} in the Command Window after executing the
example.

Another feature to notice about the example output is that z contains six zeros at the beginning
before containing any of the symbols from the original data set. The six zeros illustrate that the delay
of this convolutional interleaver/deinterleaver pair is length(delay)*max(delay) = 3*2 = 6.
For more information about delays, see “Delays of Convolutional Interleavers” on page 16-122.

Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in
Simulink

The example below illustrates convolutional interleaving and deinterleaving using a sequence of
consecutive integers. It also illustrates the inherent delay and the effect of the interleaving blocks'
initial conditions.

To build the model, gather and configure these blocks:

• Ramp, with default parameter settings.
• Zero-Order Hold, with default parameter settings.
• Convolutional Interleaver, with these updates to parameter settings:

• Set Rows of shift registers to 3.
• Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver, with these updates to parameter settings:

• Set Rows of shift registers to 3.
• Set Initial conditions to [-1 -2 -3]'.

 Interleaving

16-127

• Two copies of To Workspace, with these updates to parameter settings:

• Set Variable name to interleaved and restored, respectively, in the two copies of this
block.

• Set Save format to Array in each of the two copies of this block.

Tip Select the To Workspace block from the DSP System Toolbox / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

On the Simulation tab, in the Simulate section, set Stop time to 20. The Simulate section appears
on multiple tabs. Run the simulation and execute the following command:

comparison = [[0:20]', interleaved, restored]

comparison =

 0 0 -1
 1 -2 -2
 2 -3 -3
 3 3 -1
 4 -2 -2
 5 -3 -3
 6 6 -1
 7 1 -2
 8 -3 -3
 9 9 -1
 10 4 -2
 11 -3 -3
 12 12 0
 13 7 1
 14 2 2
 15 15 3
 16 10 4
 17 5 5
 18 18 6
 19 13 7
 20 8 8

In this output, the first column contains the original symbol sequence. The second column contains
the interleaved sequence, while the third column contains the restored sequence.

The negative numbers in the interleaved and restored sequences come from the interleaving blocks'
initial conditions, not from the original data. The first of the original symbols appears in the restored
sequence only after a delay of 12 symbols. The delay of the interleaver-deinterleaver combination is
the product of the number of shift registers (3) and the maximum delay among all shift registers (4).

For a similar example that also indicates the contents of the shift registers at each step of the
process, see “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive
Integers in MATLAB” on page 16-125.

Selected Bibliography for Interleaving

[1] Berlekamp, E.R., and P. Tong, “Improved Interleavers for Algebraic Block Codes,” U. S. Patent
4559625, Dec. 17, 1985.

16 System Design

16-128

[2] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.
Applications of Communications Theory. New York: Plenum Press, 1981.

[3] Forney, G. D. Jr., “Burst-Correcting Codes for the Classic Bursty Channel,” IEEE Transactions on
Communications, vol. COM-19, October 1971, pp. 772-781.

[4] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

[5] Ramsey, J. L, “Realization of Optimum Interleavers,” IEEE Transactions on Information Theory,
IT-16 (3), May 1970, pp. 338-345.

[6] Takeshita, O. Y. and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for Turbo-Codes,”
Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16–21, 1998.
pp. 419.

 Interleaving

16-129

Phase-Locked Loops
A phase-locked loop combines a voltage-controlled oscillator and a phase comparator as a feedback
system to adjust the oscillator frequency or phase to track an applied frequency-modulated or phase-
modulated signal.

Voltage-Controlled Oscillator Blocks
A voltage-controlled oscillator is one part of a phase-locked loop. The Continuous-Time VCO and
Discrete-Time VCO blocks implement voltage-controlled oscillators. These blocks produce continuous-
time and discrete-time output signals, respectively. Each block's output signal is sinusoidal, and
changes its frequency in response to the amplitude variations of the input signal.

Overview of PLL Simulation
A phase-locked loop (PLL), when used in conjunction with other components, helps synchronize the
receiver. A PLL is an automatic control system that adjusts the phase of a local signal to match the
phase of the received signal. The PLL design works best for narrowband signals.

A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled oscillator (VCO). For
example, the following figure shows how these components are arranged for an analog passband PLL.
In this case, the phase detector is just a multiplier. The signal e(t) is often called the error signal.

This table indicates the supported types of PLLs and the blocks that implement them.

Supported PLLs in Components Library

Type of PLL Block
Analog passband PLL Phase-Locked Loop
Analog baseband PLL Baseband PLL
Linearized analog baseband PLL Linearized Baseband PLL
Digital PLL using a charge pump Charge Pump PLL

Different PLLs use different phase detectors, filters, and VCO characteristics. Some of these
attributes are built into the PLL blocks in this product, while others depend on parameters that you
set in the block mask:

• You specify the filter's transfer function in the block mask using the Lowpass filter numerator
and Lowpass filter denominator parameters. Each of these parameters is a vector that lists the
coefficients of the respective polynomial in order of descending exponents of the variable s. To

16 System Design

16-130

design a filter, you can use functions such as butter, cheby1, and cheby2 in Signal Processing
Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL blocks use a VCO input
sensitivity parameter. Some blocks also use VCO quiescent frequency, VCO initial phase, and
VCO output amplitude parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot change from the block
mask.

Implementing an Analog Baseband PLL
Unlike passband models for a phase-locked loop, a baseband model does not depend on a carrier
frequency. This allows you to use a lower sampling rate in the simulation. Two blocks implement
analog baseband PLLs:

• Baseband PLL
• Linearized Baseband PLL

The linearized model and the nonlinearized model differ in that the linearized model uses the
approximation

sin Δθ(t) ≅ Δθ(t)

to simplify the computations. This approximation is close when Δθ(t) is near zero. Thus, instead of
using the input signal and the VCO output signal directly, the linearized PLL model uses only their
phases.

Implementing a Digital PLL
The charge pump PLL is a classical digital PLL. Unlike the analog PLLs mentioned above, the charge
pump PLL uses a sequential logic phase detector, which is also known as a digital phase detector or a
phase/frequency detector.

Selected Bibliography for Synchronization

[1] Gardner, F.M., “Charge-pump Phase-lock Loops,” IEEE Trans. on Communications, Vol. 28,
November 1980, pp. 1849–1858.

[2] Gardner, F.M., “Phase Accuracy of Charge Pump PLLs,” IEEE Trans. on Communications, Vol. 30,
October 1982, pp. 2362–2363.

[3] Gupta, S.C., “Phase Locked Loops,” Proceedings of the IEEE, Vol. 63, February 1975, pp. 291–306.

[4] Lindsay, W.C. and C.M. Chie, “A Survey on Digital Phase-Locked Loops,” Proceedings of the IEEE,
Vol. 69, April 1981, pp. 410–431.

[5] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital Receivers, New
York, Plenum Press, 1997.

[6] Meyr, Heinrich, and Gerd Ascheid, Synchronization in Digital Communications, Vol. 1, New York,
John Wiley & Sons, 1990.

 Phase-Locked Loops

16-131

[7] Moeneclaey, Marc, and Geert de Jonghe, “ML-Oriented NDA Carrier Synchronization for General
Rotationally Symmetric Signal Constellations,” IEEE Transactions on Communications, Vol.
42, No. 8, Aug. 1994, pp. 2531–2533.

[8] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle River, NJ:
Prentice Hall, 2009.

16 System Design

16-132

Multiple-Input Multiple-Output (MIMO)

In this section...
“Orthogonal Space-Time Block Codes (OSTBC)” on page 16-133
“MIMO Fading Channel” on page 16-134
“Spherical Decoding” on page 16-134
“Selected Bibliography for MIMO Systems” on page 16-134

The use of Multiple-Input Multiple-Output (MIMO) techniques for sending and receiving multiple data
signals simultaneously over the same radio channel by exploiting multipath propagation that provide
potential gains in capacity when using multiple antennas at both transmitter and receiver ends of a
communications system. New techniques, which account for the extra spatial dimension, have been
adopted to realize these gains in new systems and previously existing systems.

MIMO technology has been adopted in multiple wireless systems, including 5G NR, LTE, and Wi-Fi.

The Communications Toolbox product offers components to model:

• OSTBC (orthogonal space-time block coding technique)
• MIMO Fading Channels
• Spherical Decoding

and demos highlighting the use of these components in applications.

For background material on the subject of MIMO systems, see the works listed in Selected
Bibliography for MIMO systems on page 16-134.

Orthogonal Space-Time Block Codes (OSTBC)
Model Orthogonal Space Time Block Coding (OSTBC) which is a MIMO technique offering full spatial
diversity gain with extremely simple single-symbol maximum likelihood decoding as described in [4],
[6], and [8].

In Simulink, the OSTBC Encoder and OSTBC Combiner blocks, residing in the MIMO block library,
implement the orthogonal space time block coding technique. These two blocks offer a variety of
specific codes (with different rates) for up to 4 transmit and 8 receive antenna systems. The encoder
block is used at the transmitter to map symbols to multiple antennas while the combiner block is used
at the receiver to extract the soft information per symbol using the received signal and the channel
state information. You access the MIMO library by double clicking the icon in the main
Communications Toolbox block library. Alternatively, you can type commmimo at the MATLAB
command line.

The OSTBC technique is an attractive scheme because it can achieve the full (maximum) spatial
diversity order and have symbol-wise maximum-likelihood (ML) decoding. For more information about
the algorithmic details and the specific codes implemented, see OSTBC Combining Algorithms on the
OSTBC Combiner block help page and OSTBC Encoding Algorithms on the OSTBC Encoder block
help page. Similar functionality is available in MATLAB by using the comm.OSTBCCombiner and
comm.OSTBCEncoder System objects.

 Multiple-Input Multiple-Output (MIMO)

16-133

MIMO Fading Channel
Model a MIMO fading channel using the comm.MIMOChannel System object in MATLAB or the
MIMO Fading Channel block in Simulink. Using them you model the fading channel characteristics of
MIMO links with Rayleigh and Rician fading, and use the Kronecker model for the spatial correlation
between the links as described in [1].

Spherical Decoding
Model a sphere decoder using the comm.SphereDecoder System object in MATLAB or the Sphere
Decoder block in Simulink. You can use them to find the maximum-likelihood solution for a set of
received symbols over a MIMO channel with any number transmit antennas and receive antennas.

Selected Bibliography for MIMO Systems

[1] C. Oestges and B. Clerckx, MIMO Wireless Communications: From Real-World Propagation to
Space-Time Code Design, Academic Press, 2007.

[2] George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC Press, Boca
Raton, FL, 2006.

[3] L. M. Correira, Ed., Mobile Broadband Multimedia Networks: Techniques, Models and Tools for
4G, Academic Press, 2006.

[4] M. Jankiraman, "Space-time codes and MIMO systems", Artech House, Boston, 2004.

[5] G. J. Foschini, M. J. Gans, "On the limits of wireless communications in a fading environment when
using multiple antennas", IEEE Wireless Personal Communications, Vol. 6, Mar. 1998, pp.
311-335.

[6] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal
on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

[7] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for high data rate wireless
communication: Performance analysis and code construction,” IEEE Transactions on
Information Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.

[8] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,”
IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999.

[9] 3rd Generation Partnership Project, Technical Specification Group Radio Access Network, Evolved
Universal Terrestrial Radio Access (E-UTRA), Base Station (BS) radio transmission and
reception, Release 10, 3GPP TS 36.104, v10.0.0, 2010-09.

[10] 3rd Generation Partnership Project, Technical Specification Group Radio Access Network,
Evolved Universal Terrestrial Radio Access (E-UTRA), User Equipment (UE) radio
transmission and reception, Release 10, 3GPP TS 36.101, v10.0.0, 2010-10.

16 System Design

16-134

Differential Pulse Code Modulation

In this section...
“Section Overview” on page 16-135
“DPCM Terminology” on page 16-135
“Represent Predictors” on page 16-135
“Example: DPCM Encoding and Decoding” on page 16-136
“Optimize DPCM Parameters” on page 16-137

Section Overview
The quantization in the section Quantizing a Signal on page 16-11 requires no a priori knowledge
about the transmitted signal. In practice, you can often make educated guesses about the present
signal based on past signal transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization method is differential
pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM predictive
quantizer with a linear predictor.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a partition and codebook as
described in “Represent Partitions” on page 16-2 and “Represent Codebooks” on page 16-2, but also
a predictor. The predictor is a function that the DPCM encoder uses to produce the educated guess at
each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p is an m-tuple of real
numbers. Instead of quantizing x itself, the DPCM encoder quantizes the predictive error, x-y. The
integer m above is called the predictive order. The special case when m = 1 is called delta
modulation.

Represent Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the vector as the polynomial
transfer function of a finite impulse response (FIR) filter.

 Differential Pulse Code Modulation

16-135

Example: DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal's current value and its
value at the previous step. Thus the predictor is just y(k) = x (k - 1). The code below
implements this scheme. It encodes a sawtooth signal, decodes it, and plots both the original and
decoded signals. The solid line is the original signal, while the dashed line is the recovered signals.
The example also computes the mean square error between the original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0327

16 System Design

16-136

Optimize DPCM Parameters
• “Section Overview” on page 16-137
• “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page 16-138

Section Overview

The section “Optimize Quantization Parameters” on page 16-3 describes how to use training data
with the lloyds function to help find quantization parameters that will minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction with the two
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note The training data you use with dpcmopt should be typical of the kinds of signals you will
actually be quantizing with dpcmenco.

 Differential Pulse Code Modulation

16-137

Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example created
predictor, partition, and codebook in a straightforward but haphazard way, this example uses
the same codebook (now called initcodebook) as an initial guess for a new optimized codebook
parameter. This example also uses the predictive order, 1, as the desired order of the new optimized
predictor. The dpcmopt function creates these optimized parameters, using the sawtooth signal x as
training data. The example goes on to quantize the training data itself; in theory, the optimized
parameters are suitable for quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0063

16 System Design

16-138

Quantize and Compand an Exponential Signal

When transmitting signals with a high dynamic range, quantization using equal length intervals can
result in loss of precision and signal distortion. Companding is a operation that applies a logarithmic
computation to compress the signal before quantization on the transmit side and applies an inverse
operation to expand the signal to restore it to full scale on the receive side. Companding avoids signal
distortion without the need to specify many quantization levels. Compare distortion when using 6-bit
quantization on an exponential signal with and without companding. Plot the original exponential
signal, the quantized signal and the expanded signal.

Create an exponential signal and calculate its maximum value.

sig = exp(-4:0.1:4);
V = max(sig);

Quantize the signal by using equal-length intervals. Set partition and codebook values, assuming 6-bit
quantization. Calculate the mean square distortion.

partition = 0:2^6 - 1;
codebook = 0:2^6;
[~,qsig,distortion] = quantiz(sig,partition,codebook);

Compress the signal by using the compand function configured to apply the mu-law method. Apply
quantization and expand the quantized signal. Calculate the mean square distortion of the
companded signal.

mu = 255; % mu-law parameter
csig_compressed = compand(sig,mu,V,'mu/compressor');
[~,quants] = quantiz(csig_compressed,partition,codebook);
csig_expanded = compand(quants,mu,max(quants),'mu/expander');
distortion2 = sum((csig_expanded - sig).^2)/length(sig);

Compare the mean square distortion for quantization versus combined companding and quantization.
The distortion for the companded and quantized signal is an order of magnitude lower than the
distortion of the quantized signal. Equal-length intervals are well suited to the logarithm of an
exponential signal but not well suited to an exponential signal itself.

[distortion, distortion2]

ans = 1×2

 0.5348 0.0397

Plot the original exponential signal, the quantized signal, and the expanded signal. Zoom in on axis to
highlight the quantized signal error at lower signal levels.

plot([sig' qsig' csig_expanded']);
title('Comparison Between Original, Quantized, and Expanded Signals');
xlabel('Interval');
ylabel('Apmlitude');
legend('Original','Quantized','Expanded','location','nw');
axis([0 70 0 20])

 Quantize and Compand an Exponential Signal

16-139

See Also
Functions
compand | quantiz

16 System Design

16-140

Quantization
In this section...
“Represent Partitions” on page 16-141
“Represent Codebooks” on page 16-141
“Determine Which Interval Each Input Is In” on page 16-141
“Optimize Quantization Parameters” on page 16-142
“Quantize a Signal” on page 16-143

Represent Partitions
Scalar quantization is a process that maps all inputs within a specified range to a common value. This
process maps inputs in a different range of values to a different common value. In effect, scalar
quantization digitizes an analog signal. Two parameters determine a quantization: a partition on page
16-2 and a codebook on page 16-2.

A quantization partition defines several contiguous, nonoverlapping ranges of values within the set of
real numbers. To specify a partition in the MATLAB environment, list the distinct endpoints of the
different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}
• {x: 0< x ≤ 1}
• {x: 1 < x ≤ 3}
• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall into each range of the
partition. Represent a codebook as a vector whose length is the same as the number of partition
intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Determine Which Interval Each Input Is In
The quantiz function also returns a vector that tells which interval each input is in. For example, the
output below says that the input entries lie within the intervals labeled 0, 6, and 5, respectively. Here,
the 0th interval consists of real numbers less than or equal to 3; the 6th interval consists of real
numbers greater than 8 but less than or equal to 9; and the 5th interval consists of real numbers
greater than 7 but less than or equal to 8.

 Quantization

16-141

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

 0
 6
 5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase the example
more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters
• “Section Overview” on page 16-142
• “Example: Optimizing Quantization Parameters” on page 16-142

Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate partition and
codebook parameters. However, testing and selecting parameters for large signal sets with a fine
quantization scheme can be tedious. One way to produce partition and codebook parameters easily is
to optimize them according to a set of so-called training data.

Note The training data you use should be typical of the kinds of signals you will actually be
quantizing.

Example: Optimizing Quantization Parameters

The lloyds function optimizes the partition and codebook according to the Lloyd algorithm. The
code below optimizes the partition and codebook for one period of a sinusoidal signal, starting from a
rough initial guess. Then it uses these parameters to quantize the original signal using the initial
guess parameters as well as the optimized parameters. The output shows that the mean square
distortion after quantizing is much less for the optimized parameters. The quantiz function
automatically computes the mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];

16 System Design

16-142

codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is

ans =

 0.0148 0.0024

Quantize a Signal
• “Scalar Quantization Example 1” on page 16-143
• “Scalar Quantization Example 2” on page 16-143

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map a real
vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

The output is below.

quantized =

 Columns 1 through 6

 -1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

 Columns 7 through 12

 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

 Column 13

 3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing a sampled
sine wave, it plots the original and quantized signals. The plot contrasts the x's that make up the sine
curve with the dots that make up the quantized signal. The vertical coordinate of each dot is a value
in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval

 Quantization

16-143

[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
legend('Original signal','Quantized signal');
axis([-.2 7 -1.2 1.2])

See Also
Functions
quantiz

16 System Design

16-144

MSK

• “MSK Signal Recovery” on page 17-2
• “MSK Signal Recovery” on page 17-7

17

MSK Signal Recovery

Model channel impairments such as timing phase offset, carrier frequency offset, and carrier phase
offset for a minimum shift keying (MSK) signal. Use comm.MSKTimingSynchronizer and
comm.CarrierSynchronizer System objects to synchronize such signals at the receiver. The MSK
timing synchronizer recovers the timing offset, while a carrier synchronizer recovers the carrier
frequency and phase offsets.

Initialize system variables by running the MATLAB® script configureMSKSignalRecoveryEx.
Define the logical control variable recoverTimingPhase to enable timing phase recovery, and
recoverCarrier to enable carrier frequency and phase recovery.

configureMSKSignalRecoveryEx;
recoverTimingPhase = true;
recoverCarrier = true;

Modeling Channel Impairments

Specify the sample delay, timingOffset, that the channel model applies. Create a variable
fractional delay object to introduce the timing delay to the transmitted signal.

timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;

Create a comm.PhaseFrequencyOffset System object™ to introduce carrier phase and frequency
offsets to a modulated signal. Because the MSK modulator upsamples the transmitted symbols, set
the SampleRate property to the ratio of the samplesPerSymbol and the sample time, Ts.

freqOffset = 50;
phaseOffset = 30;
pfo = comm.PhaseFrequencyOffset(...
 'FrequencyOffset',freqOffset, ...
 'PhaseOffset',phaseOffset, ...
 'SampleRate',samplesPerSymbol/Ts);

Set the simulated SNR to 20 dB. Since the MSK modulator generates symbols with 1 Watt of power,
the signal power is 1 W or 0 dB W, which is the default value for the awgn channel signal power input.

SNR = 20;

Timing Phase, Carrier Frequency, and Carrier Phase Synchronization

Create an MSK timing synchronizer to recover symbol timing phase using a fourth-order nonlinearity
method.

timeSync = comm.MSKTimingSynchronizer(...
 'SamplesPerSymbol',samplesPerSymbol, ...
 'ErrorUpdateGain',0.02);

Create a carrier synchronizer to recover both carrier frequency and phase. Because the MSK
constellation is QPSK with a 0-degree phase offset, set the comm.CarrierSynchronizer
accordingly.

phaseSync = comm.CarrierSynchronizer(...
 'Modulation','QPSK', ...
 'ModulationPhaseOffset','Custom', ...

17 MSK

17-2

 'CustomPhaseOffset',0, ...
 'SamplesPerSymbol',1);

Stream Processing Loop

The simulation modulates data using MSK modulation. The modulated symbols pass through the
channel model, which applies timing delay, carrier frequency and phase shift, and additive white
Gaussian noise. The receiver performs timing phase and carrier frequency and phase recovery.
Finally, the signal symbols are demodulated and the bit error rate is calculated. The
plotResultsMSKSignalRecoveryEx script generates scatter plots in this order to show these
effects:

1 Channel impairments
2 Timing synchronization
3 Carrier synchronization

At the end of the simulation, the example displays the timing phase, frequency, and phase estimates
as a function of simulation time.

for p = 1:numFrames
 %--
 % Generate and modulate data
 %--
 txBits = randi([0 1],samplesPerFrame,1);
 txSym = modem(txBits);
 %--
 % Transmit through channel
 %--
 %
 % Add timing offset
 rxSigTimingOff = varDelay(txSym,timingOffset*samplesPerSymbol);
 %
 % Add carrier frequency and phase offset
 rxSigCFO = pfo(rxSigTimingOff);
 %
 % Pass the signal through an AWGN channel
 rxSig = awgn(rxSigCFO,SNR);
 %
 % Save the transmitted signal for plotting
 plot_rx = rxSig;
 %
 %--
 % Timing recovery
 %--
 if recoverTimingPhase
 % Recover symbol timing phase using
 % fourth-order nonlinearity method
 [rxSym,timEst] = timeSync(rxSig);
 % Calculate the timing delay estimate for each sample
 timEst = timEst(1)/samplesPerSymbol;
 else
 % Do not apply timing recovery and
 % simply downsample the received signal
 rxSym = downsample(rxSig,samplesPerSymbol);
 timEst = 0;
 end

 MSK Signal Recovery

17-3

 % Save the timing synchronized received signal for plotting
 plot_rxTimeSync = rxSym;

 %--
 % Carrier frequency and phase recovery
 %--
 if recoverCarrier
 % The following script applies carrier frequency and
 % phase recovery using a second order phase-locked
 % loop (PLL), and removes phase ambiguity
 [rxSym,phEst] = phaseSync(rxSym);
 removePhaseAmbiguityMSKSignalRecoveryEx;
 freqShiftEst = mean(diff(phEst)/(Ts*2*pi));
 phEst = mod(mean(phEst),360); % in degrees
 else
 freqShiftEst = 0;
 phEst = 0;
 end

 % Save the phase synchronized received signal for plotting
 plot_rxPhSync = rxSym;
 %--
 % Demodulate the received symbols
 %--
 rxBits = demod(rxSym);
 %--
 % Calculate the bit error rate
 %--
 errorStats = BERCalc(txBits,rxBits);
 %--
 % Plot results
 %--
 plotResultsMSKSignalRecoveryEx;
end

17 MSK

17-4

Display the bit error rate and the total number of symbols processed by the error rate calculator.

BitErrorRate = errorStats(1)

BitErrorRate = 4.0001e-06

 MSK Signal Recovery

17-5

TotalNumberOfSymbols = errorStats(3)

TotalNumberOfSymbols = 499982

Conclusion and Further Experimentation

The recovery algorithms are demonstrated by using constellation plots taken after timing, carrier
frequency, and carrier phase synchronization.

Open the script to create a writable copy of this example and its supporting files. Then, to show the
effects of the recovery algorithms, you can enable and disable the logical control variables
recoverTimingPhase and recoverCarrier and rerun the simulation.

Appendix

This example uses these scripts:

• configureMSKSignalRecoveryEx
• plotResultsMSKSignalRecoveryEx
• removePhaseAmbiguityMSKSignalRecoveryEx

17 MSK

17-6

MSK Signal Recovery
In this section...
“Exploring the Model” on page 17-7
“Results and Displays” on page 17-8
“Experimenting with the Example” on page 17-11

This model shows how channel impairments such as timing phase offset, carrier frequency offset, and
phase offset for a minimum shift keying (MSK) signal are modeled. The model uses blocks from the
Synchronization library to recover the signal. To open the model, type doc_commmsksync at the
MATLAB command line.

Exploring the Model
The example models an MSK transmitted signal undergoing channel impairments, including these
components:

1 An MSK signal source that uses the Bernoulli Binary Generator block to output equiprobable
symbols and modulates the symbols using an MSK Modulator Baseband block

2 A channel model that incorporates independently variable offsets in the timing phase, frequency,
and phase. The channel model also includes the AWGN Channel block

3 Signal recovery, consisting of:

• Timing recovery using the MSK-Type Signal Timing Recovery block
• Carrier frequency and phase recovery using the Carrier Synchronizer block

4 An MSK Demodulator Baseband block
5 Blocks that compute and display the system's bit error rate (BER)

When you load the model, it also initializes some parameters that several blocks share.

 MSK Signal Recovery

17-7

Results and Displays
When you run the simulation, the displays show the estimated values for the impairments as well as
the BER metrics. Because the Carrier Synchronizer block performs both frequency and phase
correction, the display of estimated phase offset may fluctuate rapidly. The display labeled BER
Metrics shows a three-element vector containing the calculated bit error rate (BER), the number of
errors observed, and the number of bits processed.

You can view the MSK signal via the Constellation Diagram blocks at the different stages. This
provides a compelling visual rendition of the recovery algorithms in action, especially as you turn the
algorithms on and off using the two control switches.

Scatter plot of received signal:

17 MSK

17-8

Scatter plot of signal after timing recovery:

 MSK Signal Recovery

17-9

Scatter plot of signal after carrier frequency and phase recovery:

17 MSK

17-10

You can also reset the BER computation after the signal has reached a steady state.

Experimenting with the Example
The example is designed so that you can vary the impairments independently while the simulation is
running. You can also use the toggle switches to turn the recovery schemes on and off while the
simulation is running, and then see the effects on the scatter plots.

Further items to investigate include:

• Set the frequency offset to 0 and observe the displayed signal constellations and estimated phase
offset.

• Observe that the Carrier Synchronizer block is set for a QPSK constellation with a phase offset of
0°.

• To see how the timing offset is tracked, replace the Constant block with a Sine Wave block. Vary
the offset between 0 and 1 over the duration of the simulation.

• Vary the error update gain of the MSK-Type Signal Timing Recovery block to assess its ability to
track constant and time-varying offsets. To access the block, open the Timing Recovery subsystem
and then open the Timing Recovery Algorithm subsystem.

 MSK Signal Recovery

17-11

Reed-Solomon Coding

• “Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink” on page 18-2
• “Representation of Polynomials in Communications Toolbox” on page 18-11
• “Estimate BER of QPSK in AWGN with Reed-Solomon Coding” on page 18-13
• “Transmit and Receive Shortened Reed-Solomon Codes” on page 18-15

18

Reed-Solomon Coding with Erasures, Punctures, and
Shortening in Simulink

This model shows how to configure Reed-Solomon (RS) codes to perform block coding with erasures,
punctures, and shortening.

RS decoders can correct both errors and erasures. The erasures can be generated by a receiver that
identifies the most unreliable symbols in a given codeword. When a receiver erases a symbol, it
replaces the symbol with a zero and passes a flag to the decoder indicating that the symbol is an
erasure, not a valid code symbol.

In addition, an encoder can generate punctures for which specific parity symbols are always removed
from its output. The decoder, which knows the puncture pattern, inserts zeros in the puncture
positions and treats those symbols as erasures. The decoder treats encoder-generated punctures and
receiver-generated erasures in exactly the same way when it decodes.

Puncturing has the added benefit of making the code rate a bit more flexible, at the expense of some
error correction capability. Shortened codes achieve the same code rate flexibility without degrading
the error correction performance, given the same demodulator input Eb/N0. Note that puncturing is
the removal of parity symbols from a codeword, and shortening is the removal of message symbols
from a codeword.

Decoding with Receiver Generated Erasures

This example shows a (63,53) RS code operating in concert with a 64-QAM modulation scheme. Since
the code can correct (63-53)/2 = 5 errors, it can alternatively correct (63-53) = 10 erasures. For each
demodulated codeword, the receiver determines the six least reliable symbols by finding the symbols
within a decision region that are nearest to a decision boundary. It then erases those symbols. The
RSCodingErasuresExample model is shown here.

model_e = 'RSCodingErasuresExample';
open_system(model_e);

18 Reed-Solomon Coding

18-2

 Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink

18-3

Simulation and Visualization with Erasures Only

Define system simulation parameters:

RS_TsUncoded = 1; % Sample time (s)
RS_n = 63; % Codeword length
RS_k = 53; % Message length
RS_MQAM = 64; % QAM order
RS_numBitsPerSymbol = ... % 6 bits per symbol
 log2(RS_MQAM);
RS_sigPower = 42; % Assume points at +/-1, +/-3, +/-5, +/-7
RS_numErasures = 6; % Number of erasures
RS_EbNoUncoded = 15; % In dB

The system is simulated at an uncoded Eb/N0 of 15 dB. However, the coded Eb/N0 is reduced
because of the redundant symbols added by the RS Encoder. Also, the period of each frame in the
model remains constant at 53 seconds, corresponding to a sample time of 1 second at the output of
the Random Integer Generator. Moreover, the symbol time at the output of the RS Encoder is reduced
by a factor of the code rate, because 63 symbols are output over the frame time of 53 seconds. The
AWGN Channel block accounts for this by using these parameters:

RS_EbNoCoded = RS_EbNoUncoded + 10*log10(RS_k/RS_n);
RS_TsymCoded = RS_TsUncoded * (RS_k/RS_n);

The receiver determines which symbols to erase by finding the 64-QAM symbols, per codeword, that
are closest to a decision boundary. It deletes the six least reliable code symbols, which still allows the
RS Decoder to correct (10-6)/2 = 2 errors per codeword.

Run the simulation and show the received symbols and those symbols that were erased.

sim(model_e)
open_system([model_e,'/Received Signal Scatter Plot'])

18 Reed-Solomon Coding

18-4

open_system([model_e,'/Erased Signal Scatter Plot'])
%

BER Performance with Erasures Only

Examine the BER performance at the output of the decoder. We set the stop time of the simulation to
inf, then simulate until 100 bit errors are collected out of the RS Decoder. Display the total number of
corrected errors, 64-QAM BER, and RS BER.

 Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink

18-5

fprintf('Total number of corrected errors with\n')
fprintf('erasures: %d\n',totCorrErrors_e(1))
fprintf('64-QAM BER with\n')
fprintf('erasures: %s\n',channelBER_e(1))
fprintf('RS BER with\n')
fprintf('erasures: %s\n',codedBER_e(1))

Total number of corrected errors with
erasures: 9595
64-QAM BER with
erasures: 1.702468e-03
RS BER with
erasures: 1.851795e-06

Simulation with Erasures and Punctures

In addition to decoding receiver-generated erasures, the RS Decoder can correct encoder-generated
punctures. The decoding algorithm is identical for the two cases, but the per-codeword sum of the
punctures and erasures cannot exceed twice the error-correcting capability of the code. Consider the
following model that performs decoding for both erasures and punctures.

The same puncture vector is specified in both the encoder and decoder blocks. This example
punctures two symbols from each codeword. Vector values of "1" indicate nonpunctured symbols,
while values of "0" indicate punctured symbols. In the erasures vector, however, values of "1" indicate
erased symbols, while values of "0" indicate nonerased symbols.

Several of the parameters for the AWGN Channel block are now slightly different, because the length
of the codeword is now different from the previous example. The block accounts for the size
difference with the following code:

RS_numPuncs = 2;
RS_EbNoCoded = RS_EbNoUncoded + 10*log10(RS_k / (RS_n - RS_numPuncs));
RS_TsymCoded = RS_TsUncoded * (RS_k / (RS_n - RS_numPuncs));

We simulate the model, RSCodingErasuresPunctExample.mdl, collecting 1000 errors out of the RS
Decoder block. Due to puncturing, the signal dimensions out of the encoder are 61-by-1, rather than
63-by-1 in the model with no puncturing. The Create Erasures Vector subsystem must also account
for the size differences as it creates a 61-by-1 erasures vector. The RSCodingErasuresPunctExample
model is shown here.

model_ep = 'RSCodingErasuresPunctExample';
open_system(model_ep);

18 Reed-Solomon Coding

18-6

sim(model_ep)

BER Performance with Erasures and Punctures

Compare the BERs for erasures decoding with and without puncturing.

The BER out of the 64-QAM Demodulator is slightly better in the punctured case, because the Eb/N0
into the demodulator is slightly higher. However, the BER out of the RS Decoder is much worse in the
punctured case, because the two punctures reduce the error correcting capability of the code by one,
leaving it able to correct only (10-6-2)/2 = 1 error per codeword. Display the total number of
corrected errors, 64-QAM BER, and RS BER for the RS codes with erasures and punctures.

fprintf('Total number of corrected errors with\n')
fprintf(' erasures: %d\n',totCorrErrors_e(1))
fprintf('erasures and punctures: %d\n',totCorrErrors_ep(1))
fprintf('64-QAM BER with\n')
fprintf(' erasures: %s\n',channelBER_e(1))
fprintf('erasures and punctures: %s\n',channelBER_ep(1))
fprintf('RS BER with\n')
fprintf(' erasures: %s\n',codedBER_e(1))
fprintf('erasures and punctures: %s\n',codedBER_ep(1))

Total number of corrected errors with
 erasures: 9595
erasures and punctures: 2578
64-QAM BER with
 erasures: 1.702468e-03
erasures and punctures: 1.471001e-03
RS BER with
 erasures: 1.851795e-06
erasures and punctures: 4.289038e-05

 Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink

18-7

Specifying a Shortened Code

Shortening a block code removes symbols from its message portion, where puncturing removes
symbols from its parity portion. You can incorporate both techniques with the RS encoder and
decoder blocks.

For example, to shorten a (63,53) code to a (53,43) code, you can simply enter 63, 53 and 43 for n, k,
and s respectively, in the encoder and decoder block masks. The
RSCodingErasuresPunctShortExample model is shown here.

model_eps = 'RSCodingErasuresPunctShortExample';
open_system(model_eps);

Simulation with Erasures, Punctures, and Shortening

Because shortening alters the code rate much like puncturing does, the AWGN parameters must be
changed again. The AWGN Channel block accounts for this with the following code:

RS_EbNoCoded = RS_EbNoUncoded + ...
 10*log10(RS_s / (RS_n - RS_k + RS_s - RS_numPuncs));
RS_TsymCoded = RS_TsUncoded * RS_s / (RS_n - RS_k + RS_s - RS_numPuncs);

We simulate the model, once again collecting 1000 errors out of the RS Decoder block. Note that the
signal dimensions out of the RS Encoder are 26x1, due to 35 symbols of shortening and 2 symbols of
puncturing. Once again, the Create Erasures Vector subsystem must also account for the size
difference caused by the shortened code.

sim(model_eps)

18 Reed-Solomon Coding

18-8

BER Performance with Erasures, Punctures, and Shortening

Compare the BER performance for decoding with erasures only, with erasures and punctures, and
with erasures, punctures, and shortening.

The BER out of the 64-QAM Demodulator is worse with shortening than it is without shortening. This
is because the code rate of the shortened code is much lower than the code rate of the non-shortened
code and therefore the coded Eb/N0 into the demodulator is worse with shortening. A shortened code
has the same error correcting capability as non-shortened code for the same Eb/N0, but the reduction
in Eb/N0 manifests in the form of a higher BER out of the RS Decoder with shortening than without.
Compare the total number of corrected errors, 64-QAM BER, and RS BER for the RS codes with
erasures, punctures, and shortening.

fprintf('Total number of corrected errors\n')
fprintf(...
 ' erasures: %d\n',totCorrErrors_e(1))
fprintf(...
 ' erasures and punctures: %d\n',totCorrErrors_ep(1))
fprintf(...
 'erasures, punctures, and shortening: %d\n',totCorrErrors_eps(1))
fprintf('64-QAM BER with\n')
fprintf(' erasures: %s\n',channelBER_e(1))
fprintf(' erasures and punctures: %s\n',channelBER_ep(1))
fprintf('erasures, punctures, and shortening: %s\n',channelBER_eps(1))
fprintf('RS BER with\n')
fprintf(' erasures: %s\n',codedBER_e(1))
fprintf(' erasures and punctures: %s\n',codedBER_ep(1))
fprintf('erasures, punctures, and shortening: %s\n',codedBER_eps(1))

Total number of corrected errors
 erasures: 9595
 erasures and punctures: 2578
erasures, punctures, and shortening: 3120
64-QAM BER with
 erasures: 1.702468e-03
 erasures and punctures: 1.471001e-03
erasures, punctures, and shortening: 3.632517e-03
RS BER with
 erasures: 1.851795e-06
 erasures and punctures: 4.289038e-05
erasures, punctures, and shortening: 1.028213e-04

Further Exploration

You can experiment with these systems by running them over a loop of Eb/N0 values and generating
a BER curve for them. You can then compare their performance against a theoretical 64-QAM/RS
system without erasures, punctures, or shortening. Use BERTool to generate the theoretical BER
curves.

close_system(model_e,0);
close_system(model_ep,0);
close_system(model_eps,0);

See Also
Binary-Input RS Encoder | Integer-Input RS Encoder | Binary-Output RS Decoder | Integer-Output RS
Decoder

 Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink

18-9

Related Examples
• “Error Detection and Correction” on page 16-14
• “Estimate BER of QPSK in AWGN with Reed-Solomon Coding” on page 18-13

18 Reed-Solomon Coding

18-10

Representation of Polynomials in Communications Toolbox
You can specify polynomials as a character vector or string scalar by using a variety of syntaxes.
Communications Toolbox functions that support character vector and string scalar polynomials
convert these various syntaxes into the appropriate form, which varies depending on the function. For
example, the comm.BCHEncoder function expresses polynomials as a binary row vector with powers
in descending order.

When specifying a character vector or string scalar to represent a polynomial:

• Ascending or descending order is valid.
• Spaces are ignored.
• The caret symbol, ^, which indicates the presence of an exponent, is optional. If omitted, the

function assumes that the integer that follows the variable is an exponent.
• Braces, {}, denote an exponent. For example, you can represent x2 as x{2}.
• Text appearing before the polynomial expression (with or without an equals sign) is ignored.
• Punctuation that follows square brackets is ignored.
• Exponents must be uniformly positive or uniformly negative. Mixed-sign exponents are not

allowed. For example, 'x^2 + x + 1' and '1 + z^-6 + z^-8' are valid, but '1 + z^6 +
z^-8' is not valid.

This list shows some examples of how to express the polynomial x14 + 4x5 + x3 + 2x + 1 in code. Use
single quotes for character vectors (as shown) or double quotes for string scalars.

• '1+2x+x^3+4x^5+x^14'
• '1+2m+m3+4m5+m14'
• 'q14 + 4q5 + q3 + 2q + 1'
• 'g(x) = 1+2x+x3+4x5+x14'
• 'g(z) 1+2z+z3+4z5+z14'
• 'p(x) = x{14} + 4x{5} + x{3} + 2{x} + 1'
• '[D14 + 4D5 + D3 + 2D + 1]'

See Also
Functions
gfadd | bchgenpoly | poly2trellis

Objects
comm.PNSequence | comm.BCHEncoder

Blocks
Gold Sequence Generator | BCH Encoder

Related Examples
• “Working with Galois Fields” on page 19-2
• “Sequence Generators” on page 9-10

 Representation of Polynomials in Communications Toolbox

18-11

• “Error Detection and Correction” on page 16-14

18 Reed-Solomon Coding

18-12

Estimate BER of QPSK in AWGN with Reed-Solomon Coding

Transmit Reed-Solomon encoded data using QPSK over an AWGN channel. Demodulate and decode
the received signal and collect error statistics. Compute theoretical bit error rate (BER) for coded and
noncoded data. Plot the BER results to compare performance.

Define the example parameters.

rng(1993); % Seed random number generator for repeatable results
M = 4; % Modulation order
bps = log2(M); % Bits per symbol
N = 7; % RS codeword length
K = 5; % RS message length

Create AWGN channel and error rate objects.

awgnChannel = comm.AWGNChannel(...
 BitsPerSymbol=bps);
errorRate = comm.ErrorRate;

Create a (7,5) Reed-Solomon encoder and decoder pair which accepts bit inputs.

rsEncoder = comm.RSEncoder(...
 BitInput=true, ...
 CodewordLength=N, ...
 MessageLength=K);
rsDecoder = comm.RSDecoder(...
 BitInput=true, ...
 CodewordLength=N, ...
 MessageLength=K);

Set the range of Eb/N0 values and account for RS coding gain. Initialize the error statistics matrix.

ebnoVec = (3:0.5:8)';
ebnoVecCodingGain = ...
 ebnoVec + 10*log10(K/N); % Account for RS coding gain
errorStats = zeros(length(ebnoVec),3);

Estimate the bit error rate for each Eb/N0 value. The simulation runs until either 100 errors or 107

bits is encountered. The main simulation loop processing includes encoding, modulation,
demodulation, and decoding.

for i = 1:length(ebnoVec)
 awgnChannel.EbNo = ebnoVecCodingGain(i);
 reset(errorRate)
 while errorStats(i,2) < 100 && errorStats(i,3) < 1e7
 data = randi([0 1],1500,1);
 encData = rsEncoder(data);
 modData = pskmod(encData,M,InputType='bit');
 rxSig = awgnChannel(modData);
 rxData = pskdemod(rxSig,M,OutputType='bit');
 decData = rsDecoder(rxData);
 errorStats(i,:) = errorRate(data,decData);
 end
end

 Estimate BER of QPSK in AWGN with Reed-Solomon Coding

18-13

Fit a curve to the BER data using berfit. Generate an estimate of QPSK performance with and
without coding using the bercoding and berawgn functions.

berCurveFit = berfit(ebnoVecCodingGain,errorStats(:,1));
berwCoding = bercoding(ebnoVec,'RS','hard',N,K,'psk',M,'nondiff');
berNoCoding = berawgn(ebnoVec,'psk',M,'nondiff');

Plot the RS coded BER data, curve fit of the BER data, theoretical performance with RS coding, and
theoretical performance without RS coding. The (7,5) RS code improves the Eb/N0 required to
achieve a 10−2 bit error rate by approximately 1.2 dB.

semilogy(ebnoVecCodingGain,errorStats(:,1),'b*', ...
 ebnoVecCodingGain,berCurveFit,'c-', ...
 ebnoVecCodingGain,berwCoding,'r', ...
 ebnoVec,berNoCoding)
ylabel('BER')
xlabel('Eb/No (dB)')
legend(...
 'RS coded BER','Curve Fit', ...
 'Theory with coding','Theory no coding')
grid

18 Reed-Solomon Coding

18-14

Transmit and Receive Shortened Reed-Solomon Codes

Transmit and receive standard and shortened RS-encoded, 64-QAM-modulated data through an
AWGN channel. Compare the performance of the standard and shortened codes.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the nominal
message length, and S is the shortened message length. Specify the modulation order, M.

N = 63; % Codeword length
K = 51; % Message length
S = 39; % Shortened message length
M = 64; % Modulation order

Specify the simulation parameters, where numErrors is the number of errors per Eb/No point, and
numBits is the maximum number of bits per Eb/No point. Specify the range of Eb/No values to be
simulated. Initialize the BER arrays.

numErrors = 200;
numBits = 1e7;
ebnoVec = (8:13)';
[ber0,ber1] = deal(zeros(size(ebnoVec)));

Create an error rate object to collect error statistics.

errorRate = comm.ErrorRate;

Create a Reed-Solomon encoder and decoder pair for an RS(63,51) code. Calculate the code rate.

rsEncoder = comm.RSEncoder(N,K,'BitInput',true);
rsDecoder = comm.RSDecoder(N,K,'BitInput',true);
rate = K/N;

Execute the main processing loop.

for k = 1:length(ebnoVec)

 % Convert the coded Eb/No to an SNR. Initialize the error statistics
 % vector.
 snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));
 errorStats = zeros(3,1);

 while errorStats(2) < numErrors && errorStats(3) < numBits

 % Generate binary data.
 txData = randi([0 1],K*log2(M),1);

 % Encode the data.
 encData = rsEncoder(txData);

 % Apply 64-QAM modulation.
 txSig = qammod(encData,M, ...
 'UnitAveragePower',true,'InputType','bit');

 % Pass the signal through an AWGN channel.
 rxSig = awgn(txSig,snrdB);

 Transmit and Receive Shortened Reed-Solomon Codes

18-15

 % Demodulated the noisy signal.
 demodSig = qamdemod(rxSig,M, ...
 'UnitAveragePower',true,'OutputType','bit');

 % Decode the data.
 rxData = rsDecoder(demodSig);

 % Compute the error statistics.
 errorStats = errorRate(txData,rxData);
 end

 % Save the BER data, and reset the errorRate counter.
 ber0(k) = errorStats(1);
 reset(errorRate)
end

Create a Reed-Solomon generator polynomial for an RS(63,51) code.

gp = rsgenpoly(N,K,[],0);

Create a Reed-Solomon encoder and decoder pair using shortened message length S and generator
polynomial gp. Calculate the rate of the shortened code.

rsEncoder = comm.RSEncoder(N,K,gp,S,'BitInput',true);
rsDecoder = comm.RSDecoder(N,K,gp,S,'BitInput',true);
rate = S/(N-(K-S));

Execute the main processing loop using the shortened Reed-Solomon code.

for k = 1:length(ebnoVec)

 % Convert the coded Eb/No to an SNR. Initialize the error statistics
 % vector.
 snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));
 errorStats = zeros(3,1);

 while errorStats(2) < numErrors && errorStats(3) < numBits

 % Generate binary data.
 txData = randi([0 1],S*log2(M),1);

 % Encode the data.
 encData = rsEncoder(txData);

 % Apply 64-QAM modulation.
 txSig = qammod(encData,M, ...
 'UnitAveragePower',true,'InputType','bit');

 % Pass the signal through an AWGN channel.
 rxSig = awgn(txSig,snrdB);

 % Demodulated the noisy signal.
 demodSig = qamdemod(rxSig,M, ...
 'UnitAveragePower',true,'OutputType','bit');

 % Decode the data.
 rxData = rsDecoder(demodSig);

18 Reed-Solomon Coding

18-16

 % Compute the error statistics.
 errorStats = errorRate(txData,rxData);
 end

 % Save the BER data, and reset the errorRate counter.
 ber1(k) = errorStats(1);
 reset(errorRate)
end

Calculate the approximate BER for an RS (63,51) code.

berapprox = bercoding(ebnoVec,'RS','hard',N,K,'qam',64);

Compare the BER curves for the RS(63,51) and RS(51,39) codes. Plot the theoretically approximated
BER curve. Observe that shortening the code does not affect performance.

semilogy(ebnoVec,ber0,'o-',ebnoVec,ber1,'c^-',ebnoVec,berapprox,'k--')
legend('RS(63,51)','RS(51,39)','Theory')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
grid

 Transmit and Receive Shortened Reed-Solomon Codes

18-17

Galois Fields

• “Working with Galois Fields” on page 19-2
• “ElGamal Public Key Cryptosystem” on page 19-6

19

Working with Galois Fields

This example shows how to work with Galois fields. This example also shows the effects of using with
Hamming codes and Galois field theory for error-control coding.

A Galois field is an algebraic field with a finite number of members. A Galois field that has 2m

members is denoted by GF 2m , where m is an integer in the range [1, 16].

Create Galois Field Arrays

Create Galois field arrays using the gf function. For example, create the element 3 in the Galois field
GF 22 .

A = gf(3,2)

A = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 3

Use Galois Field Arrays

You can now use A as if it is a built-in MATLAB® data type. For example, add two different elements
in a Galois field.

A = gf(3,2);
B = gf(1,2);
C = A+B

C = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 2

Demonstrate Arithmetic in Galois Fields

The rules for arithmetic operations are different for Galois field elements compared to integers. For
example, in GF 22 , 3 + 1 = 2 . This table shows some of the differences between Galois field
arithmetic and integer arithmetic for integers 0 through 3.

+__0__1__2__3

0| 0 1 2 3

1| 1 2 3 4

2| 2 3 4 5

3| 3 4 5 6

19 Galois Fields

19-2

Define such a table in MATLAB®.

A = ones(4,1)*(0:3);
B = (0:3)'*ones(1,4);
A+B

ans = 4×4

 0 1 2 3
 1 2 3 4
 2 3 4 5
 3 4 5 6

Similarly, create an addition table for the Galois field GF 22 .

A = gf(ones(4,1)*(0:3),2);
B = gf((0:3)'*ones(1,4),2);
A+B

ans = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 1 2 3
 1 0 3 2
 2 3 0 1
 3 2 1 0

Use MATLAB Functions with Galois Arrays

For a list of MATLAB® functions that work with Galois arrays, see “Galois Computations” on the gf
function reference page. For example, create two different Galois arrays, and then use the conv
function to multiply the two polynomials.

A = gf([1 33],8);
B = gf([1 55],8);

C = conv(A,B)

C = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)

Array elements =

 1 22 153

You can use the roots function to find the roots of a polynomial. For example, find the roots of
polynomial C. The results show that the roots match the original values in polynomials A and B.

roots(C)

ans = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)

Array elements =

 Working with Galois Fields

19-3

 33
 55

Use Hamming Codes and Galois Theory

This section shows how to use a simple Hamming code and Galois field theory for error-control
coding. An error-control code adds redundancy to information bits. For example, a (7,4) Hamming
code maps 4 bits of information to 7-bit codewords by multiplying the 4 information bits by a 4-by-7
generation matrix in Galois field GF 2 . Use the hammgen function to obtain this matrix.

[paritymat,genmat] = hammgen(3)

paritymat = 3×7

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

genmat = 4×7

 1 1 0 1 0 0 0
 0 1 1 0 1 0 0
 1 1 1 0 0 1 0
 1 0 1 0 0 0 1

The output paritymat is the parity-check matrix, and the output genmat is the generator matrix. To
encode the information bits [0 1 0 0], multiply the bits by the generator matrix genmat in Galois
field GF 2 .

A = gf([0 1 0 0],1)

A = GF(2) array.

Array elements =

 0 1 0 0

code = A*genmat

code = GF(2) array.

Array elements =

 0 1 1 0 1 0 0

For this example, suppose that somewhere along transmission, an error is introduced in this
codeword. The Hamming code used in this example can correct up to 1 bit error. Insert an error in
the transmission by changing the first bit from 0 to 1.

code(1) = 1

code = GF(2) array.

Array elements =

19 Galois Fields

19-4

 1 1 1 0 1 0 0

Use the parity-check matrix to determine where the error occurred, by multiplying the erroneous
codeword by the parity-check matrix.

paritymat*code'

ans = GF(2) array.

Array elements =

 1
 0
 0

Find the error, by inspecting the parity-check matrix, paritymat. The column in paritymat that
matches [1 0 0]' is the location of the error. In this example, the first column is [1 0 0]', so the
first element of the vector code contains the error.

paritymat

paritymat = 3×7

 1 0 0 1 0 1 1
 0 1 0 1 1 1 0
 0 0 1 0 1 1 1

See Also
Functions
gf | hammgen

More About
• “Error Detection and Correction” on page 16-14

 Working with Galois Fields

19-5

ElGamal Public Key Cryptosystem

Use the Galois field array function, gf, to implement an ElGamal public key cryptosystem.

Key Generation

Define the polynomial degree, m.

m = 15;
q = 2^m;

Find a primitive polynomial and group generator. Set the random number generator seed to produce
a repeatable result.

poly = primpoly(m,'nodisplay');

primeFactors = unique(factor(2^m-1));
rng(123456);
while 1
 g = gf(randi([1,q-1]),m,poly);
 isPrimitive = true;
 for i = 1:length(primeFactors)
 if g^((q-1)/primeFactors(i)) == gf(1,m,poly)
 isPrimitive = false;
 break;
 end
 end
 if isPrimitive
 break;
 end
end

Construct private and public keys.

privateKey = 12;
publicKey = {g,g^privateKey,poly};

Encryption

Create and display the original message.

text = ['The Fourier transform decomposes a function of time (a signal)' newline ...
 'into the frequencies that make it up, in a way similar to how a' newline ...
 'musical chord can be expressed as the amplitude (or loudness) of' newline ...
 'its constituent notes.'];
disp(text);

The Fourier transform decomposes a function of time (a signal)
into the frequencies that make it up, in a way similar to how a
musical chord can be expressed as the amplitude (or loudness) of
its constituent notes.

Convert the message to binary and group them every m bits. The message uses ASCII characters.
Since the ASCII table has 128 characters, seven bits per character is sufficient.

bitsPerChar = 7;
binMsg = int2bit(int8(text'),bitsPerChar);

19 Galois Fields

19-6

numPaddedBits = m - mod(numel(binMsg),m);
if numPaddedBits == m
 numPaddedBits = 0;
end
binMsg = [binMsg; zeros(numPaddedBits,1)];
textToEncrypt = bit2int(binMsg,m);

Encrypt the original message.

cipherText = gf(zeros(length(textToEncrypt),2),m,poly);

for i = 1:length(textToEncrypt)
 k = randi([1 2^m-2]);
 cipherText(i,:) = [publicKey{1}^k, ...
 gf(textToEncrypt(i),m,poly)*publicKey{2}^k];
end

Display the encrypted message.

tmp = cipherText.x;
%disp(de2char(tmp(:,2),bitsPerChar,m));

Decryption

Decrypt the encrypted original message.

decipherText = gf(zeros(size(cipherText,1),1),m,poly);
for i = 1:size(cipherText,1)
 decipherText(i) = cipherText(i,2) * cipherText(i,1)^(-privateKey);
end

Display the decrypted message.

disp(de2char(decipherText.x,bitsPerChar,m));

The Fourier transform decomposes a function of time (a signal)
into the frequencies that make it up, in a way similar to how a
musical chord can be expressed as the amplitude (or loudness) of
its constituent notes.

Supporting Function

de2char converts the bits to char messages.

function text = de2char(msg,bitsPerChar,m)
binDecipherText = int2bit(msg,m);
text = char(bit2int(binDecipherText(1:end-mod(numel(binDecipherText), ...
 bitsPerChar)),bitsPerChar))';
end

See Also
Functions
gf | reshape

 ElGamal Public Key Cryptosystem

19-7

More About
• “Error Detection and Correction” on page 16-14

19 Galois Fields

19-8

Error Detection and Correction

• “High Rate Convolutional Codes for Turbo Coding” on page 20-2
• “Punctured Convolutional Coding” on page 20-6
• “Punctured Convolutional Coding in Simulink” on page 20-11
• “Rate 2/3 Convolutional Code in AWGN” on page 20-14
• “Estimate BER for Hard and Soft Decision Viterbi Decoding” on page 20-17
• “Creation, Validation, and Testing of User Defined Trellis Structure” on page 20-20

20

High Rate Convolutional Codes for Turbo Coding

Concatenated convolutional codes offer high reliability and have gained in prominence and usage as
turbo codes. The comm.TurboEncoder and comm.TurboDecoder System objects support rate 1/n
convolutional codes only. This example shows the parallel concatenation of two rate 2/3 convolutional
codes to achieve an effective rate 1/3 turbo code by using comm.ConvolutionalEncoder and
comm.APPDecoder System objects.

System Parameters

blkLength = 1024; % Block length
EbNo = 0:5; % Eb/No values to loop over
numIter = 3; % Number of decoding iterations
maxNumBlks = 1e2; % Maximum number of blocks per Eb/No value

Convolutional Encoder/Decoder Parameters

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);
k = log2(trellis.numInputSymbols); % number of input bits
n = log2(trellis.numOutputSymbols); % number of output bits
intrIndices = randperm(blkLength/k)'; % Random interleaving
decAlg = 'True App'; % Decoding algorithm
modOrder = 2; % PSK-modulation order

Initialize System Objects

Initialize Systems object™ for convolutional encoding, APP Decoding, BPSK modulation and
demodulation, AGWN channel, and error rate computation. The demodulation output soft bits using a
log-likelihood ratio method.

cEnc1 = comm.ConvolutionalEncoder(...
 'TrellisStructure',trellis, ...
 'TerminationMethod','Truncated');
cEnc2 = comm.ConvolutionalEncoder(...
 'TrellisStructure',trellis, ...
 'TerminationMethod','Truncated');
cAPPDec1 = comm.APPDecoder(...
 'TrellisStructure',trellis, ...
 'TerminationMethod','Truncated', ...
 'Algorithm',decAlg);
cAPPDec2 = comm.APPDecoder(...
 'TrellisStructure',trellis, ...
 'TerminationMethod','Truncated', ...
 'Algorithm',decAlg);

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator(...
 'DecisionMethod','Log-likelihood ratio', ...
 'VarianceSource','Input port');

awgnChan = comm.AWGNChannel(...
 'NoiseMethod','Variance', ...
 'VarianceSource','Input port');

bitError = comm.ErrorRate; % BER measurement

20 Error Detection and Correction

20-2

Frame Processing Loop

Loop through a range of Eb/N0 values to generate results for BER performance. The
helperTurboEnc and helperTurboDec helper functions on page 20-4 perform the turbo
encoding and decoding.

ber = zeros(length(EbNo),1);
bitsPerSymbol = log2(modOrder);
turboEncRate = k/(2*n);

for ebNoIdx = 1:length(EbNo)
 % Calculate the noise variance from EbNo
 EsNo = EbNo(ebNoIdx) + 10*log10(bitsPerSymbol);
 SNRdB = EsNo + 10*log10(turboEncRate); % Account for code rate
 noiseVar = 10^(-SNRdB/10);

 for numBlks = 1:maxNumBlks
 % Generate binary data
 data = randi([0 1],blkLength,1);

 % Turbo encode the data
 [encodedData,outIndices] = helperTurboEnc(...
 data,cEnc1,cEnc2, ...
 trellis,blkLength,intrIndices);

 % Modulate the encoded data
 modSignal = bpskMod(encodedData);

 % Pass the modulated signal through an AWGN channel
 receivedSignal = awgnChan(modSignal,noiseVar);

 % Demodulate the noisy signal using LLR to output soft bits
 demodSignal = bpskDemod(receivedSignal,noiseVar);

 % Turbo decode the demodulated data
 receivedBits = helperTurboDec(...
 -demodSignal,cAPPDec1,cAPPDec2, ...
 trellis,blkLength,intrIndices,outIndices,numIter);

 % Calculate the error statistics
 errorStats = bitError(data,receivedBits);
 end

 ber(ebNoIdx) = errorStats(1);
 reset(bitError);
end

Display Results

While the practical wireless systems, such as LTE and CCSDS, specify base rate-1/n convolutional
codes for turbo codes, the results show use of higher rate convolutional codes as turbo codes is
viable.

figure;
semilogy(EbNo, ber, '*-');
grid on;
xlabel('E_b/N_0 (dB)');
ylabel('BER');

 High Rate Convolutional Codes for Turbo Coding

20-3

title('High Rate Convolutional Codes for Turbo Coding');
legend(['N = ' num2str(blkLength) ', ' num2str(numIter) ' iterations']);

Helper Functions
function [yEnc,outIndices] = helperTurboEnc(...
 data,hCEnc1,hCEnc2,trellis,blkLength,intrIndices)
% Turbo encoding using two parallel convolutional encoders.
% No tail bits handling and assumes no output stream puncturing.

 % Trellis parameters
 k = log2(trellis.numInputSymbols);
 n = log2(trellis.numOutputSymbols);
 cLen = blkLength*n/k;

 punctrVec = [0;0;0;0;0;0]; % assumes all streams are output
 N = length(find(punctrVec==0));

 % Encode random data bits
 y1 = hCEnc1(data);
 y2 = hCEnc2(...
 reshape(intrlv(reshape(data,k,[])',intrIndices)',[],1));
 y1D = reshape(y1(1:cLen),n,[]);
 y2D = reshape(y2(1:cLen),n,[]);
 yDTemp = [y1D; y2D];
 y = yDTemp(:);

 % Generate output indices vector using puncturing vector

20 Error Detection and Correction

20-4

 idx = 0 : 2*n : (blkLength - 1)*2*(n/k);
 punctrVecIdx = find(punctrVec==0);
 dIdx = repmat(idx, N, 1) + punctrVecIdx;
 outIndices = dIdx(:);
 yEnc = y(outIndices);
end

function yDec = helperTurboDec(...
 yEnc,cAPPDec1,cAPPDec2,trellis, ...
 blkLength,intrIndices,inIndices,numIter)
% Turbo decoding using two a-posteriori probability (APP) decoders

 % Trellis parameters
 k = log2(trellis.numInputSymbols);
 n = log2(trellis.numOutputSymbols);
 rCodLen = 2*(n/k)*blkLength;
 typeyEnc = class(yEnc);

 % Re-order encoded bits according to outIndices
 x = zeros(rCodLen,1);
 x(inIndices) = yEnc;

 % Generate output of first encoder
 yD = reshape(x(1:rCodLen),2*n,[]);
 lc1D = yD(1:n, :);
 Lc1_in = lc1D(:);

 % Generate output of second encoder
 lc2D = yD(n+1:2*n, :);
 Lc2_in = lc2D(:);

 % Initialize unencoded data input
 Lu1_in = zeros(blkLength,1,typeyEnc);

 % Turbo Decode
 out1 = zeros(blkLength/k,k,typeyEnc);
 for iterIdx = 1 : numIter
 [Lu1_out, ~] = cAPPDec1(Lu1_in,Lc1_in);
 tmp = Lu1_out(1:blkLength);
 Lu2_in = reshape(tmp,k,[])';
 [Lu2_out, ~] = cAPPDec2(...
 reshape(Lu2_in(intrIndices, :)',[],1),Lc2_in);
 out1(intrIndices, :) = reshape(Lu2_out(1:blkLength),k,[])';
 Lu1_in = reshape(out1',[],1);
 end
 % Calculate llr and decoded bits for the final iteration
 llr = reshape(out1', [], 1) + Lu1_out(1:blkLength);
 yDec = cast((llr>=0), typeyEnc);
end

 High Rate Convolutional Codes for Turbo Coding

20-5

Punctured Convolutional Coding

This example shows how to use the convolutional encoder and Viterbi decoder System objects to
simulate a punctured coding system. The complexity of a Viterbi decoder increases rapidly with the
code rate. Puncturing is a technique that allows the encoding and decoding of higher rate codes
using standard rate 1/2 encoders and decoders.

Introduction

This example showcases the simulation of a communication system consisting of a random binary
source, a convolutional encoder, a BPSK modulator, an additive white Gaussian noise (AWGN)
channel, and a Viterbi decoder. The example shows how to run simulations to obtain bit error rate
(BER) curves and compares these curves to a theoretical bound.

Initialization

Convolutional Encoding with Puncturing

Create comm.ConvolutionalEncoder System object™ with code rate 1/2 and constraint length 7.
This encoder takes one-bit symbols as inputs and generates 2-bit symbols as outputs. If you assume 3-
bit message words as inputs, then the encoder will generate 6-bit codeword outputs.

convEncoder = comm.ConvolutionalEncoder(poly2trellis(7, [171 133]));

Specify a puncture pattern to create a rate 3/4 code from the previous rate 1/2 code using the
puncture pattern vector [1;1;0;1;1;0]. The ones in the puncture pattern vector indicate that bits in
positions 1, 2, 4, and 5 are transmitted, while the zeros indicate that bits in positions 3 and 6 are
punctured or removed from the transmitted signal. The effect of puncturing is that now, for every 3
bits of input, the punctured code generates 4 bits of output (as opposed to the 6 bits produced before
puncturing). This results in a rate 3/4 code. In the example at hand, the length of the puncture
pattern vector must be an integer multiple of 6 since 3-bit inputs get converted into 6-bit outputs by
the rate 1/2 convolutional encoder.

To set the desired puncture pattern in the convolutional encoder System object, hConvEnc , set the
PuncturePatternSource property to Property and the PuncturePattern property to
[1;1;0;1;1;0] .

convEncoder.PuncturePatternSource = 'Property';
convEncoder.PuncturePattern = [1;1;0;1;1;0];

Modulator and Channel

Initialize a modulation order variable, M, to 2 to transmit the encoded data using binary phase shift
keying modulation over a channel.

M = 2;

Create an comm.AWGNChannel System object. Set the NoiseMethod property of the channel to
Signal to noise ratio (Eb/No) to specify the noise level using the energy per bit to noise
power spectral density ratio (Eb/No). When running simulations, test the coding system for different
values of Eb/No ratio by changing the EbNo property of the channel object. The output of the BPSK
modulator generates unit power signals; set the SignalPower property to 1 Watt. The system at
hand is at the symbol rate; set the SamplesPerSymbol property to 1.

20 Error Detection and Correction

20-6

channel = comm.AWGNChannel(...
 NoiseMethod='Signal to noise ratio (Eb/No)', ...
 SignalPower=1, ...
 SamplesPerSymbol=1);

Viterbi Decoding with Depuncturing

Configure a comm.ViterbiDecoder System object so it decodes the punctured code specified for
the convolutional encoder. This example assumes unquantized inputs to the Viterbi decoder, so set
the InputFormat property to Unquantized.

vitDecoder = comm.ViterbiDecoder(...
 poly2trellis(7, [171 133]), ...
 InputFormat='Unquantized');

In general, the puncture pattern vectors you use for the convolutional encoder and Viterbi decoder
must be the same. To specify the puncture pattern, set the PuncturePatternSource property to
Property. Set the PuncturePattern property to the same puncture pattern vector you use for the
convolutional encoder.

Because the punctured bits are not transmitted, there is no information to indicate their values. As a
result, the decoding process ignores them.

vitDecoder.PuncturePatternSource = 'Property';
vitDecoder.PuncturePattern = convEncoder.PuncturePattern;

For a rate 1/2 code with no puncturing, you normally set the traceback depth of a Viterbi decoder to a
value close to 40. Decoding punctured codes requires a higher value, in order to give the decoder
enough data to resolve the ambiguities that the punctures introduce. This example uses a traceback
depth of 96. Set this value using the TraceBackDepth property.

vitDecoder.TracebackDepth = 96;

Calculating the Error Rate

Create an comm.ErrorRate calculator System object to compare decoded bits to the original
transmitted bits. The output of the error rate calculator object is a three-element vector containing
the calculated bit error rate (BER), the number of errors observed, and the number of bits processed.
The Viterbi decoder creates a delay in the output decoded bit stream equal to the traceback length.
To account for this delay set the ReceiveDelay property of the error rate calculator System object
to 96.

errorCalc = comm.ErrorRate(...
 ReceiveDelay=vitDecoder.TracebackDepth);

Stream Processing Loop

Analyze the BER performance of the punctured coding system for different noise levels.

Uncoded and Coded Eb/No Ratio Values

Typically, you measure system performance according to the value of the energy per bit to noise
power spectral density ratio (Eb/No) available at the input of the channel encoder. The reason for this
is that this quantity is directly controlled by the systems engineer. Analyze the performance of the
coding system for Eb/No values between 2 and 5 dB.

EbNoEncoderInput = 2:0.5:5; % in dB

 Punctured Convolutional Coding

20-7

The signal going into the AWGN channel is the encoded signal. Convert the Eb/No values so that they
correspond to the energy ratio at the encoder output. If you input three bits to the encoder and
obtain four bit outputs, then the energy relation is given by the 3/4 rate as follows:

EbNoEncoderOutput = EbNoEncoderInput + 10*log10(3/4);

Simulation Loop

To obtain BER performance results, transmit frames of 3000 bits through the communications
system. For each Eb/No value, stop simulations upon reaching a specific number of errors or
transmissions. To improve the accuracy of the results, increase the target number of errors or the
maximum number of transmissions.

frameLength = 3000; % this value must be an integer multiple of 3
targetErrors = 300;
maxNumTx = 5e6;

Allocate memory to store results and then loop through the encoded Eb/No values. The simulation
will take a few seconds to complete.

BERVec = zeros(3,length(EbNoEncoderOutput));
for n=1:length(EbNoEncoderOutput)
 reset(errorCalc)
 reset(convEncoder)
 reset(vitDecoder)
 channel.EbNo = EbNoEncoderOutput(n);
 while (BERVec(2,n) < targetErrors) && (BERVec(3,n) < maxNumTx)
 data = randi([0 1],frameLength,1); % Generate binary frames
 % Convolutionally encode the data
 encData = convEncoder(data);
 % Modulate the encoded data
 modData = pskmod(encData,2);
 % Pass the modulated signal through an AWGN channel
 channelOutput = channel(modData);
 % Pass the real part of the channel
 % complex outputs as the unquantized
 % input to the Viterbi decoder.
 decData = vitDecoder(real(channelOutput));
 % Compute and accumulate errors
 BERVec(:,n) = errorCalc(data,decData);
 end
end

Compare Results to Theoretical Curves

We compare the simulation results using an approximation of the bit error probability bound for a
punctured code as per [1]. The following commands compute an approximation of this bound using
the first seven terms of the summation for Eb/No values in 2:0.5:5. The values used for nerr are
found in Table 2 of [2].

dist = 5:11;
nerr = [42 201 1492 10469 62935 379644 2253373];
codeRate = 3/4;
bound = ...
 nerr*(1/6)*erfc(sqrt(codeRate*(10.0.^((2:.02:5)/10))'*dist))';

Plot results. If the target number of errors or maximum number of transmissions you specify for the
simulation are too small, the curve fitting algorithm might fail.

20 Error Detection and Correction

20-8

berfit(EbNoEncoderInput,BERVec(1,:)); % Curve-fit results
hold on;
semilogy((2:.02:5),bound,'g'); % Theoretical results
legend(...
 'Empirical BER', ...
 'Fit for simulated BER', ...
 'Theoretical bound on BER')
axis([1 6 10^-5 1])

In some cases, at lower bit error rates, simulation results appear to indicate error rates slightly above
the bound. This results from simulation variance (if fewer than 500 bit errors are observed) or from
the finite traceback depth in the decoder.

Summary

We utilized several System objects to simulate a communications system with convolutional coding
and puncturing. We simulated the system to obtain BER performance versus different Eb/No ratio
values. The BER results were compared to theoretical bounds.

Selected Bibliography

1 Yasuda, Y., K. Kashiki, and Y. Hirata, "High Rate Punctured Convolutional Codes for Soft Decision
Viterbi Decoding," IEEE® Transactions on Communications, Vol. COM-32, March, 1984, pp.
315-319

 Punctured Convolutional Coding

20-9

2 Begin, G., Haccoun, D., and Paquin, C., "Further results on High-Rate Punctured Convolutional
Codes for Viterbi and Sequential Decoding," IEEE Transactions on Communications, Vol. 38, No.
11, November, 1990, p. 1923

20 Error Detection and Correction

20-10

Punctured Convolutional Coding in Simulink

This example simulates a punctured coding system that uses rate 1/2 convolutional encoding and
Viterbi decoding. The complexity of a Viterbi decoder increases rapidly with the code rate. The
puncturing technique enables encoding and decoding of higher rate codes by using standard lower
rate coders.

The cm_punct_conv_code model transmits a convolutionally encoded BPSK signal through an
AWGN channel, demodulates the received signal, and then performs Viterbi decoding to recover the
uncoded signal. To compute the error rate, the model compares the original % signal and the decoded
signal.

The model uses the PreloadFcn callback function to set these workspace variables for initialization
of block parameters:

puncvec = [1;1;0;1;1;0];
EsN0dB = 2;
traceback = 96; % Viterbi traceback depth

For more information, see “Model Callbacks” (Simulink).

The blocks in this model perform these operations:

• Bernoulli Binary Generator — Sets Sample per frames to 3. The block creates a sequence of
random bits outputting three samples per frame at each sample time.

• Convolutional Encoder — Uses the default setting for Trellis structure, selects Puncture code,
and sets Puncture vector to the workspace variable puncvec. The block encodes frames of data
by puncturing a rate 1/2, constraint length 7 convolutional code to a rate 3/4 code. The puncture
vector specified by puncvec is the optimal puncture vector for the rate 1/2, constraint length 7

 Punctured Convolutional Coding in Simulink

20-11

convolutional code. A 1 in the puncture vector indicates that the bit in the corresponding position
of the coded vector is sent to the output vector, while a 0 indicates that the bit is removed. For the
configured encoder, coded bits in positions 1, 2, 4, and 5 are transmitted, while bits in positions 3
and 6 are removed. The rate 3/4 code means that for every 3 bits of input, the punctured code
generates 4 bits of output.

• BPSK Modulator Baseband — Modulates the encoded message using default parameter values.
• AWGN Channel — Sets Mode to Signal to noise ratio (Es/No) and sets Es/No (dB) to

the workspace variable EsN0dB. Since the modulator block generates unit power signals, Input
signal power, referenced to 1 ohm (watts) keeps its default value of 1.

• Viterbi Decoder — Uses settings for Trellis structure, Punctured code, and Puncture vector
that align with the Convolutional Encoder block. The block sets Decision type to Unquantized
and Traceback depth to the traceback workspace variable. To decode the specified
convolutional code without puncturing the code, a traceback depth of 40 is sufficient. However, to
give the decoder enough data to resolve the ambiguities introduced by the punctures, the block
uses a traceback depth of 96 to decode the punctured code. Similar to the convolutional encoder,
the puncture vector for the decoder indicates the locations of the punctures. For the decoder, the
locations are bits to ignore in the decoding process because the punctured bits are not
transmitted and there is no information to indicate their values. Each 1 in the puncture vector
indicates a transmitted bit, and each 0 indicates a punctured bit to ignore in the input to the
decoder.

• Complex to Real-Imag (Simulink) — Demodulates the BPSK signal by extracting the real part of
the complex samples.

• Error Rate Calculation — Uses the Receive delay value to account for total number of samples of
system delay and compares the decoded bits to the original source bits. The block outputs a three-
element vector containing the calculated BER, the number of errors observed, and the number of
bits processed. The Receive delay is set to the traceback workspace variable because the
Viterbi traceback depth causes the only delay in the system. Typically, BER simulations run until a
minimum number of errors have occurred, or until the simulation processes a maximum number
of bits. The Error Rate Calculation block selects the Stop simulation parameter and sets the
target number of errors to 100 and the maximum number of symbols to 1e6 to control the
duration of the simulation.

Evaluate Bit Error Rate

Generate a bit error rate curve by running this code to simulate the model over a range of EbN0
settings.

Compare the simulation results with an approximation of the bit error probability bound for a
punctured code as per [1]. The bit error rate performance of a rate punctured code is
bounded above by the expression:

In this expression, erfc denotes the complementary error function, is the code rate, and both
and are dependent on the particular code. For the rate 3/4 code of this example, = 5, =
42, = 201, = 1492, and so on. For more information, see reference [1].

Compute an approximation of the theoretical bound using the first seven terms of the summation for
Eb/N0 values in 2:0.02:5. The values used for nerr come from reference [2], Table II.

20 Error Detection and Correction

20-12

Plot the simulation results, a fitted curve, and theoretical bounds.

In some cases, at the lower bit error rates, you might notice simulation results that appear to indicate
error rates slightly above the bound. This result can come from the finite traceback depth in the
decoder or, if you observe fewer than 500 bit errors, from simulation variance.

For an example that shows convolutional coding without puncturing, see the Soft-Decision Decoding
section in “Error Detection and Correction” on page 16-14.

References

1 Yasuda, Y., K. Kashiki, and Y. Hirata, "High Rate Punctured Convolutional Codes for Soft Decision
Viterbi Decoding," IEEE Transactions on Communications, Vol. COM-32, March, 1984, pp. 315–
319.

2 Begin, G., Haccoun, D., and Paquin, C., "Further results on High-Rate Punctured Convolutional
Codes for Viterbi and Sequential Decoding," IEEE Transactions on Communications, Vol. 38, No.
11, November, 1990, p. 1923.

 Punctured Convolutional Coding in Simulink

20-13

Rate 2/3 Convolutional Code in AWGN

This example generates a bit error rate versus Eb/N0 curve for a link that uses 16-QAM modulation
and a rate 2/3 convolutional code in AWGN.

Set the modulation order, and compute the number of bits per symbol.

M = 16;
k = log2(M);

Create a trellis for a rate 2/3 convolutional code. Set the traceback and code rate parameters.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);
traceBack = 28;
codeRate = 2/3;

Create a convolutional encoder and its equivalent Viterbi decoder to run in the continuous mode.

convEncoder = comm.ConvolutionalEncoder(TrellisStructure=trellis);
vitDecoder = comm.ViterbiDecoder(...
 TrellisStructure=trellis, ...
 InputFormat='Hard', ...
 TracebackDepth=traceBack);

Create an error rate object. Set the receiver delay to twice the traceback depth, which is the delay
through the decoder.

errorRate = comm.ErrorRate(ReceiveDelay=2*traceBack);

Set the range of Eb/N0 values to be simulated and compute the equivalent SNR values. Initialize the
bit error rate statistics matrix.

ebnoVec = 0:2:10;
snr = convertSNR(ebnoVec,"ebno","snr", ...
 BitsPerSymbol=k, ...
 CodingRate=codeRate);
errorStats = zeros(length(ebnoVec),3);

Simulate the link by following these steps:

• Generate binary data.
• Encode the data with a rate 2/3 convolutional code.
• 16-QAM modulate the encoded data, configure bit inputs and unit average power.
• Pass the signal through an AWGN channel.
• 16-QAM demodulate the received signal configure bit outputs and unit average power.
• Decode the demodulated signal by using a Viterbi decoder.
• Collect the error statistics.

for ii = 1:length(ebnoVec)
 while errorStats(ii,2) <= 100 && errorStats(ii,3) <= 1e7
 dataIn = randi([0 1],10000,1);
 dataEnc = convEncoder(dataIn);
 txSig = qammod(dataEnc,M, ...

20 Error Detection and Correction

20-14

 InputType='bit',UnitAveragePower=true);
 rxSig = awgn(txSig,snr(ii),'measured');
 demodSig = qamdemod(rxSig,M, ...
 OutputType='bit',UnitAveragePower=true);
 dataOut = vitDecoder(demodSig);
 errorStats(ii,:) = errorRate(dataIn,dataOut);
 end
 reset(errorRate)
end

Compute the theoretical BER curve for the case without forward error correction coding by using the
berawgn function.

berUncoded_emp = berawgn(ebnoVec','qam',M);

Compute the theoretical BER curve for the case with forward error correction coding by using the
bercoding function and the distance spectrum for the 2/3 rate convolutional code. The distspec
function computes the distance spectrum of convolutional codes and outputs the distance spectrum
structure.

spect = distspec(trellis,4)

spect = struct with fields:
 dfree: 5
 weight: [1 6 28 142]
 event: [1 2 8 25]

berCoded_emp = bercoding(ebnoVec', ...
 'conv','hard',codeRate,spect,'qam',M);

Plot BER versus Eb/N0 curves for the simulated coded data, and the theoretical uncoded and coded
data. At higher Eb/N0 values, the error correcting code provides performance benefits. The simulated
coded error rate results show good correlation to the theoretical coded results.

semilogy(ebnoVec,errorStats(:,1),'b*', ...
 ebnoVec,berUncoded_emp,'c-', ...
 ebnoVec,berCoded_emp,'r')
grid
legend('Coded simulated','Uncoded theoretical','Coded theoretical', ...
 'Location','southwest')
title('16-QAM With and Without Forward Error Correction')
xlabel('Eb/N0 (dB)')
ylabel('Bit Error Rate')

 Rate 2/3 Convolutional Code in AWGN

20-15

20 Error Detection and Correction

20-16

Estimate BER for Hard and Soft Decision Viterbi Decoding

Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi decoders in
AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

rng default
M = 64; % Modulation order
k = log2(M); % Bits per symbol
EbNoVec = (4:10)'; % Eb/No values (dB)
numSymPerFrame = 1000; % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec));
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback depth for a rate 1/2, constraint length 7, convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops perform these steps:

• Generate binary data
• Convolutionally encode the data
• Apply QAM modulation to the data symbols. Specify unit average power for the transmitted signal
• Pass the modulated signal through an AWGN channel
• Demodulate the received signal using hard decision and approximate LLR methods. Specify unit

average power for the received signal
• Viterbi decode the signals using hard and unquantized methods
• Calculate the number of bit errors

The while loop continues to process data until either 100 errors are encountered or 107 bits are
transmitted.

for n = 1:length(EbNoVec)
 % Convert Eb/No to SNR
 snrdB = EbNoVec(n) + 10*log10(k*rate);
 % Noise variance calculation for unity average signal power
 noiseVar = 10.^(-snrdB/10);
 % Reset the error and bit counters
 [numErrsSoft,numErrsHard,numBits] = deal(0);

 while numErrsSoft < 100 && numBits < 1e7
 % Generate binary data and convert to symbols
 dataIn = randi([0 1],numSymPerFrame*k,1);

 % Convolutionally encode the data
 dataEnc = convenc(dataIn,trellis);

 Estimate BER for Hard and Soft Decision Viterbi Decoding

20-17

 % QAM modulate
 txSig = qammod(dataEnc,M, ...
 InputType='bit', ...
 UnitAveragePower=true);

 % Pass through AWGN channel
 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal using hard decision (bit) and
 % soft decision (approximate LLR) approaches.
 rxDataHard = qamdemod(rxSig,M, ...
 OutputType='bit', ...
 UnitAveragePower=true);
 rxDataSoft = qamdemod(rxSig,M, ...
 OutputType='approxllr', ...
 UnitAveragePower=true, ...
 NoiseVariance=noiseVar);

 % Viterbi decode the demodulated data
 dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
 dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');

 % Calculate the number of bit errors in the frame.
 % Adjust for the decoding delay, which is equal to
 % the traceback depth.
 numErrsInFrameHard = ...
 biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
 numErrsInFrameSoft = ...
 biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));

 % Increment the error and bit counters
 numErrsHard = numErrsHard + numErrsInFrameHard;
 numErrsSoft = numErrsSoft + numErrsInFrameSoft;
 numBits = numBits + numSymPerFrame*k;

 end

 % Estimate the BER for both methods
 berEstSoft(n) = numErrsSoft/numBits;
 berEstHard(n) = numErrsHard/numBits;
end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an uncoded 64-QAM
channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on
semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

20 Error Detection and Correction

20-18

As expected, the soft decision decoding produces the best results.

 Estimate BER for Hard and Soft Decision Viterbi Decoding

20-19

Creation, Validation, and Testing of User Defined Trellis
Structure

Create User Defined Trellis Structure

This example demonstrates creation of a nonstandard trellis structure for a convolutional encoder
with uncoded bits and feedback. The encoder cannot be created using poly2trellis because the
peculiar specifications for the encoder do not match the input requirements of poly2trellis.

You can manually create the trellis structure, and then use it as the input trellis structure for an
encoder and decoder. The Convolutional Encoder and Viterbi Decoder blocks used in the
“Convolutional Encoder with Uncoded Bits and Feedback” on page 20-24 model load the trellis
structure created here using a PreLoadFcn callback.

Convolutional Encoder

Create a rate 3/4 convolutional encoder with feedback connection whose MSB bit remains uncoded.

Declare variables according to the specifications.

K = 3;
N = 4;
constraintLength = 4;

Create trellis structure

A trellis is represented by a structure with the following fields:

• numInputSymbols – Number of input symbols
• numOutputSymbols – Number of output symbols
• numStates – Number of states
• nextStates – Next state matrix
• outputs – Output matrix

For more information about these structure fields, see istrellis.

20 Error Detection and Correction

20-20

Reset any previous occurrence of myTrellis structure.

clear myTrellis;

Define the trellis structure fields.

myTrellis.numInputSymbols = 2^K;
myTrellis.numOutputSymbols = 2^N;
myTrellis.numStates = 2^(constraintLength-1);

Create nextStates Matrix

The nextStates matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of the next
state matrix is the resulting final state index that corresponds to a transition from the initial state i
for an input equal to j.

myTrellis.nextStates = [0 1 2 3 0 1 2 3; ...
 6 7 4 5 6 7 4 5; ...
 1 0 3 2 1 0 3 2; ...
 7 6 5 4 7 6 5 4; ...
 2 3 0 1 2 3 0 1; ...
 4 5 6 7 4 5 6 7; ...
 3 2 1 0 3 2 1 0; ...
 5 4 7 6 5 4 7 6]

myTrellis = struct with fields:
 numInputSymbols: 8
 numOutputSymbols: 16
 numStates: 8
 nextStates: [8x8 double]

Plot nextStates Matrix

Use the commcnv_plotnextstates helper function to plot the nextStates matrix to illustrate the
branch transitions between different states for a given input.

commcnv_plotnextstates(myTrellis.nextStates);

 Creation, Validation, and Testing of User Defined Trellis Structure

20-21

Create outputs Matrix

The outputs matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of the output
matrix is the output symbol in octal format given a current state i for an input equal to j.

outputs = [0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17; ...
 0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17; ...
 0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17; ...
 0 2 4 6 10 12 14 16; ...
 1 3 5 7 11 13 15 17]

outputs = 8×8

 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17
 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17
 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17
 0 2 4 6 10 12 14 16
 1 3 5 7 11 13 15 17

Use oct2dec to display these values in decimal format.

20 Error Detection and Correction

20-22

outputs_dec = oct2dec(outputs)

outputs_dec = 8×8

 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15
 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15
 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15
 0 2 4 6 8 10 12 14
 1 3 5 7 9 11 13 15

Copy outputs matrix into the myTrellis structure.

myTrellis.outputs = outputs

myTrellis = struct with fields:
 numInputSymbols: 8
 numOutputSymbols: 16
 numStates: 8
 nextStates: [8x8 double]
 outputs: [8x8 double]

Plot outputs Matrix

Use the commcnv_plotoutputs helper function to plot the outputs matrix to illustrate the possible
output symbols for a given state depending on the input symbol.

commcnv_plotoutputs(myTrellis.outputs, myTrellis.numOutputSymbols);

 Creation, Validation, and Testing of User Defined Trellis Structure

20-23

Check Resulting Trellis Structure

istrellis(myTrellis)

ans = logical
 1

A return value of 1 confirms the trellis structure is valid.

Convolutional Encoder with Uncoded Bits and Feedback

The model serves as a unit test bench for the convolutional code implemented. The model shows how
to define and use a trellis that describes a convolutional code. The particular code in this example
cannot be described by a set of generator and feedback connection polynomials. The code's trellis
cannot be created by the poly2trellis because that function expects generator and feedback
connection polynomials as input arguments.

Structure of the Convolutional Code

This figure shows the convolutional code.

20 Error Detection and Correction

20-24

Explore Model

The major components of the slex_commcnvencoder model include:

• A transmit path that builds a representation of the convolutional encoder using discrete low-level
delay and sum (XOR) blocks. This representation looks very similar to the figure showing the
structure of the convolutional code.

• A transmit-receive path that builds a representation of the same convolutional encoder using the
Convolutional Encoder block with the encoder described within the Trellis structure
parameter. This portion of the model also includes the Viterbi Decoder block, which decodes the
convolutional code.

• Both paths compute the number of bit errors.

 Creation, Validation, and Testing of User Defined Trellis Structure

20-25

Results and Displays

When you run the simulation, the block labeled Compare Encoder checks that the two
representations of the encoder yield the same result. The block labeled Compare Encoder -
Decoder checks that the encoder and decoder work properly as a pair. Each Display block in the
model shows an error rate of zero, as expected.

Error rate for Compare Encoder signal: 0.000
Error rate for Compare Encoder-Decoder signal: 0.000

20 Error Detection and Correction

20-26

Channel Modeling and RF Impairments

• “AWGN Channel” on page 21-2
• “Configure Eb/No for AWGN Channels with Coding” on page 21-5
• “Using AWGN Channel Block for Coded Signals” on page 21-7
• “Fading Channels” on page 21-8
• “Using Channel Visualization” on page 21-35
• “WINNER II Channel” on page 21-36
• “Mapping of WINNER II Open Source Download to WINNER II Channel Model for

Communications Toolbox” on page 21-38

21

AWGN Channel
In this section...
“Section Overview” on page 21-2
“AWGN Channel Noise Level” on page 21-2

Section Overview
An AWGN channel adds white Gaussian noise to the signal that passes through it. You can create an
AWGN channel in a model using the comm.AWGNChannel System object, the AWGN Channel block,
or the awgn function.

The following examples use an AWGN Channel: “QPSK Transmitter and Receiver” on page 1-285 and
“Estimate Symbol Rate for General QAM Modulation in AWGN Channel” on page 11-42.

AWGN Channel Noise Level
Typical quantities used to describe the relative power of noise in an AWGN channel include

• Signal-to-noise ratio (SNR) per sample. SNR is the actual input parameter to the awgn function.
• Ratio of bit energy to noise power spectral density (EbN0). This quantity is used by Bit Error

Rate Analysis app and performance evaluation functions in this toolbox.
• Ratio of symbol energy to noise power spectral density (EsN0)

Relationship Between EsN0 and EbN0

The relationship between EsN0 and EbN0, both expressed in dB, is as follows:

Es/N0 (dB) = Eb/N0 (dB) + 10log10(k)

where k is the number of information bits per symbol.

In a communications system, k might be influenced by the size of the modulation alphabet or the code
rate of an error-control code. For example, in a system using a rate-1/2 code and 8-PSK modulation,
the number of information bits per symbol (k) is the product of the code rate and the number of
coded bits per modulated symbol. Specifically, (1/2) log2(8) = 3/2. In such a system, three information
bits correspond to six coded bits, which in turn correspond to two 8-PSK symbols.

Relationship Between EsN0 and SNR

The relationship between EsN0 and SNR, both expressed in dB, is as follows:

Es/N0 (dB) = 10log10 Tsym/Tsamp + SNR (dB) for complex input signals

Es/N0 (dB) = 10log10 0.5Tsym/Tsamp + SNR (dB) for real input signals

where Tsym is the symbol period of the signal and Tsamp is the sampling period of the signal. Tsym/Tsamp
computes to Samples/Symbol.

For a complex baseband signal oversampled by a factor of 4, the EsN0 exceeds the corresponding
SNR by 10 log10(4).

21 Channel Modeling and RF Impairments

21-2

Derivation for Complex Input Signals

You can derive the relationship between EsN0 and SNR for complex input signals as follows:

Es/N0 (dB) = 10log10 (S ⋅ Tsym)/(N/Bn)

= 10log10 (TsymFs) ⋅ (S/N)

= 10log10 Tsym/Tsamp + SNR (dB)

where

• S = Input signal power, in watts
• N = Noise power, in watts
• Bn = Noise bandwidth, in Hertz = Fs = 1/Tsamp.
• Fs = Sampling frequency, in Hertz

Behavior for Real and Complex Input Signals

These figures illustrate the difference between the real and complex cases by showing the noise
power spectral densities of a real bandpass white noise process and its complex lowpass equivalent.

See Also
Objects
comm.AWGNChannel

Blocks
AWGN Channel

 AWGN Channel

21-3

Functions
awgn

More About
• “QPSK Transmitter and Receiver” on page 1-285
• “Estimate Symbol Rate for General QAM Modulation in AWGN Channel” on page 11-42

21 Channel Modeling and RF Impairments

21-4

Configure Eb/No for AWGN Channels with Coding

This example shows how to set the bit energy to noise density ratio (Eb/No) for communication links
employing channel coding.

Specify the codeword and message length for a Reed-Solomon code. Specify the modulation order.

N = 15; % R-S codeword length in symbols
K = 9; % R-S message length in symbols
M = 16; % Modulation order
bps = log2(M); % Bits per symbol

Construct a (15,9) Reed-Solomon encoder and a 16-PSK modulator. Specify the objects so that they
accept bit inputs.

rsEncoder = comm.RSEncoder(...
 CodewordLength=N, ...
 MessageLength=K, ...
 BitInput=true);

Create the corresponding Reed-Solomon decoder and 16-PSK demodulator objects.

rsDecoder = comm.RSDecoder(...
 CodewordLength=N, ...
 MessageLength=K, ...
 BitInput=true);

Calculate the Reed-Solomon code rate based on the ratio of message symbols to the codeword length.

codeRate = K/N;

Specify the uncoded Eb/No in dB. Convert the uncoded Eb/No to the corresponding coded Eb/No
using the code rate.

UncodedEbNo = 6;
CodedEbNo = UncodedEbNo + 10*log10(codeRate);

Construct an AWGN channel taking into account the number of bits per symbol. Set the EbNo
property of channel to the coded Eb/No.

channel = comm.AWGNChannel(BitsPerSymbol=bps);
channel.EbNo = CodedEbNo;

Set the total number of errors and bits for the simulation. For accuracy, the simulation should run
until a sufficient number of bit errors are encountered. The number of total bits is used to ensure that
the simulation does not run too long.

totalErrors = 100;
totalBits = 1e6;

Construct an error rate calculator System object™ and initialize the error rate vector.

errorRate = comm.ErrorRate;
errorVec = zeros(3,1);

Run the simulation to determine the BER.

 Configure Eb/No for AWGN Channels with Coding

21-5

while errorVec(2) < totalErrors && errorVec(3) < totalBits
 % Generate random bits
 dataIn = randi([0,1],360,1);
 % Add error correction capability by using the RS (15,9) encoder
 dataEnc = rsEncoder(dataIn);
 % Apply 16-PSK modulation
 txSig = pskmod(dataIn,M,InputType="bit");
 % Pass the modulated data through the AWGN channel
 rxSig = channel(txSig);
 % Demodulate the received signal
 demodData = pskdemod(rxSig,M,OutputType="bit");
 % Decode the demodulated data with the RS (15,9) decoder
 dataOut = rsDecoder(demodData);
 % Collect error statistics
 errorVec = errorRate(dataIn,demodData);
end

Display the resultant bit error rate.

ber = errorVec(1)

ber = 0.0991

21 Channel Modeling and RF Impairments

21-6

Using AWGN Channel Block for Coded Signals

Two links perform error control coding on a signal that has passed through an impairment channel.
Both links are set for an uncoded Eb/No of 8 dB.

In the top link, the AWGN channel block is set to provide a coded Eb/No of 8 + 10log10(4/7) dB,
where 4/7 is the code rate. This accounts for the fact that the coded Eb/No is always lower (by a
factor of the code rate) than the uncoded Eb/No. The blue shaded portion of the top link is simply a
binary symmetric channel, which is modeled more compactly in the bottom link. The channel error
probability of the top link is Q(sqrt(2*Ebc/No)), where Q() is the standard Q function and Ebc/No is
the coded Eb/No (in absolute terms, not in dB).

For this example, it is important to note that the bit period at the input of the AWGN Channel block is
4/7 sec. It is 1 sec at the input of the Hamming Encoder block, but that block decreases the bit time
by a factor of the code rate.

If you allow the model to run for 1e6 bits, you'll note that the BERs are virtually identical. The
difference lies in the stochastic nature of the two random number generators.

You can also check these BER results against expected analytical results by typing this command at
the MATLAB® command prompt.

BER = bercoding(8,'block','hard',7,4,3)

This expression finds the upper bound of the BER of a linear, rate 4/7 block code with a minimum
distance of 3, and hard decision decoding.

 Using AWGN Channel Block for Coded Signals

21-7

Fading Channels

In this section...
“Overview of Fading Channels” on page 21-8
“Methodology for Simulating Multipath Fading Channels” on page 21-10
“Specify Fading Channels” on page 21-13
“Specify Doppler Spectrum of Fading Channel” on page 21-16
“Configure Channel Objects” on page 21-23
“Use Fading Channels” on page 21-25
“Rayleigh Fading Channel” on page 21-26
“Rician Fading Channel” on page 21-32

Overview of Fading Channels
Using Communications Toolbox you can implement fading channels using objects or blocks. Rayleigh
and Rician fading channels are useful models of real-world phenomena in wireless communications.
These phenomena include multipath scattering effects, time dispersion, and Doppler shifts that arise
from relative motion between the transmitter and receiver. This section gives a brief overview of
fading channels and describes how to implement them using the toolbox.

This figure depicts direct and major reflected paths between a stationary radio transmitter and a
moving receiver. The shaded shapes represent reflectors such as buildings.

The major paths result in the arrival of delayed versions of the signal at the receiver. In addition, the
radio signal undergoes scattering on a local scale for each major path. Such local scattering typically
results from reflections off objects near the mobile. These irresolvable components combine at the
receiver and cause a phenomenon known as multipath fading. Due to this phenomenon, each major
path behaves as a discrete fading path. Typically, the fading process is characterized by a Rayleigh
distribution for a non line-of-sight path and a Rician distribution for a line-of-sight path.

The relative motion between the transmitter and receiver causes Doppler shifts. Local scattering
typically comes from many angles around the mobile. This scenario causes a range of Doppler shifts,
known as the Doppler spectrum. The maximum Doppler shift corresponds to the local scattering
components whose direction exactly opposes the trajectory of the mobile.

The channel filter applies path gains to the input signal, Signal in. The path gains are computed by
using either the Gaussian filtered noise or sum-of-sinusoids method based on settings chosen in the
fading channel object or block.

21 Channel Modeling and RF Impairments

21-8

These blocks and objects enable you to model SISO or MIMO fading channels.

Tool SISO MIMO
MATLAB comm.RayleighChannel

comm.RicianChannel

comm.MIMOChannel

Simulink SISO Fading Channel MIMO Fading Channel

Implement Fading Channel Using an Object

A baseband channel model for multipath propagation scenarios that you implement using objects
includes:

• N discrete fading paths. Each path has its own delay and average power gain. A channel for which
N = 1 is called a frequency-flat fading channel. A channel for which N > 1 is experienced as a
frequency-selective fading channel by a signal of sufficiently wide bandwidth.

• A Rayleigh or Rician model for each path.
• Default channel path modeling using a Jakes Doppler spectrum, with a maximum Doppler shift

that can be specified. Other types of Doppler spectra allowed (identical or different for all paths)
include: flat, restricted Jakes, asymmetrical Jakes, Gaussian, bi-Gaussian, rounded, and bell.

If the maximum Doppler shift is set to 0 or omitted during the construction of a channel object,
then the object models the channel as static. For this configuration, the fading does not evolve
with time and the Doppler spectrum specified has no effect on the fading process.

Some additional information about typical values for delays and gains is in Choosing Realistic
Channel Property Values on page 21-23.

Implement Fading Channel Using a Block

The Channels block library includes MIMO and SISO fading blocks that can simulate real-world
phenomena in mobile communications. These phenomena include multipath scattering effects, in
addition to Doppler shifts that arise from relative motion between the transmitter and receiver.

Tip To model a channel that involves both fading and additive white Gaussian noise, use a fading
channel block followed by an AWGN Channel block.

 Fading Channels

21-9

The MIMO Fading Channel and SISO Fading Channel blocks can be set to model Rayleigh or Rician
fading distributions of the channel. Based on the type of signal path, choose the fading distribution to
use.

Signal Path Fading Distribution
Direct line-of-sight path from transmitter to
receiver

Rician

One or more major reflected paths from
transmitter to receiver

Rayleigh

You can use a single instance of a fading channel block configured for Rayleigh fading distribution to
model multiple major reflected paths simultaneously.

Choosing appropriate block parameters for your situation is important. For more information, see
Choosing Realistic Channel Property Values on page 21-23, and the MIMO Fading Channel and SISO
Fading Channel block reference pages.

Visualize a Fading Channel

You can view the characteristics of a fading channel using channel visualization tools. For more
information, see Channel Visualization on page 24-31.

Compensate for Fading Response

A communications system involving a fading channel usually requires components that compensate
for the fading response. Typical approaches to compensate for fading include:

• Differential modulation or a one-tap equalizer helps compensate for a frequency-flat fading
channel. For information about implementing differential modulation, see the M-DPSK Modulator
Baseband block reference page.

• An equalizer with multiple taps helps compensate for a frequency-selective fading channel. See
Equalization on page 13-2 for more information.

The “Adaptive Equalization with Filtering and Fading Channel” on page 13-29 example illustrates why
compensating for a fading channel is necessary.

Methodology for Simulating Multipath Fading Channels
The Rayleigh and Rician multipath fading channel simulators in Communications Toolbox use the
band-limited discrete multipath channel model of section 9.1.3.5.2 in [1]. This implementation
assumes that the delay power profile and the Doppler spectrum of the channel are separable [1]. The
multipath fading channel is therefore modeled as a linear finite impulse-response (FIR) filter. Let si
denote the set of samples at the input to the channel. Then the samples yi at the output of the
channel are related to si through:

yi = ∑
n = − N1

N2
si− ngn

where gn is the set of tap weights given by:

gn = ∑
k = 1

K
aksinc

τk
Ts
− n , − N1 ≤ n ≤ N2

21 Channel Modeling and RF Impairments

21-10

In the equations:

• Ts is the input sample period to the channel.
• τk , where 1 ≤ k ≤ K, is the set of path delays. K is the total number of paths in the multipath

fading channel.
• ak , where 1 ≤ k ≤ K, is the set of complex path gains of the multipath fading channel. These

path gains are uncorrelated with each other.
• N1 and N2 are chosen so that gn is small when n is less than −N1 or greater than N2.

Two techniques, filtered Gaussian noise and sum-of-sinusoids, are used to generate the set of complex
path gains, ak.

Each path gain process ak is generated by the following steps:

Filtered Gaussian Noise Technique

1 A complex uncorrelated (white) Gaussian process with zero mean and unit variance is generated
in discrete time.

2 The complex Gaussian process is filtered by a Doppler filter with frequency response
H(f) = S(f), where S(f) denotes the desired Doppler power spectrum.

3 The filtered complex Gaussian process is interpolated so that its sample period is consistent with
the sample period of the input signal. A combination of linear and polyphase interpolation is
used.

Sum-of-sinusoids Technique

1 Mutually uncorrelated Rayleigh fading waveforms are generated using the method described in
[2], where i = 1 corresponds to the in-phase component and i = 2 corresponds to the quadrature
component.

zk(t) = μk
(1)(t) + jμk

(2)(t), k = 1, 2, …, K

μk
(i)(t) = 2

Nk
∑

n = 1

Nk
cos 2πfk, n

(i) t + θk, n
(i) , i = 1, 2

Where

• Nk specifies the number of sinusoids used to model a single path.
• fk, n

(i) is the discrete Doppler frequency and is calculated for each sinusoid component within a
single path.

• θk, n
(i) is the phase of the nth component of μk

(i) and is an i.i.d. random variable having a uniform
distribution over the interval 0, 2π .

• t is the fading process time.

When modeling a Jakes Doppler spectrum, the discrete Doppler frequencies, fk, n
(i) , with maximum

shift fmax are given by

fk, n
(i) = fmaxcos αk, n

(i)

= fmaxcos π
2Nk

n− 1
2 + αk, 0

(i)

 Fading Channels

21-11

where

αk, 0
(i) ≜ −1 i− 1 π

4Nk
⋅ k

K + 2, i = 1, 2 and k = 1, 2, …, K

2 To advance the fading process in time, an initial time parameter, tinit, is introduced. The fading
waveforms become

μk
(i)(t) = 2

Nk
∑

n = 1

Nk
cos 2πfk, n

(i) t + tinit + θk, n
(i) , i = 1, 2

When tinit = 0, the fading process starts at time zero. A positive value of tinit advances the fading
process relative to time zero while maintaining its continuity.

3 Channel fading samples are generated using the GMEDS1 [2] algorithm.

Calculate Complex Coefficients

The complex process resulting from either technique, zk, is scaled to obtain the correct average path
gain. In the case of a Rayleigh channel, the fading process is obtained as:

ak = Ωkzk

where

Ωk = E ak
2

In the case of a Rician channel, the fading process is obtained as:

ak = Ωk
zk

Kr, k + 1 +
Kr, k

Kr, k + 1e j 2πfd, LOS, kt + θLOS, k

where Kr, k is the Rician K-factor of the kth path, fd, LOS, k is the Doppler shift of the line-of-sight
component of the kth path (in Hz), and θLOS, k is the initial phase of the line-of-sight component of the
kth path (in rad).

At the input to the band-limited multipath channel model, the transmitted symbols must be
oversampled by a factor at least equal to the bandwidth expansion factor introduced by pulse
shaping. For example, if sinc pulse shaping is used, for which the bandwidth of the pulse-shaped
signal is equal to the symbol rate, then the bandwidth expansion factor is 1, and at least one sample
per symbol is required at the input to the channel. If a raised cosine (RC) filter with a factor more
than 1 is used, for which the bandwidth of the pulse-shaped signal is equal to twice the symbol rate,
then the bandwidth expansion factor is 2, and at least two samples per symbol are required at the
input to the channel.

Channel Filter Model Characteristics

The channel filter implements a fractional delay (FD) finite impulse response (FIR) bandpass filter
with a length of 16 coefficients for each candidate fractional delay at 0, 0.02, 0.04, …, 0.98.

Each discrete path is rounded to its nearest candidate fractional delay, so the delay error limit is 1%
of the sample time. To achieve a group delay bandwidth exceeding 80% and a magnitude bandwidth
exceeding 90%, the algorithm selects the optimal FIR coefficient values for each fractional delay,
while satisfying the following criteria:

21 Channel Modeling and RF Impairments

21-12

• Group delay ripple ≤ 10%
• Magnitude ripple ≤ 2 dB
• Magnitude bandedge attenuation = 3 dB

The plots show bandwidths that satisfy the design criteria for group delay ripple, magnitude ripple,
and magnitude bandedge attenuation.

References

[1] Jeruchim, M. C., Balaban, P., and Shanmugan, K. S., Simulation of Communication Systems,
Second Edition, New York, Kluwer Academic/Plenum, 2000.

[2] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-Sinusoids-
Based Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading
Waveforms.” IEEE Transactions on Wireless Communications. Vol. 8, Number 6, 2009, pp.
3122–3131.

Specify Fading Channels
Communications Toolbox models a fading channel as a linear FIR filter. Filtering a signal using a
fading channel involves these steps:

1 Create a channel object that describes the channel that you want to use. A channel object is a
type of MATLAB variable that contains information about the channel, such as the maximum
Doppler shift.

2 Adjust properties of the channel object, if necessary, to tailor it to your needs. For example, you
can change the path delays or average path gains.

3 Apply the channel object to your signal using calling the object.

This section describes how to define, inspect, and manipulate channel objects. The topics are:

• “Creating Channel Objects” on page 21-14
• “Duplicate and Copy Objects” on page 21-14

 Fading Channels

21-13

• “Displaying and Changing Object Properties” on page 21-14
• “Relationships Among Channel Object Properties” on page 21-16

Creating Channel Objects

To create a fading channel object suitable for your modeling situation, select one of these System
objects.

Function Object Situation Modeled
comm.RayleighChannel Rayleigh fading channel object One or more major reflected

paths
comm.RicianChannel Rician fading channel object One direct line-of-sight path,

possibly combined with one or
more major reflected paths

For example, this command creates a channel object representing a Rayleigh fading channel that acts
on a signal sampled at 100,000 Hz. The maximum Doppler shift of the channel is 130 Hz.
rayChan1 = comm.RayleighChannel('SampleRate',1e5,...
 'MaximumDopplerShift',130); % Rayleigh fading channel object

To learn how to call the rayChan1 fading channel object to filter the transmitted signal through the
channel, see Using Fading Channels on page 21-25.

Duplicate and Copy Objects

You can also create another object by duplicating an existing object and then adjust the properties of
the new object, if necessary. To duplicate an object always use the clone function such as:
rayChan2 = clone(rayChan1); % Copy rayChan1 to create an independent rayChan2.

instead of rayChan2 = rayChan1. The clone command creates a copy of rayChan1 that is
independent of rayChan1. By contrast, the command rayChan2 = rayChan1 creates rayChan2 as
merely a reference to rayChan1, so that rayChan1 and rayChan2 always have indistinguishable
content.

Displaying and Changing Object Properties

A channel object has numerous properties that record information about the channel model, about
the state of a channel that has already filtered a signal, and about the channel operation on a future
signal.

You can view the properties in these ways:

• To view all properties of a channel object, enter the object name in the Command Window.
• You can view a property of a channel object or assign the value to a variable by entering the object

name followed by a dot (period), followed by the name of the property.

You can change the writable properties of a channel object in these ways:

• To change the default value of a channel object property, enter the desired value in the object
creation syntax.

• To change the value of a writeable property of a channel object, issue an assignment statement
that uses dot notation on the channel object. More specifically, dot notation means an expression
that consists of the object name, followed by a dot, followed by the name of the property.

21 Channel Modeling and RF Impairments

21-14

Display Rayleigh Channel Object Properties

Create a Rayleigh channel object and display the property values. Some of the properties values were
assigned when the object was created, while other properties have default values. Retrieve the value
of an individual property. For more information about specific channel properties, see the reference
page for the comm.RayleighChannel object.

rayChan = comm.RayleighChannel(...
 SampleRate=1e5, ...
 MaximumDopplerShift=130)

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 100000
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 130
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

g = rayChan.AveragePathGains

g = 0

Adjust Rician Channel Object Properties

A Rician fading channel object has an additional property that does not appear for a Rayleigh fading
channel object, namely, a scalar KFactor property. For more information about Rician channel
properties, see the reference page for the comm.RicianChannel object.

Change Rician Channel Object Properties

Create a Rician channel object. Change the default setting for the Visualization property from
'Off' to 'Impulse response' to generate an impulse response plot of the output signal when the
object is called. The output displays a subset of all the properties of the channel object. Select all
properties to see the complete set of properties for ricChan.

ricChan= comm.RicianChannel;
ricChan.Visualization = 'Impulse response'

ricChan =
 comm.RicianChannel with properties:

 SampleRate: 1
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 KFactor: 3
 DirectPathDopplerShift: 0

 Fading Channels

21-15

 DirectPathInitialPhase: 0
 MaximumDopplerShift: 1.0000e-03
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

Relationships Among Channel Object Properties

Some properties of a channel object are related to each other such that when one property's value
changes, another property's value must change in some corresponding way to keep the channel
object consistent. For example, if you change the vector length of PathDelays, then the value of
AveragePathGains must change so that its vector length equals that of the new value of
PathDelays. This is because the length of each of the two vectors equals the number of discrete
paths of the channel. For details about linked properties and an example, see
comm.RayleighChannel or comm.RicianChannel.

Specify Doppler Spectrum of Fading Channel
The Doppler spectrum of a channel object is specified through its DopplerSpectrum property. The
value of this property must be either:

• A Doppler spectrum structure. In this case, the same Doppler spectrum applies to each path of the
channel object.

• A cell array of Doppler spectrum structures of the same length as the PathDelays vector
property. In this case, the Doppler spectrum of each path is given by the corresponding Doppler
spectrum structure in the vector.

• When the vector length of the PathDelays property is increased, the length of
DopplerSpectrum is automatically increased to match the length of PathDelays, by
appending Jakes Doppler spectrum structures.

• If the length of the PathDelays vector property is decreased, the length of
DopplerSpectrum is automatically decreased to match the length of PathDelays, by
removing the last Doppler spectrum structures.

A Doppler spectrum structure contains the properties used to characterize the Doppler spectrum, but
the maximum Doppler shift is a property of the channel object. This section describes how to create
and manipulate Doppler spectrum structures, and how to assign them to the DopplerSpectrum
property of channel objects.

Create a Doppler Spectrum Structure

To create Doppler spectrum structures, use the doppler function. The sole purpose of the doppler
function is to create Doppler spectrum structures used to specify the value of the DopplerSpectrum
property of channel objects. Select from the following:

• doppler('Jakes')
• doppler('Flat')
• doppler('Rounded', ...)
• doppler('Bell', ...)

21 Channel Modeling and RF Impairments

21-16

• doppler('Asymmetric Jakes', ...)
• doppler('Restricted Jakes', ...)
• doppler('Gaussian', ...)
• doppler('BiGaussian', ...)

For example, a Gaussian spectrum with a normalized (by the maximum Doppler shift of the channel)
standard deviation of 0.1, can be created as:

dopp1 = doppler('Gaussian',0.1);

Note When creating a Doppler spectrum structure, consider the following dependencies:

• If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have the same
specified Doppler spectrum.

• If the FadingTechnique property is 'Sum of sinusoids', DopplerSpectrum must be
doppler('Jakes');

• If you assign a row cell array of different Doppler spectrum structures to DopplerSpectrum,
each path has the Doppler spectrum specified by the corresponding structure in the cell array. In
this case, the length of DopplerSpectrum must be equal to the length of PathDelays.

• To generate C code, specify DopplerSpectrum to a single Doppler spectrum structure.

View and Change Doppler Spectrum Structure Properties

Create a Doppler spectrum structure by specifying the type of Doppler spectrum as 'Rounded', then
modify settings of the polynomial type.

A rounded Doppler spectrum structure with default properties is created and displayed, and the third
element of the Polynomial field is modified.

doppRound = doppler('Rounded')

doppRound = struct with fields:
 SpectrumType: 'Rounded'
 Polynomial: [1 -1.7200 0.7850]

Adjust the third coefficient of the polynomial.

doppRound.Polynomial(3) = 0.825

doppRound = struct with fields:
 SpectrumType: 'Rounded'
 Polynomial: [1 -1.7200 0.8250]

Be aware that it is possible to modify a Doppler spectrum structure to an invalid configuration.
Validation of the Doppler spectrum structure settings is performed when the structure is used by a
fading channel object. The doppRound spectrum structure defined above is valid.

ricianCh = comm.RicianChannel('DopplerSpectrum',doppRound)

 Fading Channels

21-17

ricianCh =
 comm.RicianChannel with properties:

 SampleRate: 1
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 KFactor: 3
 DirectPathDopplerShift: 0
 DirectPathInitialPhase: 0
 MaximumDopplerShift: 1.0000e-03
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

Use Doppler Spectrum Structures Within Channel Objects

The DopplerSpectrum property of a channel object can be changed by assigning to it a Doppler
spectrum structure or a vector of Doppler spectrum structures.

Create Rayleigh Channel with Flat Doppler Spectrum

This example shows how to change the default Jakes Doppler spectrum of a configured Rayleigh
channel object to a flat Doppler spectrum.

Create a Rayleigh Channel Object

Set the sample rate to 9600 Hz and the maximum Doppler shift to 100 Hz.

rayChan = comm.RayleighChannel(...
 'SampleRate',9600,'MaximumDopplerShift',100)

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 100
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

rayChan.DopplerSpectrum

ans = struct with fields:
 SpectrumType: 'Jakes'

21 Channel Modeling and RF Impairments

21-18

Modify the Doppler Spectrum

Create a flat Doppler spectrum structure, and then assign it in the rayChan object.

doppFlat = doppler('Flat')

doppFlat = struct with fields:
 SpectrumType: 'Flat'

rayChan.DopplerSpectrum = doppFlat

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 100
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

rayChan.DopplerSpectrum

ans = struct with fields:
 SpectrumType: 'Flat'

Create Rician Channel with Gaussian Doppler Spectrum

This example shows how to change the default Jakes Doppler spectrum of a configured Rician
channel object to a Gaussian Doppler spectrum with normalized standard deviation of 0.3. Then,
display the DopplerSpectrum property and change the normalized standard deviation of the
Doppler spectrum to 1.1.

Create a Rician Channel Object

Set the sample rate to 9600 Hz, the maximum Doppler shift to 100 Hz, and K factor to 2.

ricChan = comm.RicianChannel(...
 'SampleRate',9600,'MaximumDopplerShift',100,'KFactor',2)

ricChan =
 comm.RicianChannel with properties:

 SampleRate: 9600
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 KFactor: 2
 DirectPathDopplerShift: 0
 DirectPathInitialPhase: 0
 MaximumDopplerShift: 100

 Fading Channels

21-19

 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

ricChan.DopplerSpectrum

ans = struct with fields:
 SpectrumType: 'Jakes'

Modify the Doppler Spectrum

Create a Gaussian Doppler spectrum structure with normalized standard deviation of 0.3 and assign
it in the ricChan object.

doppGaus = doppler('Gaussian',0.3)

doppGaus = struct with fields:
 SpectrumType: 'Gaussian'
 NormalizedStandardDeviation: 0.3000

ricChan.DopplerSpectrum = doppGaus

ricChan =
 comm.RicianChannel with properties:

 SampleRate: 9600
 PathDelays: 0
 AveragePathGains: 0
 NormalizePathGains: true
 KFactor: 2
 DirectPathDopplerShift: 0
 DirectPathInitialPhase: 0
 MaximumDopplerShift: 100
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

ricChan.DopplerSpectrum

ans = struct with fields:
 SpectrumType: 'Gaussian'
 NormalizedStandardDeviation: 0.3000

ricChan.DopplerSpectrum.NormalizedStandardDeviation = 1.1;
ricChan.DopplerSpectrum

ans = struct with fields:
 SpectrumType: 'Gaussian'

21 Channel Modeling and RF Impairments

21-20

 NormalizedStandardDeviation: 1.1000

Create Rayleigh Channel Using Independent Doppler Spectrum

Change the default Jakes Doppler spectrum of a configured three-path Rayleigh channel object to a
cell array of different Doppler spectra, and then change the properties of the Doppler spectrum of the
third path.

Create a Rayleigh Channel Object

Set the sample rate to 9600 Hz, the maximum Doppler shift to 100 Hz, and specify path delays of 0,
1e-4, and 2.1e-4 seconds.

rayChan = comm.RayleighChannel(...
 SampleRate=9600, ...
 MaximumDopplerShift=100, ...
 PathDelays=[0 1e-4 2.1e-4])

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: [0 1.0000e-04 2.1000e-04]
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 100
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

rayChan.DopplerSpectrum

ans = struct with fields:
 SpectrumType: 'Jakes'

Modify the Doppler Spectrum

Specify the DopplerSpectrum property as a cell array with an independent Doppler spectrum for
each path.

rayChan.DopplerSpectrum = ...
 {doppler('Flat') doppler('Flat') doppler('Rounded')}

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: [0 1.0000e-04 2.1000e-04]
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 100
 DopplerSpectrum: {[1x1 struct] [1x1 struct] [1x1 struct]}

 Fading Channels

21-21

 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

rayChan.DopplerSpectrum{:}

ans = struct with fields:
 SpectrumType: 'Flat'

ans = struct with fields:
 SpectrumType: 'Flat'

ans = struct with fields:
 SpectrumType: 'Rounded'
 Polynomial: [1 -1.7200 0.7850]

Change the Polynomial property for the third path.

rayChan.DopplerSpectrum{3}.Polynomial = [1 -1.21 0.7]

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 9600
 PathDelays: [0 1.0000e-04 2.1000e-04]
 AveragePathGains: 0
 NormalizePathGains: true
 MaximumDopplerShift: 100
 DopplerSpectrum: {[1x1 struct] [1x1 struct] [1x1 struct]}
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

rayChan.DopplerSpectrum{:}

ans = struct with fields:
 SpectrumType: 'Flat'

ans = struct with fields:
 SpectrumType: 'Flat'

ans = struct with fields:
 SpectrumType: 'Rounded'

21 Channel Modeling and RF Impairments

21-22

 Polynomial: [1 -1.2100 0.7000]

Configure Channel Objects
Before you filter a signal using a channel object, make sure that the properties of the channel have
suitable values for the situation you want to model. This section offers some guidelines to help you
choose realistic values that are appropriate for your modeling needs. The topics are

• “Choose Realistic Channel Property Values” on page 21-23
• “Configure Channel Objects Based on Simulation Needs” on page 21-24

The syntaxes for viewing and changing values of properties of channel objects are described in
Specifying a Fading Channel on page 21-13.

Choose Realistic Channel Property Values

Here are some tips for choosing property values that describe realistic channels:

Path Delays

• By convention, the first delay is typically set to zero. The first delay corresponds to the first
arriving path.

• For indoor environments, path delays after the first are typically between 1e-9 seconds and 1e-7
seconds.

• For outdoor environments, path delays after the first are typically between 1e-7 seconds and 1e-5
seconds. Large delays in this range might correspond, for example, to an area surrounded by
mountains.

• The ability of a signal to resolve discrete paths is related to its bandwidth. If the difference
between the largest and smallest path delays is less than about 1% of the symbol period, then the
signal experiences the channel as if it had only one discrete path.

Average Path Gains

• The average path gains in the channel object indicate the average power gain of each fading path.
In practice, an average path gain value is a large negative dB value. However, computer models
typically use average path gains in the range of [-20, 0] dB.

• The dB values in a vector of average path gains often decay roughly linearly as a function of delay,
but the specific delay profile depends on the propagation environment.

• To ensure that the expected total power of the combined path gains is 1, you can normalize path
gains via the NormalizePathGains property of the channel object.

Maximum Doppler Shifts

• Doppler shifts are specified in terms of the relative speed between a transmitter and a receiver.
The maximum Doppler shift in Hertz, fd = vf ∕ c. In the formula, v is the relative speed in m/s, f is
the transmission carrier frequency in Hertz, and c is the speed of light (3×108 m/s). The relative
speed is a magnitude with no directional information.

• Apply the maximum Doppler shift formula assuming a transmission carrier frequency of 900 MHz,
a car moving at freeway speed, and a walking pedestrian. A signal transmitted from a car moving
at freeway speed to a stationary receiver would experience a maximum Doppler shift of

 Fading Channels

21-23

approximately 80 Hz. A signal transmitted from a mobile held by a walking pedestrian to a
stationary receiver would experience a maximum Doppler shift of approximately 4 Hz.

• A maximum Doppler shift of 0 corresponds to a static channel that comes from a Rayleigh or
Rician distribution.

Doppler Spectrum

• The Doppler spectrum used for the channel paths must be outputs of the form returned from the
doppler function.

• Options for the spectrum type are specified by the specType input to the doppler function.

K-Factor for Rician Fading Channels

• The Rician K-factor specifies the ratio of specular-to-diffuse power for a direct line-of-sight path.
The ratio is expressed linearly, not in dB.

• For Rician fading, the K-factor is typically in the range [1, 10].
• A K-factor of 0 corresponds to Rayleigh fading.

Line-of-Sight (LOS) Path Doppler Shift for Rician Fading Channels

• The Rician LOS path Doppler shift, also known as direct path Doppler shift, specifies the relative
motion of the LOS path between a transmitter and a receiver.

• The Rician LOS path Doppler shift in Hertz, fd_los = (u⋅w) × f ∕ c. In the formula, (u⋅w) is the dot
product of vectors u and w, u is the normalized LOS path from the transmitter to the receiver, w is
the velocity of the receiver relative to transmitter, f is the transmission carrier frequency in Hertz,
and c is the speed of light (3×108 m/s).

• Apply this formula for a transmission carrier frequency of 900 MHz at a specified relative velocity.
For a signal from a transmitter at the coordinate origin that reaches a receiver at the coordinate
[100 100 0], where the relative velocity between the transmitter and receiver w = [3 -6 0.1]. The
LOS path Doppler shift is 4.25 Hz.

Doppler Spectrum Parameters

• See the doppler reference page for the respective Doppler spectrum structures for descriptions
of the parameters and their significance.

Configure Channel Objects Based on Simulation Needs

Tips for configuring a channel object to customize the filtering process:

• If your data is partitioned into a series of vectors (that you process within a loop, for example), you
can call the channel object multiple times (in each iteration within a loop). The state information
of the channel is updated and saved after each invocation. The channel output is irrelevant to how
the data is partitioned (vector length).

• If want the channel output to be repeatable, choose the seed option for the RandomStream
property of the channel object. To repeat the output, call the reset object function to reset both
the internal filters and the internal random number generator.

• If you want to model discontinuously transmitted data, set the FadingTechnique property to
'Sum of sinusoids' and the InitialTimeSource property to 'Input port' for the channel
object. When calling the object, specify the start time of each data vector/frame to be processed
by the channel via an input.

21 Channel Modeling and RF Impairments

21-24

• If you want to normalize the fading process so that the expected value of the path gains' total
power is 1 (the channel does not contribute additional power gain or loss), set the
NormalizePathGains property of the channel object to true.

Use Fading Channels
After you have created a channel object as described in Specifying a Fading Channel on page 21-13,
you can call the object to pass a signal through the channel. Provide the signal as an input argument
to the channel object. At the end of the filtering operation, the channel object retains its state so that
you can find out the final path gains or the total number of samples that the channel has processed by
calling the info object function with the object as the input argument.

For an example that illustrates the basic syntax and state retention, see Power of a Faded Signal on
page 21-26.

To visualize the characteristics of the channel, set the Visualization property to 'Impulse
response', 'Frequency response', or 'Doppler spectrum'. For more information, see
Channel Visualization on page 24-31.

Visualize Three-Path Rayleigh Channel

Visualize the impulse response of a channel.

Create a channel object

While creating the channel object, use name-value pairs to set the Visualization property to
'Impulse response'.

rayChan = comm.RayleighChannel(...
 SampleRate=100000, ...
 MaximumDopplerShift=130,...
 PathDelays=[0 1.5e-5 3.2e-5], ...
 AveragePathGains=[0, -3, -3], ...
 Visualization='Impulse response');

Generate a bit stream and create a DBPSK modulator object. Modulate the bit stream and pass the
modulated DBPSK signal through the channel by calling the channel object. The impulse response is
plotted when the object is called.

tx = randi([0 1],500,1);
dbspkMod = comm.DBPSKModulator;
dpskSig = dbspkMod(tx);
y = rayChan(dpskSig);

 Fading Channels

21-25

Rayleigh Fading Channel
These examples use fading channels:

• “Power of Faded Signal” on page 21-26
• “DBPSK Empirical Versus Theoretical Performance in Fading Conditions” on page 21-27
• “Work with Channel Filter Delays” on page 21-29
• “Channel Filtering Using For Loop” on page 21-30

Power of Faded Signal

Plot the power of a faded signal versus sample number. The example illustrates the syntax of creating
and calling a comm.RayleighChannel fading channel object, and the state retention of the channel
object.

rayChan = comm.RayleighChannel(...
 SampleRate=10000, ...
 MaximumDopplerShift=100);
sig = 1i*ones(2000,1);
out = rayChan(sig);
rayChan

rayChan =
 comm.RayleighChannel with properties:

 SampleRate: 10000
 PathDelays: 0
 AveragePathGains: 0

21 Channel Modeling and RF Impairments

21-26

 NormalizePathGains: true
 MaximumDopplerShift: 100
 DopplerSpectrum: [1x1 struct]
 ChannelFiltering: true
 PathGainsOutputPort: false

 Show all properties

Plot power of faded signal, versus sample number.

plot(20*log10(abs(out)))

DBPSK Empirical Versus Theoretical Performance in Fading Conditions

This example creates a frequency-flat Rayleigh fading channel object and calls it to process a DBPSK
signal consisting of a single vector. The bit error rate (BER) is computed for different values of the
signal-to-noise ratio (SNR). When applying channel impairments, the fading channel filter can be
applied before the loop on SNR values. Since the AWGN must account for the signal to noise ratio
(SNR), the signal is passed through the AWGN channel filter later, inside the loop over SNR values.
This sequence is recommended when you combine fading with AWGN.

Create modulator, demodulator, Rayleigh fading channel, AWGN channel, and an error rate calculator
System objects to use for the simulation.

 Fading Channels

21-27

mod = comm.DBPSKModulator;
demod = comm.DBPSKDemodulator;
chan = comm.RayleighChannel(...
 SampleRate=1e4, ...
 MaximumDopplerShift=100);
awgnChan = comm.AWGNChannel(...
 NoiseMethod='Signal to noise ratio (SNR)');
errorCalc = comm.ErrorRate;

Generate a random bit stream of symbols and apply DBPSK modulation to the symbols. Pass the
DBPSK modulated data through the fading channel.

M = 2; % DBPSK modulation order
tx = randi([0 M-1],50000,1); % Generate a random bit stream

dpskSig = mod(tx);
fadedSig = chan(dpskSig);

Preallocate a vector for BER results. Compute the error rate for different values of SNR.

SNR = 0:2:20;
numSNR = length(SNR);
berVec = zeros(3, numSNR);

for n = 1:numSNR
 awgnChan.SNR = SNR(n);
 rxSig = awgnChan(fadedSig);
 rx = demod(rxSig);
 reset(errorCalc)

 berVec(:,n) = errorCalc(tx,rx);
end
BER = berVec(1,:);

Compute theoretical performance results, for comparison.

BERtheory = berfading(SNR,'dpsk',M,1);

Plot BER results.

semilogy(SNR,BERtheory,'b-',SNR,BER,'r*');
legend('Theoretical BER','Empirical BER');
xlabel('SNR (dB)');
ylabel('BER');
title('Binary DPSK over Rayleigh Fading Channel');

21 Channel Modeling and RF Impairments

21-28

Work with Channel Filter Delays

To compare input and output data sets directly, you must account for the delay by using appropriate
truncating or padding operations. The fading channel object's ChannelFilterDelay property value
represents the number of samples of lag between the output of the channel and the input. This
example illustrates a way to account for the delay while computing a bit error rate.

Create DBPSK modulator, DBPSK demodulator, fading channel, and error rate calculation System
objects to use for the simulation. Retrieve the ChannelFilterDelay property by using the info
object function. Configure the error rate calculation object to account for the fading channel output
delay.

bitRate = 50000;
mod = comm.DBPSKModulator;
demod = comm.DBPSKDemodulator;
rayChan = comm.RayleighChannel(...
 SampleRate=bitRate, ...
 MaximumDopplerShift=4, ...
 PathDelays=[0 0.5/bitRate], ...
 AveragePathGains=[0 -10]);
chInfo = info(rayChan);
delay = chInfo.ChannelFilterDelay

delay = 7

errorCalc = comm.ErrorRate(ReceiveDelay=delay);

 Fading Channels

21-29

Generate random data symbols for DBPSK modulation. Generate DBPSK modulated data, pass the
modulated data through the fading channel, and demodulate the channel impaired data.

M = 2; % DBPSK modulation order
tx = randi([0 M-1],50000,1);
dpskSig = mod(tx);
fadedSig = rayChan(dpskSig);
rx = demod(fadedSig);

Compute and display bit error rate statistics. The error rate calculation object configuration accounts
for the expected fading channel output delay.

berVec = errorCalc(tx,rx);
sprintf(['%d bits were received.\nThere were %d bits ' ...
 'in error.\nThe computed BER is %1.2f.'], ...
 berVec(3), berVec(2), berVec(1))

ans =
 '49993 bits were received.
 There were 737 bits in error.
 The computed BER is 0.01.'

Channel Filtering Using For Loop

This example filters input data through a Rayleigh fading channel within a for loop. It uses the small
data sets from successive iterations to create an animated effect. The Rayleigh fading channel has
two discrete major paths. For information on filtering data through a channel multiple times while
maintaining continuity from one invocation to the next, see “Configure Channel Objects Based on
Simulation Needs” on page 21-24.

Set up parameters. Specify a bit rate of 50e3 Hz, and a loop iteration count of 125. Create QPSK
modulator, Rayleigh fading channel, and constellation diagram System objects.

bitRate = 50000; % Data rate is 50 kb/s
numTrials = 125; % Number of iterations of loop
M = 4; % QPSK modulation order
phaseoffset = pi/4

phaseoffset = 0.7854

qpskMod = comm.QPSKModulator;
rayChan = comm.RayleighChannel(...
 SampleRate=bitRate, ...
 MaximumDopplerShift=4, ...
 PathDelays=[0 2e-5], ...
 AveragePathGains=[0 -9]);
cd = comm.ConstellationDiagram;

Plot the expected ideal constellation by using the PlotConstellation property of the pskmod
function. Generate random symbols, apply QPSK modulation to the symbols, and pass the modulated
signal through the fading channel in a loop, maintaining continuity. Plot only the current data in each
iteration.

pskmod([0 M-1],M,phaseoffset,PlotConstellation=true);

21 Channel Modeling and RF Impairments

21-30

for n = 1:numTrials
 tx = randi([0 M-1],500,1);
 pskSig = pskmod(tx,M,phaseoffset);
 fadedSig = rayChan(pskSig);

 % Plot the new data for each for loop iteration.
 update(cd,fadedSig);
end

 Fading Channels

21-31

Rician Fading Channel
Quasi-Static Channel Modeling

Typically, a path gain in a fading channel changes insignificantly over a period of 1/(100fd)
seconds, where fd is the maximum Doppler shift. Because this period corresponds to a very large
number of bits in many modern wireless data applications, assessing performance over a statistically
significant range of channel fading requires simulating a prohibitively large amount of data. This
example illustrates the quasi-static channel modeling approach to gathering a statistically significant
number of errors. Quasi-static channel modeling provides a more tractable approach, which you can
implement using these steps:

21 Channel Modeling and RF Impairments

21-32

1 Generate a random channel realization using a maximum Doppler shift of 0.
2 Process some large number of bits.
3 Compute error statistics.
4 Repeat these steps many times to produce a distribution of the performance metric.

Set simulation variables for bits per trial, number of trials (specifically the number of packets), and
the modulation order. Typically, numTrials would be a large number to get an accurate estimate of
outage probabilities or packet error rate. Use 20 here just to make the example run more quickly.
Create modulator, demodulator, and Rician channel System objects. Set the maximum Doppler shift to
zero for the Rician channel.

numBits = 10000; % Each trial uses 10000 bits
numTrials = 20; % Number of BER computations
M = 4;

dpskMod = comm.DPSKModulator(ModulationOrder=M);
dpskDemod = comm.DPSKDemodulator(ModulationOrder=M);
ricianChan = comm.RicianChannel(KFactor=3,MaximumDopplerShift=0);

Within a for loop, generate a random bit stream, DPSK modulate the signal, filter the modulated
signal through a Rician fading and AWGN channels, and demodulate the faded signal. For the symbol
error rate (SER), begin the computation on each packet at sample 2, ignoring the first sample
because of DPSK initial condition.

nErrors = zeros(1,numTrials);
for n = 1:numTrials
 tx = randi([0 M-1],numBits,1);
 dpskSig = dpskMod(tx);
 fadedSig = ricianChan(dpskSig);
 rxSig = awgn(fadedSig,15,'measured');
 rx = dpskDemod(rxSig);
 nErrors(n) = symerr(tx(2:end),rx(2:end));
end

Display the nErrors vector, which contains the number of symbol errors per packet. Compute the
packet error rate. Run to run results vary due to randomness in the example.

nErrors(1:10)

ans = 1×10

 0 0 1 0 0 0 0 0 0 0

nErrors(11:20)

ans = 1×10

 0 0 0 0 0 0 0 0 0 0

per = mean(nErrors > 0) % Packet error rate

per = 0.0500

 Fading Channels

21-33

More About the Quasi-Static Technique

As an example to show how the quasi-static channel modeling approach can save computation,
consider a wireless local area network (LAN) in which the carrier frequency is 2.4 GHz, mobile speed
is 1 m/s, and bit rate is 10 Mb/s. The following expression shows that the channel changes
insignificantly over 12,500 bits:

1
100fd

 s 10 Mb/s = c
100vf s 10 Mb/s

= 3 × 108m/s
100(1 m/s)(2.4 GHz) 10 Mb/s

= 12, 500 b

A traditional Monte Carlo approach for computing the error rate of this system would entail
simulating thousands of times, totalling tens of millions of bits. By contrast, a quasi-static channel
modeling approach would simulate a few packets at each of about 100 locations to arrive at a spatial
distribution of error rates. From this distribution one could determine, for example, how reliable the
communication link is for a random location within the indoor space. If each simulation contains
5,000 bits, 100 simulations would process half a million bits in total. This is substantially fewer bits
compared to the traditional Monte Carlo approach.

Additional Examples Using Fading Channels

• “Multipath Fading Channel in Simulink” on page 1-210
• “Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link” on page 1-424
• “WCDMA End-to-End Physical Layer” on page 1-428

21 Channel Modeling and RF Impairments

21-34

Using Channel Visualization
Communications Toolbox channel objects include a Visualization property that enables you to
visualize the characteristics of a fading channel when calling the channel object. For more
information, see Channel Visualization on page 24-31.

 Using Channel Visualization

21-35

WINNER II Channel
Using WINNER II channel models, you can model and simulate spatially defined channels for
multiuser MIMO wireless systems. In the model you can specify an arbitrary number of base stations
(BS) and mobile stations (MS) together with their geometry and location information.

Figure 3.1 from [1] (shown here), depicts a system level simulation including multiple base stations
and multiple mobile terminals. Within the figure the dashed blue line surrounding a car and cell
tower, highlights a link level simulation for the link between one mobile terminal and a base station.
The short blue lines, along the path of the car, represent channel segments where large scale
parameters are fixed. The system level simulation consists of multiple links. Each link is modeled
using the clustered delay line (CDL) method. The inset shows a CDL method model of one link in the
scenario.

The channel model enables you to simulate line-of-sight (LOS) and non-LOS propagation conditions.
The model also enables you to apply multiple indoor and outdoor propagation scenarios. You can
perform channel filtering in a streaming fashion with WINNER-generated channel coefficients.

The channel model supports:

• RF frequencies up to 6 GHz
• Signal bandwidths up to 100 MHz
• LOS and non-LOS propagation
• 12 indoor and outdoor propagation scenarios
• Arbitrarily large antenna arrays (for massive MIMO applications)
• Isotropic, dipole, and user-defined antenna element patterns
• A variety of antenna array types (such as linear, circular, and user-defined)

To use this functionality, download and install the WINNER II Channel Model for Communications
Toolbox add-on.

21 Channel Modeling and RF Impairments

21-36

https://www.mathworks.com/matlabcentral/fileexchange/59690-winner-ii-channel-model-for-communications-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/59690-winner-ii-channel-model-for-communications-toolbox

The add-on includes the comm.WINNER2Channel System object and provides the capability currently
available in the open source download in [1]. The functionality in the download includes these
functions:

• winner2.AntennaArray — Construct antenna array
• winner2.dipole — Calculate field pattern of half wavelength dipole
• winner2.layoutparset — WINNER II layout parameter configuration
• winner2.wim — Generate channel coefficients using WINNER II channel model
• winner2.wimparset — WINNER II model parameter configuration

The add-on extends the open source download by adding the capability to generate channel
coefficients for use in channel filtering. For more information, see Mapping WINNER II Public
Download to WINNER2Channel on page 21-38.

These examples demonstrate some of the WINNER II fading channel features.

• Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model on page 1-
147

• 802.11ac Multi-User MIMO Precoding with WINNER II Channel Model on page 1-153

examples demonstrate some of the WINNER II fading channel features.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.AntennaArray | winner2.dipole | winner2.layoutparset | winner2.wim |
winner2.wimparset

More About
• WINNER II Channel Model Video
• Mapping WINNER II Public Download to WINNER2Channel on page 21-38
• Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model on page

1-147
• 802.11ac Multi-User MIMO Precoding with WINNER II Channel Model on page 1-153

 WINNER II Channel

21-37

https://www.mathworks.com/videos/winner-ii-channel-model-1484949729030.html

Mapping of WINNER II Open Source Download to WINNER II
Channel Model for Communications Toolbox

The WINNER II Channel Model for Communications Toolbox is composed of the
comm.WINNER2Channel System object and functions. The functions in the WINNER II Channel
Model for Communications Toolbox map to functions in the WINNER II open source download.

Function in WINNER II Open Source
Download

Corresponding Function in WINNER II
Channel Model for Communications Toolbox

AntennaArray winner2.AntennaArray
AntennaResponse winner2.internal.calcAntennaResponse
arrayparset winner2.arrayparset
dipole winner2.dipole
layoutparset winner2.layoutparset
layout2link winner2.internal.layout2Link
wim winner2.wim
wimparset winner2.wimparset

The following table shows the behavioral changes between the WINNER II open source download and
the WINNER II Channel Model for Communications Toolbox.

Behavioral Condition WINNER II Public Download
Behavior

WINNER II Channel Model for
Communications Toolbox
Behavior

Default value of the
SampleDensity field in the
structure returned by the
winner2.wimparset function

2 2e6

Default velocity returned for each
MS by winner2.layoutparset.

10 m/s 1.43 m/s

Corresponding to approximate
typical walking speed, VMS.

VMS = C / Fcenter × 25 = (2.99792458
e8/5.25e9) × 25 ~ 1.43 m/s

The length of the third dimension of
the channel coefficients output of
the winner2.wim function

Equals the maximum number of
paths or maximum number of paths
plus four for all links with zero
padding, NaN padding, or a
combination of zero and NaN
padding

Equals the number of paths for the
specific link

The number of paths shown in the
channel coefficients and path delay
outputs of the winner2.wim
function

Mismatched for many cases when
there is more than one link

Matched for each link

21 Channel Modeling and RF Impairments

21-38

Behavioral Condition WINNER II Public Download
Behavior

WINNER II Channel Model for
Communications Toolbox
Behavior

Strongest cluster segregation when
the IntraClusterDsUsed field is
set to 'yes'

The two strongest clusters are
divided into three subclusters only
for the links that have the maximum
number of paths.

For each link, the two strongest
clusters are divided into three
subclusters.

If the second and third strongest
paths have the same power, only the
single strongest cluster is divided
into three subclusters.

Updating of the Phi_LOS field in
the third structure output of the
winner2.wim function

Updated when the
IntraClusterDsUsed field is set
to 'no'

Updated regardless of the setting of
the IntraClusterDsUsed field

Padding of the path delay output of
the winner2.wim function, when
the rows (number of links) have
fewer than the maximum number of
paths

Zero padded when the
IntraClusterDsUsed field is set
to 'yes'

NaN padded

The channel coefficients calculation
specified by [1], Equation 4.14 and
Table 4-2, when the
IntraClusterDsUsed and
PolarisedArrays fields are set to
'yes'

Incorrect Correct

Path loss calculation for A1 NLOS
links

Incorrect when the
PathLossOption field is set to
'CR_heavy' or 'CR_light'

Correct

The Phi_LOS field per step 10 on
page 40 of [1] for the input initial
condition and output final condition
of winner2.wim, should be of size
NL-by-2 to log the phases for both
VV and HH polarization each link.
NL is the number of links.

Incorrect, Phi_LOS is of size NL-
by-1 for VV polarization only. The
phase for HH polarization is not
included. This causes issues for a
link with LOS path.

Correct, Phi_LOS is of size NL-by-2
to log the phases for both VV and
HH polarization each link.

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
comm.WINNER2Channel

More About
• “WINNER II Channel” on page 21-36

 Mapping of WINNER II Open Source Download to WINNER II Channel Model for Communications Toolbox

21-39

• Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model on page
1-147

• 802.11ac Multi-User MIMO Precoding with WINNER II Channel Model on page 1-153

21 Channel Modeling and RF Impairments

21-40

Measurements

• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12
• “Mathematical Expressions and Notations Used in BER Analysis” on page 22-45
• “Analytical Expressions Used in BER Analysis” on page 22-47
• “Analytical Expressions Used in berawgn Function and Bit Error Rate Analysis App”

on page 22-48
• “Analytical Expressions Used in berfading Function and Bit Error Rate Analysis App”

on page 22-54
• “Analytical Expressions Used in bercoding Function and Bit Error Rate Analysis App”

on page 22-60
• “Analytical Expressions Used in bersync Function and Bit Error Rate Analysis App”

on page 22-64
• “Measure Modulation Accuracy” on page 22-65
• “Adjacent Channel Power Ratio (ACPR)” on page 22-72
• “Complementary Cumulative Distribution Function CCDF” on page 22-78
• “Selected Bibliography for Measurements” on page 22-79

22

Bit Error Rate Analysis Techniques
In this section...
“Computation of Theoretical Error Statistics” on page 22-2
“Theoretical Performance Results” on page 22-2
“Performance Results via Simulation” on page 22-5
“Performance Results via Semianalytic Technique” on page 22-8
“Error Rate Plots” on page 22-8

This topic describes how to compute error statistics for various communications systems.

Computation of Theoretical Error Statistics
The biterr function, discussed in the “Compute SERs and BERs Using Simulated Data” on page 22-
6 section, can help you gather empirical error statistics, but validating your results by comparing
them to the theoretical error statistics is good practice. For certain types of communications systems,
closed-form expressions exist for the computation of the bit error rate (BER) or an approximate
bound on the BER. The functions listed in this table compute the closed-form expressions for the BER
or a bound on it for the specified types of communications systems.

Type of Communications System Function
Uncoded AWGN channel berawgn
Uncoded Rayleigh and Rician fading channel berfading
Coded AWGN channel bercoding
Uncoded AWGN channel with imperfect
synchronization

bersync

The analytical expressions used in these functions are discussed in “Analytical Expressions Used in
BER Analysis” on page 22-47. The reference pages of these functions also list references to one or
more books containing the closed-form expressions implemented by the function.

Theoretical Performance Results
• “Plot Theoretical Error Rates” on page 22-2
• “Compare Theoretical and Empirical Error Rates” on page 22-3

Plot Theoretical Error Rates

This example uses the bercoding function to compute upper bounds on BERs for convolutional
coding with a soft-decision decoder.

coderate = 1/4; % Code rate

Create a structure, dspec, with information about the distance spectrum. Define the energy per bit
to noise power spectral density ratio (Eb/N0) sweep range and generate the theoretical bound results.

dspec.dfree = 10; % Minimum free distance of code
dspec.weight = [1 0 4 0 12 0 32 0 80 0 192 0 448 0 1024 ...

22 Measurements

22-2

 0 2304 0 5120 0]; % Distance spectrum of code
EbNo = 3:0.5:8;
berbound = bercoding(EbNo,'conv','soft',coderate,dspec);

Plot the theoretical bound results.

semilogy(EbNo,berbound)
xlabel('E_b/N_0 (dB)');
ylabel('Upper Bound on BER');
title('Theoretical Bound on BER for Convolutional Coding');
grid on;

Compare Theoretical and Empirical Error Rates

Using the berawgn function, compute the theoretical symbol error rates (SERs) for pulse amplitude
modulation (PAM) over a range of Eb/N0 values. Simulate 8 PAM with an AWGN channel, and
compute the empirical SERs. Compare the theoretical and then empirical SERs by plotting them on
the same set of axes.

Compute and plot the theoretical SER using berawgn.

rng('default') % Set random number seed for repeatability
M = 8;
EbNo = 0:13;
[ber,ser] = berawgn(EbNo,'pam',M);

 Bit Error Rate Analysis Techniques

22-3

semilogy(EbNo,ser,'r');
legend('Theoretical SER');
title('Theoretical Error Rate');
xlabel('E_b/N_0 (dB)');
ylabel('Symbol Error Rate');
grid on;

Compute the empirical SER by simulating an 8 PAM communications system link. Define simulation
parameters and preallocate variables needed for the results. As described in [1], because
N0 = 2 × NVariance

2, add 3 dB to the Eb/N0 value when converting Eb/N0 values to SNR values.

n = 10000; % Number of symbols to process
k = log2(M); % Number of bits per symbol
snr = EbNo+3+10*log10(k); % In dB
ynoisy = zeros(n,length(snr));
z = zeros(n,length(snr));
errVec = zeros(3,length(EbNo));

Create an error rate calculator System object™ to compare decoded symbols to the original
transmitted symbols.

errcalc = comm.ErrorRate;

Generate a random data message and apply PAM. Normalize the channel to the signal power. Loop
the simulation to generate error rates over the range of SNR values.

22 Measurements

22-4

x = randi([0 M-1],n,1); % Create message signal
y = pammod(x,M); % Modulate
signalpower = (real(y)'*real(y))/length(real(y));

for jj = 1:length(snr)
 reset(errcalc)
 ynoisy(:,jj) = awgn(real(y),snr(jj),'measured'); % Add AWGN
 z(:,jj) = pamdemod(complex(ynoisy(:,jj)),M); % Demodulate
 errVec(:,jj) = errcalc(x,z(:,jj)); % Compute SER from simulation
end

Compare the theoretical and empirical results.

hold on;
semilogy(EbNo,errVec(1,:),'b.');
legend('Theoretical SER','Empirical SER');
title('Comparison of Theoretical and Empirical Error Rates');
hold off;

Performance Results via Simulation
• “Section Overview” on page 22-6
• “Compute SERs and BERs Using Simulated Data” on page 22-6

 Bit Error Rate Analysis Techniques

22-5

Section Overview

This section describes how to compare the data messages that enter and leave a communications
system simulation and how to compute error statistics using the Monte Carlo technique. Simulations
can measure system performance by using the data messages before transmission and after reception
to compute the BER or SER for a communications system. To explore physical layer components used
to model and simulate communications systems, see “PHY Components”.

Curve fitting can be useful when you have a small or imperfect data set but want to plot a smooth
curve for presentation purposes. To explore the use of curve fitting when computing performance
results via simulation, see the “Curve Fitting for Error Rate Plots” on page 22-8 section.

Compute SERs and BERs Using Simulated Data

The example shows how to compute SERs and BERs using the biterr and symerr functions,
respectively. The symerr function compares two sets of data and computes the number of symbol
errors and the SER. The biterr function compares two sets of data and computes the number of bit
errors and the BER. An error is a discrepancy between corresponding points in the two sets of data.

The two sets of data typically represent messages entering a transmitter and recovered messages
leaving a receiver. You can also compare data entering and leaving other parts of your
communications system (for example, data entering an encoder and data leaving a decoder).

If your communications system uses several bits to represent one symbol, counting symbol errors is
different from counting bit errors. In either the symbol- or bit-counting case, the error rate is the
number of errors divided by the total number of transmitted symbols or bits, respectively.

Typically, simulating enough data to produce at least 100 errors provides accurate error rate results.
If the error rate is very small (for example, 10−6 or less), using the semianalytic technique might
compute the result more quickly than using a simulation-only approach. For more information, see
the “Performance Results via Semianalytic Technique” on page 22-8 section.

Compute Error Rates

Use the symerr function to compute the SERs for a noisy linear block code. Apply no digital
modulation, so that each symbol contains a single bit. When each symbol is a single bit, the symbol
errors and bit errors are the same.

After artificially adding noise to the encoded message, compare the resulting noisy code to the
original code. Then, decode and compare the decoded message to the original message.

m = 3; % Set parameters for Hamming code
n = 2^m-1;
k = n-m;
msg = randi([0 1],k*200,1); % Specify 200 messages of k bits each
code = encode(msg,n,k,'hamming');
codenoisy = bsc(code,0.95); % Add noise
newmsg = decode(codenoisy,n,k,'hamming'); % Decode and correct errors

Compute the SERs.

[~,noisyVec] = symerr(code,codenoisy);
[~,decodedVec] = symerr(msg,newmsg);

22 Measurements

22-6

The error rate decreases after decoding because the Hamming decoder correct errors based on the
error-correcting capability of the decoder configuration. Because random number generators produce
the message and noise is added, results vary from run to run. Display the SERs.

disp(['SER in the received code: ',num2str(noisyVec(1))])

SER in the received code: 0.94571

disp(['SER after decoding: ',num2str(decodedVec(1))])

SER after decoding: 0.9675

Comparing SER and BER

These commands show the difference between symbol errors and bit errors in various situations.

Create two three-element decimal vectors and show the binary representation. The vector a contains
three 2-bit symbols, and the vector b contains three 3-bit symbols.

bpi = 3; % Bits per integer
a = [1 2 3];
b = [1 4 4];
int2bit(a,bpi)

ans = 3×3

 0 0 0
 0 1 1
 1 0 1

int2bit(b,bpi)

ans = 3×3

 0 1 1
 0 0 0
 1 0 0

Compare the binary values of the two vectors and compute the number of errors and the error rate by
using the biterr and symerr functions.

format rat % Display fractions instead of decimals
[snum,srate] = symerr(a,b)

snum =
 2

srate =
 2/3

snum is 2 because the second and third entries have bit differences. srate is 2/3 because the total
number of symbols is 3.

[bnum,brate] = biterr(a,b)

 Bit Error Rate Analysis Techniques

22-7

bnum =
 5

brate =
 5/9

bnum is 5 because the second entries differ in two bits, and the third entries differ in three bits.
brate is 5/9 because the total number of bits is 9. By definition, the total number of bits is the
number of entries in a for symbol error computations or b for bit error computations times the
maximum number of bits among all entries of a and b, respectively.

Performance Results via Semianalytic Technique
The technique described in the “Performance Results via Simulation” on page 22-5 section can work
for a large variety of communications systems but can be prohibitively time-consuming for small error
rates (for example, 10-6 or less). The semianalytic technique is an alternative way to compute error
rates. The semianalytic technique can produce results faster than a nonanalytic method that uses
simulated data.

For more information on implementing the semianalytic technique using a combination of simulation
and analysis to determine the error rate of a communications system, see the semianalytic
function.

Error Rate Plots
• “Section Overview” on page 22-8
• “Creation of Error Rate Plots Using semilogy Function” on page 22-8
• “Curve Fitting for Error Rate Plots” on page 22-8
• “Use Curve Fitting on Error Rate Plot” on page 22-9

Section Overview

Error rate plots can be useful when examining the performance of a communications system and are
often included in publications. This section discusses and demonstrates tools you can use to create
error rate plots, modify them to suit your needs, and perform curve fitting on the error rate data and
the plots.

Creation of Error Rate Plots Using semilogy Function

In many error rate plots, the horizontal axis indicates Eb/N0 values in dB, and the vertical axis
indicates the error rate using a logarithmic (base 10) scale. For examples that create such a plot
using the semilogy function, see “Compare Theoretical and Empirical Error Rates” on page 22-3
and “Plot Theoretical Error Rates” on page 22-2.

Curve Fitting for Error Rate Plots

Curve fitting can be useful when you have a small or imperfect data set but want to plot a smooth
curve for presentation purposes. The berfit function includes curve-fitting capabilities that help
your analysis when the empirical data describes error rates at different Eb/N0 values. This function
enables you to:

22 Measurements

22-8

• Customize various relevant aspects of the curve-fitting process, such as a list of selections for the
type of closed-form function used to generate the fit.

• Plot empirical data along with a curve that berfit fits to the data.
• Interpolate points on the fitted curve between Eb/N0 values in your empirical data set to smooth

the plot.
• Collect relevant information about the fit, such as the numerical values of points along the fitted

curve and the coefficients of the fit expression.

Note The berfit function is intended for curve fitting or interpolation, not extrapolation.
Extrapolating BER data beyond an order of magnitude below the smallest empirical BER value is
inherently unreliable.

Use Curve Fitting on Error Rate Plot

This example simulates a simple differential binary phase shift keying (DBPSK) communications
system and plots error rate data for a series of Eb/N0 values. It uses the berfit and berconfint
functions to fit a curve to a set of empirical error rates.

Initialize Simulation Parameters

Specify the input signal message length, modulation order, range of Eb/N0 values to simulate, and the
minimum number of errors that must occur before the simulation computes an error rate for a given
Eb/N0 value. Preallocate variables for final results and interim results.

Typically, for statistically accurate error rate results, the minimum number of errors must be on the
order of 100. This simulation uses a small number of errors to shorten the run time and to illustrate
how curve fitting can smooth a set of results.

siglen = 100000; % Number of bits in each trial
M = 2; % DBPSK is binary
EbN0vec = 0:5; % Vector of EbN0 values
minnumerr = 5; % Compute BER after only 5 errors occur
numEbN0 = length(EbN0vec); % Number of EbN0 values

ber = zeros(1,numEbN0); % Final BER values
berVec = zeros(3,numEbN0); % Updated BER values
intv = cell(1,numEbN0); % Cell array of confidence intervals

Create an error rate calculator System object™.

errorCalc = comm.ErrorRate;

Loop the Simulation

Simulate the DBPSK-modulated communications system and compute the BER using a for loop to
vary the Eb/N0 value. The inner while loop ensures that a minimum number of bit errors occur for
each Eb/N0 value. Error rate statistics are saved for each Eb/N0 value and used later in this example
when curve fitting and plotting.

for jj = 1:numEbN0
 EbN0 = EbN0vec(jj);

 Bit Error Rate Analysis Techniques

22-9

 snr = EbN0; % For binary modulation SNR = EbN0
 reset(errorCalc)

 while (berVec(2,jj) < minnumerr)
 msg = randi([0,M-1],siglen,1); % Generate message sequence
 txsig = dpskmod(msg,M); % Modulate
 rxsig = awgn(txsig,snr,'measured'); % Add noise
 decodmsg = dpskdemod(rxsig,M); % Demodulate
 berVec(:,jj) = errorCalc(msg,decodmsg); % Calculate BER
 end

Use the berconfint function to compute the error rate at a 98% confidence interval for the Eb/N0
values.

 [ber(jj),intv1] = berconfint(berVec(2,jj),berVec(3,jj),0.98);
 intv{jj} = intv1;
 disp(['EbN0 = ' num2str(EbN0) ' dB, ' num2str(berVec(2,jj)) ...
 ' errors, BER = ' num2str(ber(jj))])
end

EbN0 = 0 dB, 18392 errors, BER = 0.18392
EbN0 = 1 dB, 14307 errors, BER = 0.14307
EbN0 = 2 dB, 10190 errors, BER = 0.1019
EbN0 = 3 dB, 6940 errors, BER = 0.0694
EbN0 = 4 dB, 4151 errors, BER = 0.04151
EbN0 = 5 dB, 2098 errors, BER = 0.02098

Use the berfit function to plot the best fitted curve, interpolating between BER points to get a
smooth plot. Add confidence intervals to the plot.

fitEbN0 = EbN0vec(1):0.25:EbN0vec(end); % Interpolation values
berfit(EbN0vec,ber,fitEbN0);
hold on;
for jj=1:numEbN0
 semilogy([EbN0vec(jj) EbN0vec(jj)],intv{jj},'g-+');
end
hold off;

22 Measurements

22-10

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12
• “Analytical Expressions Used in BER Analysis” on page 22-47

 Bit Error Rate Analysis Techniques

22-11

Analyze Performance with Bit Error Rate Analysis App

The Bit Error Rate Analysis app calculates BER as a function of the energy per bit to noise power
spectral density ratio (Eb/N0) and enables you to analyze BER performance of communications
systems.

Note The Bit Error Rate Analysis app is designed for analyzing BERs. For example, if your
simulation computes a symbol error rate (SER), convert the SER to a BER before comparing the
simulation results with theoretical results in the app.

This topic describes the Bit Error Rate Analysis app and provides examples that show how to use
the app.

In this section...
“Open Bit Error Rate Analysis App” on page 22-12
“Bit Error Rate Analysis App Environment” on page 22-13
“Compute Theoretical BERs Using Bit Error Analysis App” on page 22-15
“Run MATLAB Simulations in Monte Carlo Tab” on page 22-19
“Requirements for Using MATLAB Functions with Bit Error Rate Analysis App” on page 22-25
“Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis App” on page 22-28
“Run Simulink Simulations in Monte Carlo Tab” on page 22-33
“Requirements for Using Simulink Models with Bit Error Rate Analysis App” on page 22-38
“Manage BER Data” on page 22-39

Open Bit Error Rate Analysis App
You can open the Bit Error Rate Analysis app by using either of these options.

• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click Bit
Error Rate Analysis.

• MATLAB command prompt: Use the bertool function. If the app is already open, another
instance of the app opens.

22 Measurements

22-12

Bit Error Rate Analysis App Environment
• “Components of Bit Error Rate Analysis App” on page 22-13
• “Interaction Between Bit Error Rate Analysis App Components” on page 22-14

Components of Bit Error Rate Analysis App

The app consists of these three main components: an upper pane, a lower pane, and a separate BER
Figure window.

• The upper pane of the app is a data set viewer. The data set viewer lists sets of BER data from the
current app session along with high level settings and options for showing the data. By default,
this data set viewer is empty.

Sets of BER data, generated during the active Bit Error Rate Analysis app session or imported
into the session, appear in the data viewer. This figure shows the simulation0 BER data set

 Analyze Performance with Bit Error Rate Analysis App

22-13

loaded in the data viewer pane.

• The lower pane of the app has tabs labeled Theoretical and Monte Carlo. The tabs correspond
to the different methods you can use to generate BER data with the app.

Note For direct comparisons between theoretical results and simulation results generated when
using the Bit Error Rate Analysis app, be sure that your MATLAB function or Simulink model
simulation run from the Monte Carlo tab exactly matches the system defined by the parameters
in the Theoretical tab.

For more information, see the “Compute Theoretical BERs Using Bit Error Analysis App” on page
22-15, “Run MATLAB Simulations in Monte Carlo Tab” on page 22-19, and “Run Simulink
Simulations in Monte Carlo Tab” on page 22-33 sections.

• A separate BER Figure window displays the BER data sets that have Plot selected in the data
viewer. The BER Figure window does not open until the Bit Error Rate Analysis app has at least
one data set to display.

Interaction Between Bit Error Rate Analysis App Components

The components of the app act as one integrated tool.

• If you select a data set in the data viewer, the app reconfigures the tabs to reflect the parameters
associated with that data set and highlights the corresponding data in the BER Figure window.
This feature is useful if the data viewer displays multiple data sets and if you want to recall the
meaning and origin of each data set.

• If you select data plotted in the BER Figure window, the app reflects the parameters associated
with that data in the app panes and highlights the corresponding data set in the data viewer.

Note You cannot click a data point while the app is generating Monte Carlo simulation results.
Before selecting data for more information, you must wait until the app generates all of the data
points.

• If you configure the Theoretical tab in a way that is already reflected in an existing data set, the
app highlights that data set in the data viewer. This feature prevents the app from duplicating its
computations and entries in the data viewer but still enables the app to show results that you
requested.

• If you close the BER Figure window, you can reopen the figure window by selecting BER Figure
from the Window menu in the app.

• If you select options in the data viewer that affect the BER plot, the BER Figure window
automatically reflects your selections. Such options relate to data set names, confidence intervals,
curve fitting, and the presence or absence of specific data sets in the BER plot.

Note

• If you want to observe the addition of theoretical data to a plot with Monte Carlo simulation data
displayed but do not yet have any data sets in the Bit Error Rate Analysis app, you can follow

22 Measurements

22-14

the workflow described in the “Use Theoretical Tab in Bit Error Rate Analysis App” on page 22-
16 section.

• If you save the BER Figure window using the File menu, the resulting file contains the contents of
the window, but not the Bit Error Rate Analysis app data that led to the plot. To save an entire
Bit Error Rate Analysis app session, see the “Save Bit Error Rate Analysis app Session” on page
22-43 section.

Compute Theoretical BERs Using Bit Error Analysis App
• “Section Overview” on page 22-15
• “Use Theoretical Tab in Bit Error Rate Analysis App” on page 22-16
• “Available Sets of Theoretical BER Data” on page 22-18

Section Overview

You can use the Bit Error Rate Analysis app to generate and analyze theoretical BER data.
Theoretical data can be useful for comparison with your simulation results. However, closed-form
BER expressions exist for only certain kinds of communications systems. For more information, see
“Analytical Expressions Used in BER Analysis” on page 22-47.

To access app capabilities related to theoretical BER data, follow these steps.

1 Open the Bit Error Rate Analysis app, and select the Theoretical tab.

 Analyze Performance with Bit Error Rate Analysis App

22-15

2 Set the parameters to reflect the communications system performance that you want to analyze.
3 Click Plot.

For an example that shows how to generate and analyze theoretical BER data using the Bit Error
Rate Analysis app, see the “Use Theoretical Tab in Bit Error Rate Analysis App” on page 22-16
section.

For information about the combinations of parameters available on the Theoretical tab and the
underlying functions that perform BER computations, see the “Available Sets of Theoretical BER
Data” on page 22-18 section.

Use Theoretical Tab in Bit Error Rate Analysis App

This example shows how to use the app to generate and plot theoretical BER data. In particular, the
example compares the performance of different modulation orders for QAM in a communications
system that includes an AWGN channel.

Run Theoretical BER Example

1 Open the Bit Error Rate Analysis app, and select the Theoretical tab.

22 Measurements

22-16

2 Set these parameters to the values specified in this table.

Parameter Value
Eb / N0 range 0:18 (default)
Channel type AWGN (default)
Modulation type QAM
Modulation order 4

3 Click Plot. The app creates an entry in the data viewer and plots the data in the BER Figure
window. Although the specified Eb/N0 range is 0:18, the plot includes only BER values that exceed
10-8.

4 Change the Modulation order parameter to 16, and click Plot. The app creates another entry in
the data viewer and plots the new data in the same BER Figure window (not pictured).

5 Change the Modulation order parameter to 64, and click Plot. The app creates another entry in
the data viewer and plots the new data in the same BER Figure window.

 Analyze Performance with Bit Error Rate Analysis App

22-17

6 Click one of the curves to view the modulation order for that curve. The app responds to this
action by adjusting the parameters in the Theoretical tab to reflect the values that correspond
to that curve.

7 Remove the curve corresponding to 64-QAM from the plot (but not from the data viewer), by
clearing Plot for the last entry in the data viewer. To restore the curve for 64-QAM to the plot, in
the data viewer, select Plot for that curve.

Available Sets of Theoretical BER Data

The Bit Error Rate Analysis app can generate a large set of theoretical BERs. Parameters in the
Theoretical tab enable you to configure the channel type, modulation type and order, error detection
and correction channel coding, and synchronization error used when the app computes the
theoretical BER. The app adjusts the combination of selectable parameter values based on your
choices so that the configuration is always valid or uses a dialog box to inform you of valid parameter
values.

The app computes the theoretical BER for these modulation types, assuming Gray ordered binary
transmission data. The app uses these BER functions to perform underlying computations and limits
the modulation order to practical limits.

22 Measurements

22-18

• berawgn — For AWGN channel systems with no coding and perfect synchronization
• berfading — For fading channel systems with no coding and perfect synchronization
• bercoding — For systems with channel coding
• bersync — For systems with BPSK modulation, no coding, and imperfect synchronization
• berconfint — For error probability estimate and confidence interval of Monte Carlo simulation
• berfit — For fitting curves to nonsmooth empirical BER data

To compute the BER for higher modulation orders than permitted in the app, use the BER functions.
For more information about specific combinations of parameters, see the reference pages for the BER
functions listed in the Bit Error Rate Calculation and Estimation function group of the “Test and
Measurement” category.

Run MATLAB Simulations in Monte Carlo Tab
• “Section Overview” on page 22-19
• “Use MATLAB Function with Bit Error Rate Analysis App” on page 22-19
• “Assign Function Stopping Criteria” on page 22-22
• “Plot Confidence Intervals” on page 22-23
• “Curve Fit BER Points” on page 22-24

Section Overview

Using the Monte Carlo tab with the Simulation environment parameter set to MATLAB, you can
use the Bit Error Rate Analysis app in conjunction with your own MATLAB communications system
simulation functions to generate and analyze BER data. The app calls the simulation specified by the
Function name parameter for each specified Eb/N0 value, collects the BER data from the simulation,
and creates a plot. The app also enables you to adjust the Eb/N0 range and the stopping criteria for
the simulation.

To make your own simulation functions compatible with the app, see the “Prepare MATLAB Function
for Use in Bit Error Rate Analysis App” example on the Bit Error Rate Analysis app reference page.

Use MATLAB Function with Bit Error Rate Analysis App

This example shows how the Bit Error Rate Analysis app can run the viterbisim MATLAB
simulation.

To run this example, follow these steps.

1 Open the Bit Error Rate Analysis app, and select the Monte Carlo tab.
2 Set these parameters to the specified values shown in this table.

Parameter Value
Eb / N0 range 0:5
Simulation environment MATLAB (default)
Function name viterbisim (default)
Number of Errors 100 (default)

 Analyze Performance with Bit Error Rate Analysis App

22-19

Parameter Value
Number of bits 1e8 (default)

3 Click Run. The app runs the simulation function once for each specified Eb/N0 value and gathers
BER data.

Note While the Bit Error Rate Analysis app runs the configured simulation, it cannot process
certain other tasks, including plotting data from the other tabs of the user interface. However,
you can stop the simulation by clicking Stop in the Monte Carlo Simulation dialog box.

After computing the BER for each of the specified Eb/N0 values, the app creates a listing in the
data viewer.

22 Measurements

22-20

The app also plots the data in the BER Figure window.

4 Adjust the Eb/N0 range parameter to [5 5.2 5.3] and the Number of bits parameter to 1e5.
Click Run to produce a new set of results.

The app runs the simulation function using the new Eb/N0 values and computes new BER data.
The app then creates another listing in the data viewer.

The app also plots the new data set in the BER Figure window, adjusting the horizontal axis to
accommodate the new Eb/N0 values.

 Analyze Performance with Bit Error Rate Analysis App

22-21

The BER values for the 5 dB Eb/N0 setting differ between the two sets of data because the
number of bits processed by the two simulations was different. If you want the computed BER to
converge to a stable value, set the number of bits high enough to ensure that at least 100 bit
errors occur. For more information about the criteria used by the Bit Error Rate Analysis app
to terminate simulations, see the “Assign Function Stopping Criteria” on page 22-22 section.

Assign Function Stopping Criteria

When you create a MATLAB simulation function for use with the Bit Error Rate Analysis app,
control the simulation run duration by setting the target number of errors and maximum number of
bits. The simulation stops the current Eb/N0 when either limit is reached. For more information about
this requirement, see the “Requirements for Using MATLAB Functions with Bit Error Rate Analysis
App” on page 22-25 section.

After you create your function, set the target number of errors and maximum number of bits on the
Monte Carlo tab of the app.

22 Measurements

22-22

Typically, a Number of errors parameter value of at least 100 produces an accurate error rate. The
Number of bits value prevents the simulation from running too long. Depending on the Eb/N0 value
and other aspects of the communications system modeled (such as modulation characteristics and
channel conditions), reaching 100 bit errors might not be realistic. However, if fewer than 100 errors
occur because the Number of bits parameter value is too small, the returned error rate might be
misleading. You can use confidence intervals to gauge the accuracy of the error rates that your
simulation produces. As you increase the confidence level, the accuracy of the computed error rate
decreases.

As an example, follow the procedure described in the “Use MATLAB Function with Bit Error Rate
Analysis App” on page 22-19 section and set the Confidence Level parameter value to 95 for each of
the two data sets. The confidence intervals for the second data set are larger than those for the first
data set because the BER values associated with the second data set are based on only a small
number of observed errors.

Note As long as your function is set up to detect and react to the Stop button in the Bit Error Rate
Analysis app, you can use the button to prematurely stop a series of simulations. For more
information, see “Assign Function Stopping Criteria” on page 22-22.

Plot Confidence Intervals

After you run a simulation with the Bit Error Rate Analysis app, the resulting data set in the data
viewer has an active menu in the Confidence Level column. By default the Confidence Level value
is off, meaning the simulation data in the BER Figure window does not show confidence intervals.

To show confidence intervals in the BER Figure window, set Confidence Level to 90%, 95%, or 99%.

The plot in the BER Figure window automatically responds the Confidence Level value change. This
figure shows a sample plot.

 Analyze Performance with Bit Error Rate Analysis App

22-23

For an example that plots confidence intervals for a Simulink simulation, see the “Use Simulink
Model with Bit Error Rate Analysis App” on page 22-34 section.

To find confidence intervals for levels not listed in the Confidence Level menu, use the berconfint
function.

Curve Fit BER Points

After you run a simulation with the Bit Error Rate Analysis app, the BER Figure window plots
individual BER data points. To fit a curve to a data set that contains at least four points, select Fit for
that data in the data viewer.

The plot in the BER Figure window automatically responds to this selection. This plot shows a curve
fit to a set of BER results.

22 Measurements

22-24

For greater flexibility in the process of fitting a curve to BER data, use the berfit function.

Requirements for Using MATLAB Functions with Bit Error Rate Analysis
App
When you create a MATLAB function for use with the Bit Error Rate Analysis app, ensure the
function interacts properly with the user interface. This section describes the inputs, outputs, and
basic operation of a function that is compatible with the app.

Input Arguments

The Bit Error Rate Analysis app evaluates your entries in fields of the user interface and passes
data to the function as these input arguments (in sequential order).

1 One value from the Eb/N0 range vector each time the Bit Error Rate Analysis app runs the
simulation function

2 Number of errors value
3 Number of bits value

Output Arguments

Your simulation function must compute and return these output arguments (in sequential order). The
Bit Error Rate Analysis app uses these output arguments when reporting and plotting results.

1 Bit error rate of the simulation

 Analyze Performance with Bit Error Rate Analysis App

22-25

2 Number of bits processed when computing the BER

Simulation Function Operation

Your simulation function must perform these tasks:

• Simulate the communications system for the Eb/N0 value specified in the first input argument.
• Stop simulating when the number of errors or number of processed bits equals or exceeds the

corresponding threshold specified in the second or third input argument, respectively.
• Detect whether you click Stop in the Bit Error Rate Analysis app to stop the simulation in that

case.

Template for Simulation Function

Use this template when adapting your code to work with the Bit Error Rate Analysis app. You can
open the template in an editor by entering edit bertooltemplate at the MATLAB command
prompt. If you develop a simulation function without using the template, be sure your function
satisfies the requirements described in the “Requirements for Using MATLAB Functions with Bit
Error Rate Analysis App” on page 22-25 section.

Note To use this template, you must insert your own simulation code in the places marked INSERT
YOUR CODE HERE. For a complete example based on this template, see the “Prepare MATLAB
Function for Use in Bit Error Rate Analysis App” example on the Bit Error Rate Analysis app
reference page.

function [ber,numBits] = bertooltemplateTemp(EbNo,maxNumErrs,maxNumBits,varargin)
%BERTOOLTEMPLATE Template for a BERTool (Bit Error Rate Analysis app) simulation function.
% This file is a template for a BERTool-compatible simulation function.
% To use the template, insert your own code in the places marked "INSERT
% YOUR CODE HERE" and save the result as a file on your MATLAB path. Then
% use the Monte Carlo pane of BERTool to execute the script.
%
% [BER, NUMBITS] = YOURFUNCTION(EBNO, MAXNUMERRS, MAXNUMBITS) simulates
% the error rate performance of a communications system. EBNO is a vector
% of Eb/No values, MAXNUMERRS is the maximum number of errors to collect
% before stopping the simulation, and MAXNUMBITS is the maximum number of
% bits to run before stopping the simulation. BER is the computed bit error
% rate, and NUMBITS is the actual number of bits run. Simulation can be
% interrupted only after an Eb/No point is simulated.
%
% [BER, NUMBITS] = YOURFUNCTION(EBNO, MAXNUMERRS, MAXNUMBITS, BERTOOL)
% also provides BERTOOL, which is the handle for the BERTool app and can
% be used to check the app status to interrupt the simulation of an Eb/No
% point.
%
% For more information about this template and an example that uses it,
% see the Communications Toolbox documentation.
%
% See also BERTOOL and VITERBISIM.

% Copyright 2020 The MathWorks, Inc.

% Initialize variables related to exit criteria.
totErr = 0; % Number of errors observed
numBits = 0; % Number of bits processed

% --- Set up the simulation parameters. ---
% --- INSERT YOUR CODE HERE.

% Simulate until either the number of errors exceeds maxNumErrs
% or the number of bits processed exceeds maxNumBits.
while((totErr < maxNumErrs) && (numBits < maxNumBits))

 % Check if the user clicked the Stop button of BERTool.
 if isBERToolSimulationStopped(varargin{:})
 break

22 Measurements

22-26

 end

 % --- Proceed with the simulation.
 % --- Be sure to update totErr and numBits.
 % --- INSERT YOUR CODE HERE.

end % End of loop

% Compute the BER.
ber = totErr/numBits;

About Template for Simulation Function

The simulation function template either satisfies the requirements listed in the “Requirements for
Using MATLAB Functions with Bit Error Rate Analysis App” on page 22-25 section or indicates where
you need to insert code. In particular, the template:

• Has appropriate input and output arguments
• Includes a placeholder for code that simulates a system for the given Eb/N0 value
• Uses a loop structure to stop simulating when either the number of errors exceeds maxNumErrs

or the number of bits exceeds maxNumBits, whichever occurs first

Note Although the while statement of the loop describes the exit criteria, your own code
inserted into the section marked Proceed with simulation must compute the number of
errors and the number of bits. If you do not perform these computations in your own code,
clicking Stop in the Monte Carlo Simulation dialog box is the only way to terminate the loop.

• Detects when the user clicks Stop in the Monte Carlo Simulation dialog box in each iteration of
the loop

Use Simulation Function Template

Follow these steps to update the simulation function template with your own simulation code.

1 Place the code for setup tasks in the template section marked Set up parameters. For
example, initialize variables such as those containing the modulation alphabet size, filter
coefficients, a convolutional coding trellis, or the states of a convolutional interleaver.

2 Place the code for these core simulation tasks in the template section marked Proceed with
simulation. Determine the core simulation tasks, assuming that all setup work has already
been performed. For example, core simulation tasks include filtering, error-control coding,
modulation and demodulation, and channel modeling.

3 Also in the template section marked Proceed with simulation, include code that updates the
values of the totErr and numBits variables. The totErr value represents the number of errors
observed so far. The numBits value represents the number of bits processed so far. The
computations to update these variables depend on how your core simulation tasks work.

Note Updating the numbers of errors and bits is important for ensuring that the loop
terminates.

4 Omit from your simulation code any setup code that initializes EbNo, maxNumErrs, or
maxNumBits variables, because the app passes these quantities to the function as input
arguments after evaluating the data entered on the Monte Carlo tab.

5 Adjust your code or the code of the template as necessary to use consistent variable names and
meanings. For example, if your original code uses a variable called ebn0 and the function
declaration (first line) for the template uses the variable name EbNo, you must change one of the

 Analyze Performance with Bit Error Rate Analysis App

22-27

names so that they match. As another example, if your original code uses SNR instead of Eb/N0
values, you must convert values appropriately.

Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis
App

Use the Bit Error Rate Analysis app to compute the BER as a function of Eb/N0. The app analyzes
performance with either Monte Carlo simulations of MATLAB® functions and Simulink® models or
theoretical closed-form expressions for selected types of communications systems. The code in the
mpsksim.m function provides an M-PSK simulation that you can run from the Monte Carlo tab of the
app.

Open the Bit Error Rate Analysis app from the Apps tab or by running the bertool function in the
MATLAB command window.

22 Measurements

22-28

On the Monte Carlo tab, set the Eb/N0 range parameter to 1:1:5 and the Function name
parameter to mpsksim.

 Analyze Performance with Bit Error Rate Analysis App

22-29

Open the mpsksim function for editing, set M=2, and save the changed file.

Run the mpsksim.m function as configured by clicking Run on the Monte Carlo tab in the app.

After the app simulates the set of Eb/N0 points, update the name of the BER data set results by
selecting simulation0 in the BER Data Set field and typing M=2 to rename the set of results. The
legend on the BER figure updates the label to M=2.

22 Measurements

22-30

Update the value for M in the mpsksim function, repeating this process for M = 4, 8, and 16. For
example, these figures of the Bit Error Rate Analysis app and BER Figure window show results for
varying M values.

 Analyze Performance with Bit Error Rate Analysis App

22-31

Parallel SNR Sweep Using Bit Error Rate Analysis App

The default configuration for the Monte Carlo processing of the Bit Error Rate Analysis app
automatically uses parallel pool processing to process individual Eb/N0 points when you have the
Parallel Computing Toolbox™ software but for the processing of your simulation code:

• Any parfor function loops in your simulation code execute as standard for loops.
• Any parfeval (Parallel Computing Toolbox) function calls in your simulation code execute

serially.
• Any spmd (Parallel Computing Toolbox) statement calls in your simulation code execute serially.

22 Measurements

22-32

Copyright 2020 The MathWorks, Inc.

Run Simulink Simulations in Monte Carlo Tab
• “Section Overview” on page 22-33
• “Use Simulink Model with Bit Error Rate Analysis App” on page 22-34
• “Assign Model Stopping Criteria” on page 22-37

Section Overview

You can use the Bit Error Rate Analysis app in conjunction with Simulink models to generate and
analyze BER data. The Simulink model simulates the performance of the communications system that
you want to study, while the Bit Error Rate Analysis app manages a series of simulations using the
model and collects the BER data.

Note To use Simulink models within the Bit Error Rate Analysis app, you must have the Simulink
software.

To access the capabilities of the Bit Error Rate Analysis app related to Simulink models, open the
Monte Carlo tab, and then set the Simulation environment parameter to Simulink. If using
parallel processing, the output must be saved to a workspace variable so that the parallel running
engine can collect the results. For example, save the output of the Error Rate Calculation block to a
workspace variable by using a To Workspace block configured to save the output to the name
specified for the BER variable name and with the Save format set to Array.

Tip Select the To Workspace block from the DSP System Toolbox / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

 Analyze Performance with Bit Error Rate Analysis App

22-33

For details about confidence intervals and curve fitting for simulation data, see the “Plot Confidence
Intervals” on page 22-23 and “Curve Fit BER Points” on page 22-24 sections, respectively.

Use Simulink Model with Bit Error Rate Analysis App

This example shows how the Bit Error Rate Analysis app can manage a series of simulations of a
Simulink model and how you can vary the plot. This figure shows the commgraycode model.

To run this example, follow these steps.

1 Open the Bit Error Rate Analysis app. On the Monte Carlo tab, enter the Simulink model
name and a BER variable name. The default value for the Model name parameter is
commgraycode. the default value for the BER variable name parameter is grayBER.

2 Click Run.

The Bit Error Rate Analysis app loads the model into memory. The model initializes several
variables in the MATLAB workspace. The app runs the simulation model once for each Eb/N0
value, gathers the BER results, and creates a listing for the BER results in the data viewer.

The Bit Error Rate Analysis app plots the data in the BER Figure window.

22 Measurements

22-34

3 To fit a curve to the series of points in the BER Figure window, select Fit for the simulation0
data in the data viewer.

The Bit Error Rate Analysis app plots the curve.

 Analyze Performance with Bit Error Rate Analysis App

22-35

4 To indicate a 99% confidence interval around each point in the simulation data, set Confidence
Level to 99% in the data viewer.

The Bit Error Rate Analysis app displays error bars to represent the confidence intervals.

22 Measurements

22-36

For another example that uses the Bit Error Rate Analysis app to manage a series of Simulink
simulations, see the “Prepare Simulink Model for Use with Bit Error Rate Analysis App” example on
the Bit Error Rate Analysis app reference page.

Assign Model Stopping Criteria

When you create a Simulink model for use with the Bit Error Rate Analysis app, you must set it up
so that the simulation ends when it either detects a target number of errors or processes a maximum
number of bits, whichever occurs first. For more information about this requirement, see the
“Requirements for Using Simulink Models with Bit Error Rate Analysis App” on page 22-38 section.

After creating your Simulink model, set the target number of errors and the maximum number of bits
on the Monte Carlo tab of the Bit Error Rate Analysis app.

Typically, a Number of errors parameter value of at least 100 produces an accurate error rate. The
Number of bits value prevents the simulation from running too long, especially at large Eb/N0

 Analyze Performance with Bit Error Rate Analysis App

22-37

values. However, if the Number of bits value is so small that the simulation collects very few errors,
the error rate might not be accurate. You can use confidence intervals to gauge the accuracy of the
error rates that your simulation produces. Larger confidence intervals result in less accurate
computed error rates.

You can also click Stop in the Monte Carlo Simulation dialog box to stop a series of simulations
prematurely.

Requirements for Using Simulink Models with Bit Error Rate Analysis
App
When you create a Simulink model for use with the Bit Error Rate Analysis app, ensure the model
interacts properly with the user interface. This section describes the inputs, outputs, and basic
operation of a model that is compatible with the app.

Input Variables

• The channel block must use the EbNo variable rather than a hard-coded value for Eb/N0. For
example, to model an AWGN channel, use the AWGN Channel block with the Mode parameter set
to Signal to noise ratio (Eb/No) and the Eb/No (dB) parameter set to EbNo.

• The simulation must stop either when the error count reaches the value of the maxNumErrs
variable or when the number of processed bits reaches the value of the maxNumBits variable,
whichever occurs first. You can configure the Error Rate Calculation block in your model to use
these criteria to stop the simulation.

Output Variables

• The simulation must send the final error rate data to the MATLAB workspace as a variable whose
name you enter in the BER variable name parameter in the Bit Error Rate Analysis app. The
output error statistics variable must be a three-element vector that lists the BER, the number of
bit errors, and the number of processed bits.

• The three-element vector format for the output error statistics is supported by the Error Rate
Calculation block.

Simulation Model Operation

• To avoid using an undefined variable name in blocks of the Simulink model, initialize these
variables in the MATLAB workspace by using the preload callback function of the model or by
assigning them at the MATLAB command prompt.

EbNo = 0;
maxNumErrs = 100;
maxNumBits = 1e8;

Tip Using the preload function callback of the model to initialize the runtime variables enables to
you reopen the model in a future MATLAB session with runtime variables preconfigured to run in
the app.

The Bit Error Rate Analysis app provides the actual values based on values in the Monte Carlo
tab, so the initial values in the model or workspace are not important.

• The app assumes the Eb/N0 is used in the channel modeling. If your model uses the AWGN
Channel block, and the Mode parameter is not set to Signal to noise ratio (Eb/No), adapt

22 Measurements

22-38

the block to use the Eb/N0 mode instead. For more information, see the AWGN Channel block
reference page.

• To compute the error rate, use the Error Rate Calculation block with these parameter settings:
select Stop simulation, set Target number of errors to maxNumErrs, and set Maximum
number of symbols to maxNumBits.

• If your model computes an SER instead of a BER, use the Integer to Bit Converter block to convert
symbols to bits.

• To send data from the Error Rate Calculation block to the MATLAB workspace, set the Output
data parameter to Port, attach a To Workspace block to the Error Rate Calculation block, and set
the Limit data points to last parameter of the To Workspaceblock to 1. The Variable name
parameter in the To Workspace block must match the value you enter in the BER variable name
parameter of the Bit Error Rate Analysis app.

Tip Select the To Workspace block from the DSP System Toolbox / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

• Frame-based simulations often run faster than sample-based simulations for the same number of
bits processed. With a frame-based simulation, because the simulation processes a full frame of
data each frame, the number of errors or number of processed bits might exceed the values you
enter in the Bit Error Rate Analysis app.

• If your model uses a callback function to initialize variables in the MATLAB workspace upon
loading the model, before you click Run in the Bit Error Rate Analysis app, make sure that one
of these conditions is met:

• The model is in memory (whether in a window or not), and the variables are intact.
• The model is not currently in memory. In this case, the Bit Error Rate Analysis app loads the

model into memory and runs the callback functions.
• To close open models without saving any changes made while working with them, clear the models

from memory by calling the bdclose function at the MATLAB command prompt providing the
name of the each model individually.

• When you click Run in the Monte Carlo tab, the app reloads the model.

Manage BER Data
• “Managing Data in Data Viewer” on page 22-39
• “Export Bit Error Rate Analysis app Data Set” on page 22-40
• “Save Bit Error Rate Analysis app Session” on page 22-43
• “Import Bit Error Rate Analysis app Data Set” on page 22-43
• “Open Previous Bit Error Rate Analysis app Session” on page 22-44

Managing Data in Data Viewer

The data viewer gives you flexibility to rename and delete data sets and to reorder columns in the
data viewer.

• To rename a data set in the data viewer, double-click its name in the BER Data Set column and
type a new name.

 Analyze Performance with Bit Error Rate Analysis App

22-39

• To delete a data set from the data viewer, select the data set, then select Edit > Delete.

Note If the data set originated from the Theoretical tab, the Bit Error Rate Analysis app
deletes the data without asking for confirmation. You cannot undo this operation.

Export Bit Error Rate Analysis app Data Set

The Bit Error Rate Analysis app enables you to export individual data sets to the MATLAB
workspace or to MAT-files. Exporting data enables you to process the data outside the Bit Error Rate
Analysis app. For example, to create customized plots using data from the Bit Error Rate Analysis
app, export the app data set to the MATLAB workspace and use any of the plotting commands in
MATLAB. To reimport a structure later, see the “Import Bit Error Rate Analysis app Data Set” on page
22-43 section.

To export an individual data set, follow these steps.

1 In the data viewer, select the data set you want to export.
2 Select File > Export Data. Set Export to to indicate the format and destination of the data.

• Workspace arrays — Export the selected data set to a pair of arrays in the MATLAB
workspace. Use this option if you want to access the data in the MATLAB workspace (outside
the app) and if you do not need to import the data into the Bit Error Rate Analysis app later.

Under Variable names, set Eb/N0 and BER parameters to specify the variable names for the
Eb/N0 values and BER values, respectively.

If you want the Bit Error Rate Analysis app to use your chosen variable names even if
variables by those names already exist in the workspace, select Overwrite variables.

22 Measurements

22-40

• Workspace structure — Export the selected data set to a structure in the MATLAB
workspace. If you export data using this option, you can import the data structure into the Bit
Error Rate Analysis app later.

Set the Structure name parameter to specify a workspace structure name.

If you want the Bit Error Rate Analysis app to use your chosen variable name even if a
variable with that name already exist in the workspace, select Overwrite variables.

• MAT-file — Export the selected data set to a structure in a MAT-file. If you export data using
this option, you can import a MAT-file data structure into the Bit Error Rate Analysis app
later.

Set the Structure name in file parameter to specify a MAT-file name. The structure name in
the file will also use this name.

3 Click OK. If you set Export to to MAT-file, the Bit Error Rate Analysis app prompts you for
the path to the MAT-file that you want to create.

 Analyze Performance with Bit Error Rate Analysis App

22-41

Examine an Exported Structure

This section describes the contents of the structure that the Bit Error Rate Analysis app exports to
the workspace or to a MAT-file. This table describes the fields of the exported data structure. When
you want to manipulate exported data, the fields that are most relevant are paramsEvaled and
data.

Field Description
params The parameter values in the Bit Error Rate

Analysis app, some of which might be invisible
and hence irrelevant for computations

paramsEvaled The parameter values evaluated and used by the
Bit Error Rate Analysis app when computing
the data set

data The Eb/N0, BER, and number of bits processed
dataView Information about the appearance in the data

viewer, which is used by the Bit Error Rate
Analysis app when reimporting the data

cellEditabilities Indication whether the data viewer has an active
Confidence Level or Fit entry, which is used by
the Bit Error Rate Analysis app when
reimporting the data

Parameter Fields

The params and paramsEvaled fields are similar to each other, except that params describes the
exact state of the user interface, whereas paramsEvaled indicates the values that are actually used
for computations. For example, in a theoretical system with an AWGN channel, params records but
paramsEvaled omits a diversity order parameter. The diversity order is not used in the computations
because it is relevant for only systems with Rayleigh channels. As another example, if you type
[0:3]+1 in the user interface as the range of Eb/N0 values, params indicates [0:3]+1, whereas
paramsEvaled indicates 1 2 3 4.

The length and exact contents of paramsEvaled depend on the data set because only relevant
information appears. If the meaning of the contents of paramsEvaled is not clear upon inspection,
one way to learn more is to reimport the data set into the Bit Error Rate Analysis app and inspect
the parameter values that appear in the user interface.

Data Field

If your exported workspace variable is called ber0, the field ber0.data is a cell array that contains
the numerical results in these vectors:

• ber0.data{1} lists the Eb/N0 values.
• ber0.data{2} lists the BER values corresponding to each of the Eb/N0 values.
• ber0.data{3} indicates, for simulation results, how many bits the Bit Error Rate Analysis app

processed when computing each of the corresponding BER values.

22 Measurements

22-42

Save Bit Error Rate Analysis app Session

The Bit Error Rate Analysis app enables you to save an entire session. This feature is useful if your
session contains multiple data sets that you want to return to in a later session. To reimport a saved
session, see the “Open Previous Bit Error Rate Analysis app Session” on page 22-44 section.

To save an entire Bit Error Rate Analysis app session, follow these steps.

1 Select File > Save Session.
2 When the Bit Error Rate Analysis app prompts you, enter the path to the file that you want to

create.

The Bit Error Rate Analysis app saves the data in a MAT file or a binary file that records all data
sets currently in the data viewer along with the user interface parameters associated with the data
sets.

Note If your Bit Error Rate Analysis app session requires particular workspace variables, save
those separately in a MAT-file using the save command in MATLAB.

Import Bit Error Rate Analysis app Data Set

The Bit Error Rate Analysis app enables you to reimport individual data sets that you previously
exported to a structure. For more information about exporting data sets from the Bit Error Rate
Analysis app, see the “Export Bit Error Rate Analysis app Data Set” on page 22-40 section.

To import an individual data set that you previously exported from the Bit Error Rate Analysis app
to a structure, follow these steps.

1 Select File > Import Data.

2 Set the Import from parameter to either Workspace structure or MAT-file. If you select
Workspace structure, type the name of the workspace variable in the Structure name
parameter.

3 Click OK. If you set Import from to MAT-file, the Bit Error Rate Analysis app prompts you
to select the file that contains the structure you want to import.

After you dismiss the Data Import dialog box (and the file selection dialog box, in the case of a MAT-
file), the data viewer shows the newly imported data set and the BER Figure window the
corresponding plot.

 Analyze Performance with Bit Error Rate Analysis App

22-43

Open Previous Bit Error Rate Analysis app Session

The Bit Error Rate Analysis app enables you to open previous saved sessions. For more information
about exporting data sets from the Bit Error Rate Analysis app, see the “Save Bit Error Rate
Analysis app Session” on page 22-43 section.

To replace the data sets in the data viewer with data sets from a previous Bit Error Rate Analysis
app session, follow these steps.

1 Select File > Open Session.

Note If the Bit Error Rate Analysis app already contains data sets, your are asked whether
you want to save the current session. If you answer no and continue with the loading process, the
Bit Error Rate Analysis app discards the current session upon opening a new session from the
file.

2 When the Bit Error Rate Analysis app prompts you, enter the path to the file you want to open.
It must be a file that you previously created using the Save Session option in the Bit Error
Rate Analysis app.

After the Bit Error Rate Analysis app reads the session file, the data viewer shows the data sets
from the file.

If the Bit Error Rate Analysis app session requires particular workspace variables that you saved
separately in a MAT-file, you can retrieve them by using the load function at the MATLAB command
prompt. For example, to load the Bit Error Rate Analysis app session named
ber_analysis_filename.mat enter this command.

load ber_analysis_filename.mat

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analytical Expressions Used in BER Analysis” on page 22-47

22 Measurements

22-44

Mathematical Expressions and Notations Used in BER Analysis
This topic defines and describes the notations and mathematical expressions used in the analytical
expressions and the theoretical analysis used by the BER functions (berawgn, bercoding,
berconfint, berfadingberfit, bersync), Bit Error Rate Analysis app, and “Bit Error Rate
Analysis Techniques” on page 22-2 topic.

Common Notation
This table defines the notations used in the analytical expressions in this topic.

Description Notation
Size of modulation constellation M
Number of bits per symbol k = log2M

Energy per bit-to-noise power-spectral-density
ratio

Eb
N0

Energy per symbol-to-noise power-spectral-
density ratio

Es
N0

= k
Eb
N0

Bit error rate (BER) Pb

Symbol error rate (SER) Ps

Real part Re ⋅
Floor, largest integer smaller than the value
contained in braces

⋅

This table describes the terms used for mathematical expressions in this topic.

Function Mathematical Expression
Q function

Q(x) = 1
2π∫x

∞
exp(− t2/2)dt

Marcum Q function
Q(a, b) = ∫

b

∞
texp − t2 + a2

2 I0(at)dt

Modified Bessel function of the first kind of order
ν Iν(z) = ∑

k = 0

∞ z/2 υ + 2k

k!Γ(ν + k + 1)

where

Γ(x) = ∫
0

∞
e−ttx− 1dt

is the gamma function.

 Mathematical Expressions and Notations Used in BER Analysis

22-45

Function Mathematical Expression
Confluent hypergeometric function

F1 1(a, c; x) = ∑
k = 0

∞ (a)k
(c)k

xk

k!

where the Pochhammer symbol, (λ)k, is defined
as (λ)0 = 1, (λ)k = λ(λ + 1)(λ + 2)⋯(λ + k− 1).

This table defines acronyms for common digital modulation schemes.

Acronym Definition
M-PSK M-ary phase-shift keying
DE-M-PSK Differentially encoded M-ary phase-shift keying
BPSK Binary phase-shift keying
DE-BPSK Differentially encoded binary phase-shift keying
QPSK Quaternary phase-shift keying
DE-QPSK Differentially encoded quadrature phase-shift

keying
OQPSK Offset quadrature phase-shift keying
DE-OQPSK Differentially encoded offset quadrature phase-

shift keying
M-DPSK M-ary differential phase-shift keying
M-PAM M-ary pulse amplitude modulation
M-QAM M-ary quadrature amplitude modulation
M-FSK M-ary frequency-shift keying
MSK Minimum shift keying
M-CPFSK M-ary continuous-phase frequency-shift keying

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12

22 Measurements

22-46

Analytical Expressions Used in BER Analysis
The analytical expressions derived for theoretical BER analysis vary based on communications system
design constraints and assumptions. Separate sets of expressions are derived and used for AWGN or
fading channels, coding, and synchronization. Upper or lower limit bounds or approximations are
required to analyze the BER for a specified coding type, decoding decision, code rate, distance
spectrum of the code, or synchronization imperfection.

For the analytical expressions used in error rate analysis, see:

• “Analytical Expressions Used in berawgn Function and Bit Error Rate Analysis App” on page 22-
48 — Derivation of BER and SER in an AWGN channel for uncoded data using various modulation
schemes.

• “Analytical Expressions Used in berfading Function and Bit Error Rate Analysis App” on page 22-
54 — Derivation of BER and SER over a Rayleigh or Rician fading channel for uncoded data
using a specified modulation scheme.

• “Analytical Expressions Used in bercoding Function and Bit Error Rate Analysis App” on page 22-
60 — Derivation of upper bound or approximation of the bit error rate (BER) for coherent BPSK
or QPSK modulation over an additive white Gaussian noise (AWGN) channel for a specified coding
type, decoding decision, code rate, and distance spectrum of the code.

• “Analytical Expressions Used in bersync Function and Bit Error Rate Analysis App” on page 22-
64 — Derivation of uncoded coherent BPSK over an additive white Gaussian noise (AWGN)
channel for imperfect synchronization.

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12

 Analytical Expressions Used in BER Analysis

22-47

Analytical Expressions Used in berawgn Function and Bit Error
Rate Analysis App

In this section...
“M-PSK” on page 22-48
“DE-M-PSK” on page 22-49
“OQPSK” on page 22-49
“DE-OQPSK” on page 22-49
“M-DPSK” on page 22-49
“M-PAM” on page 22-50
“M-QAM” on page 22-50
“Orthogonal M-FSK with Coherent Detection” on page 22-51
“Nonorthogonal 2-FSK with Coherent Detection” on page 22-51
“Orthogonal M-FSK with Noncoherent Detection” on page 22-52
“Nonorthogonal 2-FSK with Noncoherent Detection” on page 22-52
“Precoded MSK with Coherent Detection” on page 22-52
“Differentially Encoded MSK with Coherent Detection” on page 22-52
“MSK with Noncoherent Detection (Optimum Block-by-Block)” on page 22-53
“CPFSK Coherent Detection (Optimum Block-by-Block)” on page 22-53

These sections cover the main analytical expressions used in the berawgn function and Bit Error
Rate Analysis app.

M-PSK
From equation 8.22 in [2],

Ps = 1
π ∫

0

(M − 1)π/M
exp −

kEb
N0

sin2 π/M
sin2θ

dθ

This expression is similar, but not strictly equal, to the exact BER (from [4] and equation 8.29 from
[2]):

Pb = 1
k ∑

i = 1

M/2
(wi′)Pi

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Pi = 1
2π ∫

0

π(1− (2i− 1)/M)
exp −

kEb
N0

sin2 (2i− 1)π/M
sin2θ

dθ

− 1
2π ∫

0

π(1− (2i + 1)/M)
exp −

kEb
N0

sin2 (2i + 1)π/M
sin2θ

dθ

22 Measurements

22-48

For M-PSK with M = 2, specifically BPSK, this equation 5.2-57 from [1] applies:

Ps = Pb = Q
2Eb
N0

For M-PSK with M = 4, specifically QPSK, these equations 5.2-59 and 5.2-62 from [1] apply:

Ps = 2Q
2Eb
N0

1− 1
2Q

2Eb
N0

Pb = Q
2Eb
N0

DE-M-PSK
For DE-M-PSK with M = 2, specifically DE-BPSK, this equation 8.36 from [2] applies:

Ps = Pb = 2Q
2Eb
N0

− 2Q2 2Eb
N0

For DE-M-PSK with M = 4, specifically DE-QPSK, this equation 8.38 from [2] applies:

Ps = 4Q
2Eb
N0

− 8Q2 2Eb
N0

+ 8Q3 2Eb
N0

− 4Q4 2Eb
N0

From equation 5 in [3],

Pb = 2Q
2Eb
N0

1− Q
2Eb
N0

OQPSK
For OQPSK, use the same BER and SER computations as for QPSK in [2].

DE-OQPSK
For DE-OQPSK, use the same BER and SER computations as for DE-QPSK in [3].

M-DPSK
For M-DPSK, this equation 8.84 from [2] applies:

Ps = sin(π/M)
2π ∫

−π/2

π/2 exp −(kEb/N0)(1− cos(π/M)cosθ)
1− cos(π/M)cosθ dθ

This expression is similar, but not strictly equal, to the exact BER (from [4]):

Pb = 1
k ∑

i = 1

M/2
(wi′)Ai

 Analytical Expressions Used in berawgn Function and Bit Error Rate Analysis App

22-49

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Ai = F 2i + 1 π
M − F 2i− 1 π

M

F(ψ) = − sinψ
4π ∫

−π/2

π/2 exp −kEb/N0(1− cosψcost)
1− cosψcost dt

For M-DPSK with M = 2, this equation 8.85 from [2] applies:

Pb = 1
2exp −

Eb
N0

M-PAM
From equations 8.3 and 8.7 in [2] and equation 5.2-46 in [1],

Ps = 2 M − 1
M Q 6

M2− 1
kEb
N0

From [5],

Pb = 2
Mlog2M ×

∑
k = 1

log2M
∑

i = 0

(1− 2−k)M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 Q (2i + 1)

6log2M
M2− 1

Eb
N0

M-QAM
For square M-QAM, k = log2M is even, so equation 8.10 from [2] and equations 5.2-78 and 5.2-79
from [1] apply:

Ps = 4 M − 1
M Q 3

M − 1
kEb
N0

− 4 M − 1
M

2
Q2 3

M − 1
kEb
N0

From [5],

Pb = 2
Mlog2 M

× ∑
k = 1

log2 M
∑

i = 0

(1− 2−k) M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 Q (2i + 1)

6log2M
2(M − 1)

Eb
N0

For rectangular (non-square) M-QAM, k = log2M is odd, M = I × J, I = 2
k− 1

2 , and J = 2
k + 1

2 . So that,

Ps = 4I J − 2I − 2 J
M

× Q
6log2(I J)

(I2 + J2− 2)
Eb
N0

− 4
M (1 + I J − I − J)Q2 6log2(I J)

(I2 + J2− 2)
Eb
N0

22 Measurements

22-50

From [5],

Pb = 1
log2(I J) ∑k = 1

log2I
PI(k) + ∑

l = 1

log2 J
P J(l)

where

PI(k) = 2
I ∑

i = 0

(1− 2−k)I − 1
(− 1)

i2k− 1
I 2k− 1− i2k− 1

I + 1
2 Q (2i + 1)

6log2(I J)
I2 + J2− 2

Eb
N0

and

P J(k) = 2
J ∑

j = 0

(1− 2−l) J − 1
(− 1)

j2l− 1
J 2l− 1− j2l− 1

J + 1
2 Q (2 j + 1)

6log2(I J)
I2 + J2− 2

Eb
N0

Orthogonal M-FSK with Coherent Detection
From equation 8.40 in [2] and equation 5.2-21 in [1],

Ps = 1− ∫
−∞

∞
Q −q−

2kEb
N0

M − 1 1
2πexp −q2

2 dq

Pb = 2k− 1

2k− 1
Ps

Nonorthogonal 2-FSK with Coherent Detection
For M = 2, equation 5.2-21 in [1] and equation 8.44 in [2] apply:

Ps = Pb = Q
Eb(1− Re ρ)

N0

ρ is the complex correlation coefficient, such that:

ρ = 1
2Eb∫0

Tb
s1(t)s2*(t)dt

where s1(t) and s2(t) are complex lowpass signals, and

Eb = 1
2∫

0

Tb
s1(t) 2dt = 1

2∫
0

Tb
s2(t) 2dt

For example, with

s1(t) =
2Eb
Tb

e j2πf1t, s2(t) =
2Eb
Tb

e j2πf2t

 Analytical Expressions Used in berawgn Function and Bit Error Rate Analysis App

22-51

then

ρ = 1
2Eb∫0

Tb 2Eb
Tb

e j2πf1t 2Eb
Tb

e− j2πf2tdt = 1
Tb∫0

Tb
e j2π(f1− f2)tdt

=
sin(πΔfTb)

πΔfTb
e jπΔf t

where Δf = f1− f2.

From equation 8.44 in [2],

 Re ρ = Re
sin(πΔfTb)

πΔfTb
e jπΔf t =

sin(πΔfTb)
πΔfTb

cos(πΔfTb) =
sin(2πΔfTb)

2πΔfTb

Pb = Q
Eb(1− sin(2πΔfTb)/(2πΔfTb))

N0

where h = ΔfTb.

Orthogonal M-FSK with Noncoherent Detection
From equation 5.4-46 in [1] and equation 8.66 in [2],

Ps = ∑
m = 1

M − 1
(− 1)m + 1 M − 1

m
1

m + 1exp − m
m + 1

kEb
N0

Pb = 1
2

M
M − 1Ps

Nonorthogonal 2-FSK with Noncoherent Detection
For M = 2, this equation 5.4-53 from [1] and this equation 8.69 from [2] apply:

Ps = Pb = Q(a, b)− 1
2exp − a + b

2 I0(ab)

where

a =
Eb

2N0
(1− 1− ρ 2), b =

Eb
2N0

(1 + 1− ρ 2)

Precoded MSK with Coherent Detection
Use the same BER and SER computations as for BPSK.

Differentially Encoded MSK with Coherent Detection
Use the same BER and SER computations as for DE-BPSK.

22 Measurements

22-52

MSK with Noncoherent Detection (Optimum Block-by-Block)
The upper bound on error rate from equations 10.166 and 10.164 in [6]) is

Ps = Pb

≤ 1
2 1− Q b1, a1 + Q a1, b1 + 1

4 1− Q b4, a4 + Q a4, b4 + 1
2e−

Eb
N0

where

a1 =
Eb
N0

1− 3− 4/π2

4 , b1 =
Eb
N0

1 + 3− 4/π2

4

a4 =
Eb
N0

1− 1− 4/π2 , b4 =
Eb
N0

1 + 1− 4/π2

CPFSK Coherent Detection (Optimum Block-by-Block)
The lower bound on error rate (from equation 5.3-17 in [1]) is

Ps > KδminQ
Eb
N0

δmin
2

The upper bound on error rate is

δmin
2 > min

1 ≤ i ≤ M − 1
2i 1− sinc(2ih)

where h is the modulation index, and Kδmin is the number of paths with the minimum distance.

Pb ≅
Ps
k

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Analytical Expressions Used in BER Analysis” on page 22-47
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12

 Analytical Expressions Used in berawgn Function and Bit Error Rate Analysis App

22-53

Analytical Expressions Used in berfading Function and Bit
Error Rate Analysis App

In this section...
“Notation” on page 22-54
“M-PSK with MRC” on page 22-55
“DE-M-PSK with MRC” on page 22-56
“M-PAM with MRC” on page 22-56
“M-QAM with MRC” on page 22-56
“M-DPSK with Postdetection EGC” on page 22-57
“Orthogonal 2-FSK, Coherent Detection with MRC” on page 22-57
“Nonorthogonal 2-FSK, Coherent Detection with MRC” on page 22-58
“Orthogonal M-FSK, Noncoherent Detection with EGC” on page 22-58
“Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity” on page 22-58

This section covers the main analytical expressions used in the berfading function and the Bit
Error Rate Analysis app.

Notation
This table describes the additional notations used in analytical expressions in this section.

Description Notation
MRC Maximal-ratio combining
EGC Equal-gain combining
Power of the fading amplitude r Ω = E r2 , where E ⋅ denotes statistical

expectation
Number of diversity branches L
Signal to Noise Ratio (SNR) per symbol per
branch γl = Ωl

Es
N0

/L = Ωl
kEb
N0

/L

For identically-distributed diversity branches,

γ = Ω
kEb
N0

/L

22 Measurements

22-54

Description Notation
Moment generating functions for each diversity
branch

For Rayleigh fading channels:

Mγl s = 1
1− sγl

For Rician fading channels:

Mγl s = 1 + K
1 + K − sγl

e
Ksγl

(1 + K)− sγl

K is the ratio of the energy in the specular
component to the energy in the diffuse
component (linear scale).

For identically-distributed diversity branches,
Mγl s = Mγ s for all l.

M-PSK with MRC
From equation 9.15 in [2],

Ps = 1
π ∫

0

(M − 1)π/M

∏
l = 1

L
Mγl −

sin2(π/M)
sin2θ

dθ

From [4] and [2],

Pb = 1
k ∑

i = 1

M/2
(wi′)Pi

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Pi = 1
2π ∫

0

π(1− (2i− 1)/M)

∏
l = 1

L
Mγl −

1
sin2θ

sin2 (2i− 1)π
M dθ

− 1
2π ∫

0

π(1− (2i + 1)/M)

∏
l = 1

L
Mγl −

1
sin2θ

sin2 (2i + 1)π
M dθ

For the special case of Rayleigh fading with M = 2 (from equations C-18 and C-21 and Table C-1 in
[6]),

Pb = 1
2 1− μ ∑

i = 0

L− 1 2i
i

1− μ2

4
i

where

μ = γ
γ + 1

If L = 1, then:

 Analytical Expressions Used in berfading Function and Bit Error Rate Analysis App

22-55

Pb = 1
2 1− γ

γ + 1

DE-M-PSK with MRC
For M = 2 (from equations 8.37 and 9.8-9.11 in [2]),

Ps = Pb = 2
π ∫

0

π/2

∏
l = 1

L
Mγl −

1
sin2θ

dθ− 2
π ∫

0

π/4

∏
l = 1

L
Mγl −

1
sin2θ

dθ

M-PAM with MRC
From equation 9.19 in [2],

Ps = 2(M − 1)
Mπ ∫

0

π/2

∏
l = 1

L
Mγl −

3/(M2− 1)
sin2θ

dθ

From [5] and [2],

Pb = 2
πMlog2M

× ∑
k = 1

log2M
 ∑

i = 0

(1− 2−k)M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2i + 1)23/(M2− 1)
sin2θ

dθ

M-QAM with MRC
For square M-QAM, k = log2M is even (equation 9.21 in [2]),

Ps = 4
π 1− 1

M ∫0
π/2

∏
l = 1

L
Mγl −

3/(2(M − 1))
sin2θ

dθ

− 4
π 1− 1

M
2∫

0

π/4

∏
l = 1

L
Mγl −

3/(2(M − 1))
sin2θ

dθ

From [5] and [2]:

Pb = 2
π Mlog2 M

× ∑
k = 1

log2 M
 ∑

i = 0

(1− 2−k) M − 1
(− 1)

i2k− 1
M 2k− 1− i2k− 1

M + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2i + 1)23/(2(M − 1))
sin2θ

dθ

For rectangular (nonsquare) M-QAM, k = log2M is odd, M = I × J, I = 2
k− 1

2 , J = 2
k + 1

2 ,

γl = Ωllog2(I J)
Eb
N0

,

22 Measurements

22-56

Ps = 4I J − 2I − 2 J
Mπ ∫

0

π/2

∏
l = 1

L
Mγl −

3/(I2 + J2− 2)
sin2θ

dθ

− 4
Mπ (1 + I J − I − J)∫

0

π/4

∏
l = 1

L
Mγl −

3/(I2 + J2− 2)
sin2θ

dθ

From [5] and [2],

Pb = 1
log2(I J) ∑k = 1

log2I
PI(k) + ∑

l = 1

log2 J
P J(l)

PI(k) = 2
Iπ ∑

i = 0

(1− 2−k)I − 1
(− 1)

i2k− 1
I 2k− 1− i2k− 1

I + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2i + 1)23/(I2 + J2− 2)
sin2θ

dθ

P J(k) = 2
Jπ ∑

j = 0

(1− 2−l) J − 1
(− 1)

j2l− 1
J 2l− 1− j2l− 1

J + 1
2 ∫

0

π/2

∏
l = 1

L
Mγl −

(2 j + 1)23/(I2 + J2− 2)
sin2θ

dθ

M-DPSK with Postdetection EGC
From equation 8.165 in [2],

Ps = sin(π/M)
2π ∫

−π/2

π/2
1

1− cos(π/M)cosθ ∏
l = 1

L
Mγl − 1− cos(π/M)cosθ dθ

From [4] and [2],

Pb = 1
k ∑

i = 1

M/2
(wi′)Ai

where wi′ = wi + wM − i, wM/2′ = wM/2, wi is the Hamming weight of bits assigned to symbol i,

Ai = F 2i + 1 π
M − F 2i− 1 π

M

F(ψ) = − sinψ
4π ∫

−π/2

π/2
1

1− cosψcost ∏l = 1

L
Mγl − 1− cosψcost dt

For the special case of Rayleigh fading with M = 2 and L = 1 (equation 8.173 from [2]),

Pb = 1
2(1 + γ)

Orthogonal 2-FSK, Coherent Detection with MRC
From equation 9.11 in [2],

Ps = Pb = 1
π ∫

0

π/2

∏
l = 1

L
Mγl −

1/2
sin2θ

dθ

 Analytical Expressions Used in berfading Function and Bit Error Rate Analysis App

22-57

For the special case of Rayleigh fading (equations 14.4-15 and 14.4-21 in [1]),

Ps = Pb = 1
2L 1− γ

2 + γ
L
∑

k = 0

L− 1 L− 1 + k
k

1
2k 1 + γ

2 + γ
k

Nonorthogonal 2-FSK, Coherent Detection with MRC
From equations 9.11 and 8.44 in [2],

Ps = Pb = 1
π ∫

0

π/2

∏
l = 1

L
Mγl −

(1− Re ρ)/2
sin2θ

dθ

For the special case of Rayleigh fading with L = 1 (equations 20 in [8] and 8.130 in [2]),

Ps = Pb = 1
2 1− γ(1− Re[ρ])

2 + γ(1− Re[ρ])

Orthogonal M-FSK, Noncoherent Detection with EGC
For Rayleigh fading, from equation 14.4-47 in [1],

Ps = 1− ∫
0

∞
1

1 + γ L L− 1 !
UL− 1e−

U
1 + γ 1− e−U ∑

k = 0

L− 1 Uk

k!

M − 1
dU

Pb = 1
2

M
M − 1Ps

For Rician fading from equation 41 in [8],

Ps = ∑
r = 1

M − 1 (− 1)r + 1e−LKγr /(1 + γr)

r(1 + γr) + 1 L
M − 1

r ∑
n = 0

r(L− 1)
βnr

Γ(L + n)
Γ(L)

1 + γr
r + 1 + rγr

n
F1 1 L + n, L;

LKγr /(1 + γr)
r(1 + γr) + 1

Pb = 1
2

M
M − 1Ps

where

γr = 1
1 + K γ

βnr = ∑
i = n− (L− 1)

n βi(r − 1)
(n− i)! I[0, (r − 1)(L− 1)](i)

β00 = β0r = 1
βn1 = 1/n!

β1r = r

and I[a, b](i) = 1 if a ≤ i ≤ b and 0 otherwise.

Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity
From equation 8.163 in [2],

22 Measurements

22-58

Ps = Pb = 1
4π ∫

−π

π
1− ς2

1 + 2ςsinθ + ς2Mγ −
1
4(1 + 1− ρ2)(1 + 2ςsinθ + ς2) dθ

where

ς = 1− 1− ρ2

1 + 1− ρ2

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Analytical Expressions Used in BER Analysis” on page 22-47
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12

 Analytical Expressions Used in berfading Function and Bit Error Rate Analysis App

22-59

Analytical Expressions Used in bercoding Function and Bit
Error Rate Analysis App

In this section...
“Common Notation” on page 22-60
“Block Coding” on page 22-60
“Convolutional Coding” on page 22-62

This section covers the main analytical expressions used in the bercoding function and the Bit
Error Rate Analysis app.

Common Notation
This table describes the additional notations used in analytical expressions in this section.

Description Notation
Energy-per-information bit-to-noise power-
spectral-density ratio γb =

Eb
N0

Message length K
Code length N
Code rate Rc = K

N

Block Coding
This section describes the specific notation for block coding expressions, where dmin is the minimum
distance of the code.

Soft Decision

For BPSK, QPSK, OQPSK, 2-PAM, 4-QAM, and precoded MSK, equation 8.1-52 in [1]) applies,

Pb ≤
1
2(2K − 1)Q 2γbRcdmin

For DE-BPSK, DE-QPSK, DE-OQPSK, and DE-MSK,

Pb ≤
1
2(2K − 1) 2Q 2γbRcdmin 1− Q 2γbRcdmin

For BFSK coherent detection, equations 8.1-50 and 8.1-58 in [1] apply,

Pb ≤
1
2(2K − 1)Q γbRcdmin

For BFSK noncoherent square-law detection, equations 8.1-65 and 8.1-64 in [1] apply,

Pb ≤
1
2

2K − 1
22dmin− 1exp −1

2γbRcdmin ∑
i = 0

dmin− 1 1
2γbRcdmin

i 1
i! ∑

r = 0

dmin− 1− i 2dmin− 1
r

22 Measurements

22-60

For DPSK,

Pb ≤
1
2

2K − 1
22dmin− 1exp −γbRcdmin ∑

i = 0

dmin− 1
γbRcdmin

i 1
i! ∑

r = 0

dmin− 1− i 2dmin− 1
r

Hard Decision

For general linear block code, equations 4.3 and 4.4 in [9], and 12.136 in [6] apply,

Pb ≤
1
N ∑

m = t + 1

N
(m + t)

N
m

pm 1− p N −m

t = 1
2 dmin− 1

For Hamming code, equations 4.11 and 4.12 in [9] and 6.72 and 6.73 in [7] apply

Pb ≈
1
N ∑

m = 2

N
m

N
m

pm 1− p N −m = p− p(1− p)N − 1

For rate (24,12) extended Golay code, equations 4.17 in [9] and 12.139 in [6] apply:

Pb ≤
1

24 ∑m = 4

24
βm

24
m

pm 1− p 24−m

where βm is the average number of channel symbol errors that remain in corrected N-tuple format
when the channel caused m symbol errors (see table 4.2 in [9]).

For Reed-Solomon code with N = Q− 1 = 2q− 1,

Pb ≈
2q− 1

2q− 1
1
N ∑

m = t + 1

N
m

N
m

Ps
m(1− Ps)N −m

For FSK, equations 4.25 and 4.27 in [9], 8.1-115 and 8.1-116 in [1], 8.7 and 8.8 in [7], and 12.142 and
12.143 in [6] apply,

Pb ≈
1
q

1
N ∑

m = t + 1

N
m

N
m

Ps
m(1− Ps)N −m

otherwise, if log2Q/log2M = q/k = h, where h is an integer (equation 1 in [10]) applies,

Ps = 1− (1− s)h

where s is the SER in an uncoded AWGN channel.

For example, for BPSK, M = 2 and Ps = 1− (1− s)q, otherwise Ps is given by table 1 and equation 2 in
[10].

 Analytical Expressions Used in bercoding Function and Bit Error Rate Analysis App

22-61

Convolutional Coding
This section describes the specific notation for convolutional coding expressions, where df ree is the
free distance of the code, and ad is the number of paths of distance d from the all-zero path that
merges with the all-zero path for the first time.

Soft Decision

From equations 8.2-26, 8.2-24, and 8.2-25 in [1] and 13.28 and 13.27 in [6] apply,

Pb < ∑
d = df ree

∞
adf (d)P2(d)

The transfer function is given by

T(D, N) = ∑
d = df ree

∞
adDdNf (d)

dT(D, N)
dN N = 1

= ∑
d = df ree

∞
adf (d)Dd

where f (d) is the exponent of N as a function of d.

This equation gives the results for BPSK, QPSK, OQPSK, 2-PAM, 4-QAM, precoded MSK, DE-BPSK,
DE-QPSK, DE-OQPSK, DE-MSK, DPSK, and BFSK:

P2(d) = Pb
Eb
N0

= γbRcd

where Pb is the BER in the corresponding uncoded AWGN channel. For example, for BPSK (equation
8.2-20 in [1]),

P2(d) = Q 2γbRcd

Hard Decision

From equations 8.2-33, 8.2-28, and 8.2-29 in [1] and 13.28, 13.24, and 13.25 in [6] apply,

Pb < ∑
d = df ree

∞
adf (d)P2(d)

When d is odd,

P2(d) = ∑
k = (d + 1)/2

d d
k

pk(1− p)d− k

and when d is even,

P2(d) = ∑
k = d/2 + 1

d d
k

pk(1− p)d− k + 1
2

d
d/2

pd/2(1− p)d/2

where p is the bit error rate (BER) in an uncoded AWGN channel.

22 Measurements

22-62

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Analytical Expressions Used in BER Analysis” on page 22-47
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12

 Analytical Expressions Used in bercoding Function and Bit Error Rate Analysis App

22-63

Analytical Expressions Used in bersync Function and Bit Error
Rate Analysis App

In this section...
“Timing Synchronization Error” on page 22-64
“Carrier Synchronization Error” on page 22-64

This section covers the main analytical expressions used in the bersync function and the Bit Error
Rate Analysis app.

Timing Synchronization Error
To compute the BER for a communications system with a timing synchronization error, the bersync
function uses this formula from [13]:

1
4πσ∫−∞

∞
exp(− ξ2

2σ2)∫2R(1− 2 ξ)
∞

exp(− x2

2)dxdξ + 1
2 2π∫2R

∞
exp(− x2

2)dx

where σ is the timing error, and R is the linear Eb/N0 value.

Carrier Synchronization Error
To compute the BER for a communications system with a carrier synchronization error, the bersync
function uses this formula from [13]:

1
πσ∫0 ∞exp(− ϕ2

2σ2)∫2Rcosϕ
∞

exp(− y2

2)dydϕ

where σ is the phase error R is the linear Eb/N0 value.

See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

Related Examples
• “Analytical Expressions Used in BER Analysis” on page 22-47
• “Bit Error Rate Analysis Techniques” on page 22-2
• “Analyze Performance with Bit Error Rate Analysis App” on page 22-12

22 Measurements

22-64

Measure Modulation Accuracy
Error vector magnitude (EVM) and modulation error ratio (MER) measure the accuracy of modulator
and demodulator performance in the presence of signal transmission impairments. For more
information on impairments, see “Visualize RF Impairments” on page 24-53.

• EVM is the vector difference at a given time between the ideal (transmitted) signal and the
measured (received) signal. These measurements help to identify sources of signal degradation,
such as phase noise, IQ imbalance, amplitude nonlinearity, and filter distortion. Standards specify
EVM performance requirements. For example, 3GPP radio transmission standards [1] specify RMS
EVM, peak EVM, and 95th percentile for the EVM performance requirements.

• MER is a form of signal-to-noise ratio (SNR) measurement for assessing the ability of a receiver to
accurately demodulate a signal. MER measures symbol errors introduced by Gaussian noise and
other uncorrectable impairments of the received constellation. If the only significant impairment
in the signal is Gaussian noise, then MER and SNR are equivalent. For example, the DVB
measurement guidelines [4] specify minimum MER and percentile MER performance
requirements.

To measure modulation accuracy, you can use these Communications Toolbox System objects and
blocks. The examples that follow show you how.

System object Block
comm.EVM EVM Measurement
comm.MER MER Measurement

Modulation Accuracy Examples
Measure EVM and MER Using Simulink

This example shows how to compute error vector magnitude (EVM) and modulation error rate (MER)
measurements using Simulink® blocks.

The doc_mer_and_evm model adds IQ imbalance to a 16-QAM signal. The EVM Measurement and
MER Measurement blocks perform EVM and MER measurements, respectively, on the impaired
signal. The Constellation Diagram block displays the impaired signal constellation and signal quality
measurements. The signal quality measurements displayed in the constellation diagram window
approximate the measurements reported by the EVM Measurement and MER Measurement blocks.

 Measure Modulation Accuracy

22-65

In this model, the I/Q Imbalance block sets the amplitude imbalance to 1 dB, the phase imbalance to
15 degrees, and the DC offset to 0. The MER Measurement block is configured to output the mean
MER and the 90th percentile MER. The EVM Measurement block is configured to output the RMS
EVM (normalized to the average reference signal power), the maximum EVM, and the 75th percentile
EVM.

Run Model and Display Measurements

Run the model to compute the EVM and MER measurements and to display the constellation
diagram.

Average MER is 16.9 dB.
90 percentile MER is 14.0 dB.
RMS EVM is 14.3%.
Maximum EVM is 20.7%.
75 percentile EVM is 17.5%.

22 Measurements

22-66

Change the I/Q Imbalance block setting for the amplitude imbalance to 2 dB. Because the modulation
accuracy decreases when the impairment value increases, the reported average MER decreases and
the reported average EVM increases. Run the model again to see the degraded EVM and MER
metrics.

 Measure Modulation Accuracy

22-67

Average MER is 13.2 dB.
90 percentile MER is 10.2 dB.
RMS EVM is 21.8%.
Maximum EVM is 31.2%.
75 percentile EVM is 26.8%.

Measure EVM for EDGE Transmissions in Simulink

This example shows how to measure modulation error impairments for an EDGE transmitter design
by using EVM measurements. The EVM Measurement block compares an ideal reference signal to a
measured signal, and then computes RMS EVM, maximum EVM, and percentile EVM values.

The doc_evm model includes an EDGE transmitter, impairments, and EVM calculations.

• Transmitter --- The doc_evm_init helper file initializes a parameter structure that the model uses
to generate the EDGE transmission bursts. The Random Integer Generator block simulates
random data generation. The EDGE standard specifies that the transmitter performs
measurements during the useful part of the burst (excluding tail bits) over at least 200 bursts. In
this mode, the transmitter produces 435 symbols per burst (9 additional symbols account for filter
delays). The Phase/Frequency Offset block provides continuous phase rotation to the signal.
For synchronization purposes, the Upsample block oversamples the signal by a factor of 4. The
Discrete FIR Filter (Simulink) block provides GMSK pulse linearization, which is the main
component in a Laurent decomposition of the GMSK modulation [3]. A helper function computes
the filter coefficients and uses a direct-form FIR digital filter to create the pulse shaping effect.
The filter normalization provides unity gain at the main tap. The I/Q Imbalance Compensator block
simulates transmitter impairments. This block adds rotation to the signal, simulating a defect in
the transmitter under test.

22 Measurements

22-68

Amplitude imbalance = 0.25 dB
 Phase imbalance = 0.75 degrees

• Receiver --- The Receiver Thermal Noise block represents receiver impairments. This model
assumes 290 K of thermal noise, representing imperfections of the hardware under test.

• EVM calculation --- The EVM measurement block computes the vector difference between an ideal
reference signal and an impaired signal. The output of the FIR filter provides the Reference input
for the EVM block. The output of the Noise Temperature block provides the impaired signal at the
Input port of the EVM block. While the block has different normalization options available, the
EDGE standard requires normalizing by the Average reference signal power. For illustration
purposes in this example, the EVM block outputs RMS, maximum, and percentile measurement
values.

• EDGE standard EVM specifications --- According to the EDGE standard [1], the error vector
magnitude of the received signal, calculated relative to the transmitted waveform, must not
exceed these values:

T =

 3x4 table

 MS Normal MS Extreme BS Normal BS Extreme
 _________ __________ _________ __________

 RMS EVM 9% 10% 7% 8%
 Peak EVM 30% 30% 22% 22%
 95th Percentile EVM 15% 15% 11% 11%

Compute EVM

The computed EVM for the configured EDGE transmitter are:

Measured values
RMS EVM = 10.03%
Peak EVM = 19.77%
95th percentile EVM = 15.19%
Number of symbols processed = 85626

In this table, true indicates tests passed by the configured EDGE transmitter and false indicates
tests the transmitter failed.

T =

 3x4 table

 MS Normal MS Extreme BS Normal BS Extreme
 _________ __________ _________ __________

 RMS EVM false false false false
 Peak EVM true true true true
 95th Percentile EVM false false false false

 Measure Modulation Accuracy

22-69

Adjust Impairments and Recompute EVM

Increase the IQ imbalance and recompute the EVM, this simulated EDGE transmitter fails the EVM
test for a mobile station under all conditions. The computed EVM for the reconfigured EDGE
transmitter are:

Amplitude imbalance = 2.0 dB
 Phase imbalance = 0.75 degrees
Measured values
RMS EVM = 16.06%
Peak EVM = 34.63%
95th percentile EVM = 25.52%
Number of symbols processed = 85626

Here again, true indicates tests passed by the reconfigured EDGE transmitter and false indicates
tests the transmitter failed.

T =

 3x4 table

 MS Normal MS Extreme BS Normal BS Extreme
 _________ __________ _________ __________

 RMS EVM false false false false
 Peak EVM false false false false
 95th Percentile EVM false false false false

References
[1] 3GPP TS 45.004 V7.2.0 (2008–02). "Radio Access Networks; Modulation".

[2] 3GPP TS 45.005 V8.1.0 (2008–05). "Radio Access Network: Radio transmission and reception".

[3] Laurent, Pierre. "Exact and approximate construction of digital phase modulation by superposition
of amplitude modulated pulses (AMP)." IEEE Transactions on Communications. Vol. COM-34,
#2, Feb. 1986, pp. 150–160.

[4] ESTI TR 101 290. Digital Video Broadcasting (DVB): Measurement guidelines for DVB systems.
June 2020.

[5] IEEE STD 802.15.4-2020, IEEE Standard for Low-Rate Wireless Networks. May 2020.

See Also
Blocks
Constellation Diagram

Objects
comm.ConstellationDiagram

Functions
scatterplot

22 Measurements

22-70

Related Examples
• “LTE Uplink EVM and In-Band Emissions Measurements” (LTE Toolbox)
• “EVM Measurement of 5G NR Downlink Waveforms with RF Impairments” (5G Toolbox)
• “802.11ac Transmitter Measurements” (WLAN Toolbox)
• “Measure EVM for 802.15.4 (ZigBee) System” on page 7-122

 Measure Modulation Accuracy

22-71

Adjacent Channel Power Ratio (ACPR)
Adjacent channel power ratio (ACPR) calculations (also known as adjacent channel leakage ratio
(ACLR)), characterize spectral regrowth in a communications system component, such as a modulator
or an analog front end. Amplifier nonlinearity causes spectral regrowth. ACPR calculations determine
the likelihood that a given system causes interference with an adjacent channel.

Many transmission standards, such as IS-95, CDMA, WCDMA, 802.11, and Bluetooth, contain a
definition for ACPR measurements. Most standards define ACPR measurements as the ratio of the
average power in the main channel and any adjacent channels. The offset frequencies and
measurement bandwidths (BWs) you use when obtaining measurements depends on which specific
industry standard you are using. For instance, measurements for CDMA amplifiers involve two offsets
(from the carrier frequency) of 885 kHz and 1.98 MHz, and a measurement BW of 30 KHz.

For more information, see the comm.ACPR help page.

Obtain ACPR Measurements
Communications Toolbox contains the comm.ACPR System object. In this tutorial, you obtain ACPR
measurements using a WCDMA communications signal, according to the 3GPP™ TS 125.104
standard.

This example uses baseband WCDMA sample signals at the input and output of a nonlinear amplifier.
The WCDMASignal.mat file contains sample data for use with the tutorial. This file divides the data
into 25 signal snapshots of 7e3 samples each and stores them in the columns of data matrices,
dataBeforeAmplifier and dataAfterAmplifier.

The WCDMA specification requires that you obtain all measurements using a 3.84 MHz sampling
frequency.

Create comm.ACPR System Object and Set Up Measurements

1 Define the sample rate, load the WCDMA file, and get the data by entering the following at the
MATLAB command line:

% System sampling frequency, 3.84 MHz chip rate, 8 samples per chip
SampleRate = 3.84e6*8;
load WCDMASignal.mat
% Use the first signal snapshot
txSignalBeforeAmplifier = dataBeforeAmplifier(:,1);
txSignalAfterAmplifier = dataAfterAmplifier(:,1);

2 Create the comm.ACPR System object and specify the sampling frequency.

hACPR = comm.ACPR('SampleRate',SampleRate)

The System object presents the following information:

 NormalizedFrequency: false
 SampleRate: 30720000
 MainChannelFrequency: 0
 MainMeasurementBandwidth: 50000
 AdjacentChannelOffset: [-100000 100000]
 AdjacentMeasurementBandwidth: 50000
 MeasurementFilterSource: 'None'

22 Measurements

22-72

 SpectralEstimation: 'Auto'
 FFTLength: 'Next power of 2'
 MaxHold: false
 PowerUnits: 'dBm'
 MainChannelPowerOutputPort: false
 AdjacentChannelPowerOutputPort: false

3 Specify the main channel center frequency and measurement bandwidth.

Specify the main channel center frequency using the MainChannelFrequency property. Then,
specify the main channel measurement bandwidth using the MainMeasurementBandwidth
property.

For the baseband data you are using, the main channel center frequency is at 0 Hz. The WCDMA
standard specifies that you obtain main channel power using a 3.84-MHz measurement
bandwidth. Specify these by typing the following.

hACPR.MainChannelFrequency = 0;
hACPR.MainMeasurementBandwidth = 3.84e6;

4 Specify adjacent channel offsets and measurement bandwidths.

The WCDMA standard specifies ACPR limits for four adjacent channels, located at 5, -5, 10, -10
MHz away from the main channel center frequency. In all cases, you obtain adjacent channel
power using a 3.84-MHz bandwidth. Specify the adjacent channel offsets and measurement
bandwidths using the AdjacentChannelOffset and AdjacentMeasurementBandwidth
properties.

hACPR.AdjacentChannelOffset = [-10 -5 5 10]*1e6;
hACPR.AdjacentMeasurementBandwidth = 3.84e6;

Notice that if the measurement bandwidths for all the adjacent channels are equal, you specify a
scalar value. If measurement bandwidths are different, you specify a vector of measurement
bandwidths with a length equal to the length of the offset vector.

5 Set the MainChannelPowerOutputPort and AdjacentChannelPowerOutputPort properties
to true by entering the following at the MATLAB command line:

hACPR.MainChannelPowerOutputPort = true
hACPR.AdjacentChannelPowerOutputPort = true

6 Create a comm.ACPR System object to measure the amplifier output.

hACPRoutput = clone(hACPR);

Obtain the ACPR Measurements

The object returns the ACPR measurements, and can return power measurements for the main and
adjacent channels. The PowerUnits property specifies the unit of measure. The property value
defaults to dBm (power ratio referenced to one milliwatt (mW)).

1 Obtain the ACPR measurements at the amplifier input:
[ACPR mainChannelPower adjChannelPower] = hACPR(txSignalBeforeAmplifier);

The comm.ACPR System object produces the following output measurement data:

ACPR =

 -68.6668 -54.9002 -55.0653 -68.4604

 Adjacent Channel Power Ratio (ACPR)

22-73

mainChannelPower =

 29.5190

adjChannelPower =

 -39.1477 -25.3812 -25.5463 -38.9414
2 Obtain the ACPR measurements at the amplifier output:

[ACPR mainChannelPower adjChannelPower] = hACPRoutput(txSignalAfterAmplifier)

The comm.ACPR System object produces the following input measurement data:

ACPR =

 -42.1625 -27.0912 -26.8785 -42.4915

mainChannelPower =

 40.6725

adjChannelPower =

 -1.4899 13.5813 13.7941 -1.8190

Notice the increase in ACPR values at the output of the amplifier. This increase reflects distortion
due to amplifier nonlinearity. The WCDMA standard specifies that ACPR values be below -45 dB
at +/- 5 MHz offsets, and below -50 dB at +/- 10 MHz offsets. In this example, the signal at the
amplifier input meets the specifications while the signal at the amplifier output does not.

Specifying a Measurement Filter

The WCDMA standard specifies that you obtain ACPR measurements using a root-raised-cosine filter.
It also states that you measure both the main channel power and adjacent channel powers using a
matched root-raised-cosine (RRC) filter with rolloff factor 0.22. You specify the measurement filter
using the MeasurementFilter property. This property value defaults to an all-pass filter with unity
gain.

The filter must be an FIR filter, and its response must center at 0 Hz. The ACPR object automatically
shifts and applies the filter at each of the specified main and adjacent channel bands. (The power
measurement still falls within the bands specified by the MainMeasurementBandwidth, and
AdjacentMeasurementBandwidth properties.)

The WCDMASignal.mat file contains data that was obtained using a 96 tap filter with a rolloff factor
of 0.22.

1 Create the filter (using rcosdesign, from the Signal Processing Toolbox software) and obtain
measurements by entering the following at the MATLAB command line:

% Scale for 0 dB passband gain
measFilt = rcosdesign(0.22,16,8)/sqrt(8);

2 Set the filter you created in the previous step as the measurement filter for the ACPR object.

22 Measurements

22-74

release(hACPR);
hACPR.MeasurementFilterSource = 'Property';
hACPR.MeasurementFilter = measFilt;

3 Implement the same filter at the amplifier output by cloning the comm.ACPR System object.

hACPRoutput = clone(hACPR)
4 Obtain the ACPR power measurements at the amplifier input.

ACPR = hACPR(txSignalBeforeAmplifier)

The comm.ACPR System object produces the following measurement data:

ACPR =
 -71.4648 -55.5514 -55.9476 -71.3909

5 Obtain the ACPR power measurements at the amplifier output.

ACPRoutput = hACPRoutput(txSignalAfterAmplifier)

The comm.ACPR System object produces the following measurement data:

ACPR =
 -42.2364 -27.2242 -27.0748 -42.5810

Control the Power Spectral Estimator

By default, the ACPR object measures power uses a Welch power spectral estimator with a Hamming
window and zero percent overlap. The object uses a rectangle approximation of the integral for the
power spectral density estimates in the measurement bandwidth of interest. If you set
SpectralEstimatorOption to 'User defined' several properties become available, providing
you control of the resolution, variance, and dynamic range of the spectral estimates.

1 Enable the SegmentLength, OverlapPercentage, and WindowOption properties by entering
the following at the MATLAB command line:

release(hACPRoutput)
hACPRoutput.SpectralEstimation = 'Specify window parameters'

This change allows you to customize the spectral estimates for obtaining power measurements.
For example, you can set the spectral estimator segment length to 1024 and increase the overlap
percentage to 50%, reducing the consequent variance increase. You can also choose a window
with larger side lobe attenuation (compared to the default Hamming window).

2 Create a spectral estimator with a Chebyshev window and a side lobe attenuation of 200 dB.

hACPRoutput.SegmentLength = 1024;
hACPRoutput.OverlapPercentage = 50;
% Choosing a Chebyshev window enables a SidelobeAtten property
% you can use to set the side lobe attenuation of the window.
hACPRoutput.Window = 'Chebyshev';
hACPRoutput.SidelobeAttenuation = 200;

3 Run the object to obtain the ACPR power measurements at the amplifier output.

ACPRoutput = hACPRoutput(txSignalAfterAmplifier)

The ACPR object produces the following measurement data:

ACPR =
 -44.9399 -30.7136 -30.7670 -44.4450

 Adjacent Channel Power Ratio (ACPR)

22-75

Measure Power Using the Max-Hold Option.

Some communications standards specify using max-hold spectrum power measurements when
computing ACPR values. Such calculations compare the current power spectral density vector
estimation to the previous max-hold accumulated power spectral density vector estimation. When
obtaining max-hold measurements, the object obtains the power spectral density vector estimation
using the current input data. It obtains the previous max-hold accumulated power spectral density
vector from the previous call to the object. The object uses the maximum values at each frequency
bin for calculating average power measurements. A call to the reset method clears the max-hold
spectrum.

1 Accumulate max-hold spectra for 25 amplifier output data snapshots and get ACPR
measurements by typing the following at the MATLAB command line:

for idx = 1:24
 hACPRoutput(dataAfterAmplifier(:,idx));
end
ACPRoutput = hACPRoutput(dataAfterAmplifier(:,25))

The ACPR object produces the following output data:

ACPR =

 -43.1123 -26.6964 -27.0009 -42.4803

Plotting the Signal Spectrum

Use the MATLAB software to plot the power spectral density of the WCDMA signals at the input and
output of the nonlinear amplifier. The plot allows you to visualize the spectral regrowth effects
intrinsic to amplifier nonlinearity. Notice how the measurements reflect the spectral regrowth. (Note:
the following code is just for visualizing signal spectra; it has nothing to do with obtaining the ACPR
measurements).
win = hamming(1024);
[PSD1,F] = pwelch(txSignalBeforeAmplifier,win,50,1024,SampleRate,'centered');
[PSD2,F] = pwelch(txSignalAfterAmplifier,win,50,1024,SampleRate,'centered');
plot(F,10*log10(PSD1))
hold on
grid on
plot(F,10*log10(PSD2),'g')
legend('Amplifier input', 'Amplifier output')

22 Measurements

22-76

 Adjacent Channel Power Ratio (ACPR)

22-77

Complementary Cumulative Distribution Function CCDF
Using the comm.CCDF System object you can measure the probability that the instantaneous power of
a signal is above its specified level average power.

22 Measurements

22-78

Selected Bibliography for Measurements
List of references for further reading about measurements used in analysis of communications
systems bit error rate performance.

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

[2] Simon, M. K., and M. S. Alouini. Digital Communication over Fading Channels: A Unified Approach
to Performance Analysis. 1st ed. New York: John Wiley & Sons, 2000.

[3] Simon, M. K. "On the bit-error probability of differentially encoded QPSK and offset QPSK in the
presence of carrier synchronization," IEEE Transactions on Communications, vol. 54, no. 5
(May 2006): 806-812, https://doi.org/10.1109/TCOMM.2006.874002.

[4] Lee, P. J. "Computation of the Bit Error Rate of Coherent M-ary PSK with Gray Code Bit Mapping,"
IEEE Transactions on Communications, vol. 34, no. 5 (May 1986): 488-491, https://doi:
10.1109/TCOM.1986.1096558.

[5] Cho, K., and D. Yoon. "On the general BER expression of one- and two-dimensional amplitude
modulations," IEEE Transactions on Communications, vol. 50, no. 7 (July 2002): 1074-1080,
https://doi.org/10.1109/TCOMM.2002.800818.

[6] Simon, M. K., S. M. Hinedi, and W. C. Lindsey. Digital Communication Techniques – Signal Design
and Detection. Upper Saddle River, N.J. Prentice-Hall, 1995.

[7] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle
River, N.J: Prentice-Hall PTR, 2001.

[8] Lindsey, W. C. "Error probabilities for Rician fading multichannel reception of binary and N-ary
signals," IEEE Trans. Inform. Theory, vol. IT-10, (1964): 339-350.

[9] Odenwalder, J. P. Error Control Coding Handbook, Final Report, LINKABIT Corporation, San
Diego, CA: 1976.

[10] Gulliver, T. A. "Matching Q-ary Reed-Solomon codes with M-ary modulation," IEEE Transactions
on Communications, vol. 45, no. 11, pp. 1349-1353, Nov. 1997, doi: 10.1109/26.649739.

[11] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication
Systems. Second edition. Boston, MA: Springer US, 2000.

[12] Frenger, P., P. Orten, and T. Ottosson. “Convolutional Codes with Optimum Distance Spectrum.”
IEEE Communications Letters 3, no. 11 (November 1999): 317–19. https://doi.org/
10.1109/4234.803468.

[13] Stiffler, J. J. Theory of Synchronous Communications. Englewood Cliffs, NJ.: Prentice-Hall, 1971.

See Also
Functions
berawgn | bercoding | berconfint | berfading | berfit | bersync

 Selected Bibliography for Measurements

22-79

More About
• “Analytical Expressions Used in BER Analysis” on page 22-47
• “Bit Error Rate Analysis Techniques” on page 22-2

22 Measurements

22-80

Filtering Section

• “Filtering” on page 23-2
• “Group Delay” on page 23-4
• “Pulse Shaping Using a Raised Cosine Filter” on page 23-6
• “Design Raised Cosine Filters Using MATLAB Functions” on page 23-10
• “Filter Using Simulink Raised Cosine Filter Blocks” on page 23-12
• “Design Raised Cosine Filters in Simulink” on page 23-16
• “Reduce ISI Using Raised Cosine Filtering” on page 23-21
• “Find Delay for Encoded and Filtered Signal” on page 23-25

23

Filtering

In this section...
“Filter Features” on page 23-2
“Selected Bibliography Filtering” on page 23-3

The “Filtering” category lists functions, objects, and blocks listed that help you design and use filters
in your communications system designs. For additional filtering capabilities, see “Digital and Analog
Filters” and “Filter Design and Analysis”.

Filter Features
Without propagation delays, both Hilbert filters and raised cosine filters are noncausal. This means
that the current output depends on the system's future input. In order to design only realizable
filters, the fdesign.hilbert object delays the input signal before producing an output. This delay,
known as the filter's group delay, is the time between the filter's initial response and its peak
response. The group delay is defined as

− d
dωθ(ω)

where θ represents the phase of the filter and ω represents the frequency in radians per second. This
delay is set so that the impulse response before time zero is negligible and can safely be ignored by
the function.

For example, the Hilbert filter whose impulse is shown below uses a group delay of one second. In the
figure, the impulse response near time 0 is small and the large impulse response values occur near
time 1.

Filtering tasks that blocks in the Communications Toolbox support include:

• Raised cosine filters are commonly used for pulse shaping and matched filtering. This diagram
illustrates a typical use of raised cosine filters.

23 Filtering Section

23-2

• Shaping a signal using ideal rectangular pulses.
• Implementing an integrate-and-dump operation or a windowed integrator. An integrate-and-dump

operation is often used in a receiver model when the system's transmitter uses an ideal
rectangular-pulse model. Integrate-and-dump can also be used in fiber optics and in spread-
spectrum communication systems such as CDMA (code division multiple access) applications.

For more background information about filters and pulse shaping, see the works listed in the
“Selected Bibliography Filtering” on page 23-3.

Selected Bibliography Filtering

[1] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold, 1985.

[2] Oppenheim, Alan V., and Ronald W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs,
NJ, Prentice Hall, 1989.

[3] Proakis, John G., Digital Communications, 3rd ed., New York, McGraw-Hill, 1995.

[4] Rappaport, Theodore S., Wireless Communications: Principles and Practice, Upper Saddle River,
NJ, Prentice Hall, 1996.

[5] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood Cliffs, NJ,
Prentice Hall, 1988.

See Also

Related Examples
• “Raised Cosine Filtering” on page 1-301
• “Filter Using Simulink Raised Cosine Filter Blocks” on page 23-12

 Filtering

23-3

Group Delay
The raised cosine filter blocks in the commfilt2 library implement realizable filters by delaying the
peak response. This delay, known as the filter’s group delay, is the length of time between the filter's
initial response and its peak response. The filter blocks in this library have a Filter span in symbols
parameter, which is twice the group delay in symbols.

For example, the square-root raised cosine filter whose impulse response shown in the following
figure uses a Filter span in symbols parameter of 8 in the filter block. In the figure, the initial
impulse response is small and the peak impulse response occurs at the fourth symbol.

Implications of Delay for Simulations
A filter block’s group delay has implications for other parts of your model. For example, suppose you
compare the symbol streams marked Symbols In and Symbols Out in the schematics shown on the
“Filtering” on page 23-2 page by plotting or computing an error rate. Use one of these methods to
make sure you are comparing symbols that truly correspond to each other:

• Use the Delay block to delay the Symbols In signal, thus aligning it with the Symbols Out signal.
Set the Delay parameter equal to the filter’s group delay (or the sum of both values, if your model
uses a pair of square root raised cosine filter blocks). The following figure illustrates this usage.

23 Filtering Section

23-4

• Use the Find Delay block to find the delay between the two signals and add that delay using the
Delay block.

• When using the Error Rate Calculation block to compare the two signals, increase the Receive
delay parameter by the group delay value (or the sum of both values, if your model uses a pair of
square-root raised cosine filter blocks). The Receive delay parameter might include other delays
as well, depending on the contents of your model.

For more information about how to manage delays in a model, see “Delays” on page 10-6.

 Group Delay

23-5

Pulse Shaping Using a Raised Cosine Filter

Filter a 16-QAM signal using a pair of square root raised cosine matched filters. Plot the eye diagram
and scatter plot of the signal. After passing the signal through an AWGN channel, calculate the
number of bit errors.

Set the simulation parameters.

M = 16; % Modulation order
bps = log2(M); % Bits/symbol
n = 20000; % Transmitted bits
sps = 4; % Samples per symbol
EbNo = 10; % Eb/No (dB)

Set the filter parameters.

span = 10; % Filter span in symbols
rolloff = 0.25; % Rolloff factor

Create the raised cosine transmit and receive filters using the previously defined parameters.

txfilter = comm.RaisedCosineTransmitFilter(...
 RolloffFactor=rolloff, ...
 FilterSpanInSymbols=span, ...
 OutputSamplesPerSymbol=sps);

rxfilter = comm.RaisedCosineReceiveFilter(...
 RolloffFactor=rolloff, ...
 FilterSpanInSymbols=span, ...
 InputSamplesPerSymbol=sps, ...
 DecimationFactor=sps);

Plot the impulse response of the raised cosine transmit filter object txFilter.

fvtool(txfilter,Analysis="impulse")

23 Filtering Section

23-6

Calculate the delay through the matched filters. The group delay is half of the filter span through one
filter and is, therefore, equal to the filter span for both filters. Multiply by the number of bits per
symbol to get the delay in bits.

filtDelay = bps*span;

Create an error rate counter System object™. Set the ReceiveDelay property to account for the
delay through the matched filters.

errorRate = comm.ErrorRate(ReceiveDelay=filtDelay);

Generate binary data.

x = randi([0 1],n,1);

Modulate the data.

modSig = qammod(x,M,InputType="bit");

Filter the modulated signal.

txSig = txfilter(modSig);

Plot the eye diagram of the first 1000 samples.

eyediagram(txSig(1:1000),sps)

 Pulse Shaping Using a Raised Cosine Filter

23-7

Calculate the signal-to-noise ratio (SNR) in dB given EbNo. Pass the transmitted signal through the
AWGN channel using the awgn function.

SNR = EbNo + 10*log10(bps) - 10*log10(sps);
noisySig = awgn(txSig,SNR,"measured");

Filter the noisy signal and display its scatter plot.

rxSig = rxfilter(noisySig);
scatterplot(rxSig)

23 Filtering Section

23-8

Demodulate the filtered signal and calculate the error statistics. The delay through the filters is
accounted for by the ReceiveDelay property in errorRate.

z = qamdemod(rxSig,M,OutputType="bit");

errStat = errorRate(x,z);
fprintf('\nBER = %5.2e\nBit Errors = %d\nBits Transmitted = %d\n',...
 errStat)

BER = 1.85e-03
Bit Errors = 37
Bits Transmitted = 19960

 Pulse Shaping Using a Raised Cosine Filter

23-9

Design Raised Cosine Filters Using MATLAB Functions
In this section...
“Section Overview” on page 23-10
“Example Designing a Square-Root Raised Cosine Filter” on page 23-10

Section Overview
The rcosdesign function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter
• FIR square-root raised cosine filter

The function returns the FIR coefficients as output.

Example Designing a Square-Root Raised Cosine Filter
For example, the command below designs a square-root raised cosine FIR filter with a roll-off of 0.25,
a filter span of 6 symbols, and an oversampling factor of 2.

sps = 2;
num = rcosdesign(0.25, 6, sps)

num =
 Columns 1 through 7
 -0.0265 0.0462 0.0375 -0.1205 -0.0454 0.4399 0.7558
 Columns 8 through 13
 0.4399 -0.0454 -0.1205 0.0375 0.0462 -0.0265

Here, the vector num contains the coefficients of the filter, in ascending order of powers of z-1.

You can use the upfirdn function to filter data with a raised cosine filter generated by rcosdesign.
The following code illustrates this usage:

d = 2*randi([0 1], 100, 1)-1;
f = upfirdn(d, num, sps);
eyediagram(f(7:200),sps)

23 Filtering Section

23-10

The eye diagram shows an imperfect eye because num characterizes a square-root filter.

 Design Raised Cosine Filters Using MATLAB Functions

23-11

Filter Using Simulink Raised Cosine Filter Blocks
The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks are designed for raised
cosine filtering. Each block can apply a square-root raised cosine filter or a normal raised cosine filter
to a signal. You can vary the roll-off factor and span of the filter.

The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks are tailored for use at the
transmitter and receiver, respectively. The transmit filter outputs an upsampled (interpolated) signal,
while the receive filter expects its input signal to be upsampled. The receive filter lets you choose
whether to have the block downsample (decimate) the filtered signal before sending it to the output
port.

Both raised cosine filter blocks introduce a propagation delay, as described in “Group Delay” on page
23-4.

Combining Two Square-Root Raised Cosine Filters
This model shows how to split the filtering equally between the transmitter's filter and the receiver's
filter by using a pair of square root raised cosine filters.

The use of two matched square root raised cosine filters is equivalent to a single normal raised cosine
filter.

The filters share the same span and use the same number samples per symbol but the filters on the
upper path have a square root shape while the filter on the lower path has the normal shape.

23 Filtering Section

23-12

Run the model and observe the eye and constellation diagrams. The performance is nearly identical
for the two methods. Note that the limited impulse response of practical square root raised cosine
filters causes a slight difference between the response of two cascaded square root raised cosine
filters and the response of one raised cosine filter.

 Filter Using Simulink Raised Cosine Filter Blocks

23-13

23 Filtering Section

23-14

 Filter Using Simulink Raised Cosine Filter Blocks

23-15

Design Raised Cosine Filters in Simulink

This example illustrates a typical setup in which a transmitter uses a square root raised cosine filter
to perform pulse shaping and the corresponding receiver uses a square root raised cosine filter as a
matched filter. The example plots an eye diagram from the filtered received signal.

The following is a summary of the block parameters used in the model:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm Sources library:

• M-ary number is set to 16.
• Sample time is set to 1/100.
• Frame-based outputs is selected.
• Samples per frame is set to 100.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital Baseband sublibrary of
Modulation:

• Normalization method is set to Peak Power.
• Peak power is set to 1.

• Raised Cosine Transmit Filter, in the Comm Filters library:

23 Filtering Section

23-16

• Filter span in symbols is set to 8.
• Rolloff factor is set to 0.2

• AWGN Channel, in the Channels library:

• Mode is set to Signal to noise ratio (SNR).
• SNR is set to 40.
• Input signal power is set to 0.0694. The power gain of a square-root raised cosine transmit
filter is

 Design Raised Cosine Filters in Simulink

23-17

1
N

23 Filtering Section

23-18

, where N represents the upsampling factor of the filter. The input signal power of filter is
0.5556. Because the Peak power of the 16-QAM Rectangular modulator is set to 1 watt, it
translates to an average power of 0.5556. Therefore, the output signal power of filter is

0.5556
8 = 0.0694

.
• Raised Cosine Receive Filter, in the Comm Filters library:

• Filter span in symbols is set to 8.
• Rolloff factor is set to 0.2.

• Eye Diagram, in the Comm Sinks library:

• Symbols per trace is set to 2.
• Traces to display is set to 100.

Running the simulation produces the following eye diagram. The eye diagram has two widely opened
“eyes” that indicate appropriate instants at which to sample the filtered signal before demodulating.
This illustrates the absence of intersymbol interference at the sampling instants of the received
waveform.

 Design Raised Cosine Filters in Simulink

23-19

The large signal-to-noise ratio in this example produces an eye diagram with large eye openings. If
you decrease the SNR parameter in the AWGN Channel block, the eyes in the diagram will close
more.

23 Filtering Section

23-20

Reduce ISI Using Raised Cosine Filtering

Employ raised cosine filtering to reduce inter-symbol interference (ISI) that results from a nonlinear
amplifier.

Initialize a simulation variable for modulation order.

M = 16; % Modulation order

Create square root raised cosine filter objects.

txfilter = comm.RaisedCosineTransmitFilter;
rxfilter = comm.RaisedCosineReceiveFilter;

Create a memoryless nonlinearity System object™ to introduce nonlinear behavior to the modulated
signal. Using name-value pairs, set the Method property to Saleh model to emulate a high power
amplifier.

hpa = comm.MemorylessNonlinearity('Method','Saleh model', ...
 'InputScaling',-10,'OutputScaling',0);

Generate random integers and apply 16-QAM modulation.

x = randi([0 M-1],1000,1);
modSig = qammod(x,M,'UnitAveragePower',true);

Plot the eye diagram of the modulated signal. At time 0, there are three distinct "eyes" for 16-QAM
modulation.

eyediagram(modSig,2)

 Reduce ISI Using Raised Cosine Filtering

23-21

Amplify the modulated signal using hpa.

txSigNoFilt = hpa(modSig);

Plot the eye diagram of the amplified signal without RRC filtering. At time 0, there are multiple eyes.
This is a result of inter-symbol interference from the nonlinear amplifier.

eyediagram(txSigNoFilt,2)

23 Filtering Section

23-22

Filter the modulated signal using the RRC transmit filter.

filteredSig = txfilter(modSig);

Release hpa and amplify the filtered signal. The release function is needed because the input signal
dimensions change due to filter interpolation.

release(hpa)
txSig = hpa(filteredSig);

Filter txSig using the RRC matched receive filter.

rxSig = rxfilter(txSig);

Plot the eye diagram of the signal after the application of the receive filter. There are once again
three distinct eyes as the matched RRC filters mitigate ISI.

eyediagram(rxSig,2)

 Reduce ISI Using Raised Cosine Filtering

23-23

23 Filtering Section

23-24

Find Delay for Encoded and Filtered Signal

Determine the delay for a convolutionally encoded and filtered link. Use the delay to accurately
determine the number of bit errors.

Create a QPSK modulator and demodulator pair. Specify the objects to operate on bits.

qpskmod = comm.QPSKModulator('BitInput',true);
qpskdemod = comm.QPSKDemodulator('BitOutput',true);

Create a raised cosine transmit and receive filter pair.

txfilt = comm.RaisedCosineTransmitFilter;
rxfilt = comm.RaisedCosineReceiveFilter;

Create a convolutional encoder and Viterbi decoder pair.

convEnc = comm.ConvolutionalEncoder;
vitDec = comm.ViterbiDecoder('InputFormat','Hard');

Generate random binary data. Convolutionally encode the data.

txData = randi([0 1],1000,1);
encData = convEnc(txData);

Modulate the encoded data. Pass the modulated data through the raised cosine transmit filter.

modSig = qpskmod(encData);
txSig = txfilt(modSig);

Pass the filtered signal through an AWGN channel.

rxSig = awgn(txSig,20,'measured');

Filter and then demodulate the received signal.

filtSig = rxfilt(rxSig);
demodSig = qpskdemod(filtSig);

Decode the demodulated data.

rxData = vitDec(demodSig);

Find the delay between the transmitted and received binary data by using the finddelay function.

td = finddelay(txData,rxData)

td = 44

Confirm that the computed delay matches the expected delay, which is equal to the sum of the group
delay of the matched filters and the traceback depth of the Viterbi decoder.

tdexpected = (txfilt.FilterSpanInSymbols + rxfilt.FilterSpanInSymbols)/2 + ...
 vitDec.TracebackDepth;
isequal(td,tdexpected)

 Find Delay for Encoded and Filtered Signal

23-25

ans = logical
 1

Calculate the number of bit errors by discarding the last td bits from the transmitted sequence and
discarding the first td bits from the received sequence.

numErrors = biterr(txData(1:end-td),rxData(td+1:end))

numErrors = 0

23 Filtering Section

23-26

Visual Analysis

• “View Constellation of Modulator Block” on page 24-2
• “Plot Signal Constellations” on page 24-6
• “Eye Diagram Analysis” on page 24-14
• “Scatter Plots and Constellation Diagrams” on page 24-25
• “Channel Visualization” on page 24-31
• “Visualize RF Impairments” on page 24-53

24

View Constellation of Modulator Block

This example shows how to visualize constellations by clicking the View Constellation button on the
mask of linear modulator block. These linear modulator blocks provide the capability to visualize a
signal constellation from the block mask.

• BPSK Modulator Baseband
• QPSK Modulator Baseband
• M-PSK Modulator Baseband
• M-PAM Modulator Baseband
• Rectangular QAM Modulator Baseband
• General QAM Modulator Baseband

For these linear modulator blocks, clicking View Constellation on the block mask plots the signal
constellation using the applied block settings. Use the cm_view_modulator_constellation model
to create constellation figures by clicking View Constellation. This model uses the Rectangular QAM
Modulator Baseband block with the modulation order set to the workspace variable M. The value for M
is specified in the PreLoadFcn callback function. To view the callback, select MODELING, SETUP,
Model Settings, and then Model Properties. In the Model Properties window, select Callbacks, and
then PreLoadFcn.

Modulator Configuration and Signal Constellation

When you click View Constellation on the modulator block mask, the constellation diagram opens in
a MATLAB® figure window. The title of the plot indicates the values of significant parameters.

24 Visual Analysis

24-2

This constellation plot figure shows the default signal constellation for the Rectangular QAM
Modulator Baseband block:

• 16-QAM modulation scheme
• Gray constellation mapping
• 0-degree phase offset
• Minimum distance of 2 between two constellation points
• Double precision data type signal
• Integer symbol representation

From the block mask, set the Input type parameter to Bit, and the Constellation ordering
parameter to Binary. To view the constellation for the updated configuration, click Apply before
clicking View Constellation. The updated plot indicates binary constellation mapping and displays
the bit representation for the symbols.

 View Constellation of Modulator Block

24-3

Since the modulation order setting of the Rectangular QAM Modulator Baseband block is M, the value
can be updated by using the variable M defined in the MATLAB workspace. Set M = 32 in the MATLAB
workspace. The modulation order setting updates the model workspace in Simulink®. Click View
Constellation to show the 32-QAM constellation.

24 Visual Analysis

24-4

To capture a figure for future use, save the figure before closing the model. When you close the
Simulink model, all of the constellation figures closes as well.

See Also
Blocks
BPSK Modulator Baseband | QPSK Modulator Baseband | M-PSK Modulator Baseband | M-PAM
Modulator Baseband | Rectangular QAM Modulator Baseband | General QAM Modulator Baseband

Related Examples
• “Plot Signal Constellations” on page 24-6
• “Eye Diagram Analysis” on page 24-14

 View Constellation of Modulator Block

24-5

Plot Signal Constellations
In this section...
“Create 16-PSK Constellation Diagram” on page 24-6
“Create 32-QAM Constellation Diagram” on page 24-8
“Create 8-QAM Gray Coded Constellation Diagram” on page 24-11
“Plot a Triangular Constellation for QAM” on page 24-12

Create 16-PSK Constellation Diagram

Show reference constellation plots for 16-PSK modulation of Gray-coded and binary-coded symbol
mapping by setting PlotConstellation=true when using the modulation function. Input bit
signals and compare the bit patterns between the two constellations. The bit patterns in adjacent
constellation points differ by only one bit for the Gray-coded symbol mapping but not for the binary-
coded symbol mapping.

Set the parameters for 16-PSK modulation with no phase offset

M = 16; % Modulation alphabet size
bps = log2(M); % Bits per symbol
phOffset = 0; % Phase offset
bitdata = int2bit(0,bps); % Generate one symbol to modulate

Plot the reference constellation for Gray-coded symbols mapping. For the Gray-coded symbol
mapping, the bit patterns in all adjacent constellation points differ by only one bit.

pskmod(bitdata,M,phOffset,InputType="bit",PlotConstellation=true);

24 Visual Analysis

24-6

Plot the reference constellation for binary-coded symbols mapping. For the binary-coded symbol
mapping, the bit patterns in adjacent constellation points do not always differ by only one bit.

pskmod(bitdata,M,phOffset,"bin",InputType="bit",PlotConstellation=true);

 Plot Signal Constellations

24-7

Create 32-QAM Constellation Diagram

Plot a 32-QAM reference constellation by using the constellation plot capability of the modulation
function, the comm.ConstellationDiagram System object™, and the scatterplot function.

Use the qammod function to generate the 32-QAM symbols with Gray-code symbol ordering and plot
the reference constellation.

M = 32;
qammod(0,M,UnitAveragePower=true,PlotConstellation=true);

24 Visual Analysis

24-8

Create a constellation diagram object with the reference constellation defined as 32-QAM. Plot the
32-QAM signal of reference constellation symbols.

refSym = [0:M-1]';
refC = qammod(refSym,M,UnitAveragePower=true);
cd = comm.ConstellationDiagram(ReferenceConstellation=refC);
cd(refC)

 Plot Signal Constellations

24-9

Plot the reference constellation with the scatterplot function and label the order of the constellation
symbols.

scatterplot(refC,1,0,'r*');
for k = 1:M
 text(real(refC(k))+0.04,imag(refC(k))-0.04, ...
 num2str(refSym(k)),Color='r');
end
axis([-1.5 1.5 -1.5 1.5])

24 Visual Analysis

24-10

Create 8-QAM Gray Coded Constellation Diagram

Use the qammod function to generate the 8-QAM symbols with Gray symbol ordering. Note that Gray
coding is the default symbol mapping for the qammod function.

M = 8;
data = 0:M-1;
sym = qammod(data,M);

Plot the constellation. Label the order of the constellation symbols.

scatterplot(sym,1,0,'r*');
grid on
for k = 1:M
 text(real(sym(k))-0.4,imag(sym(k))+0.4,num2str(data(k)),Color='r');
end
axis([-4 4 -2 2])

 Plot Signal Constellations

24-11

Plot a Triangular Constellation for QAM

Plot a customized QAM reference constellation by using a constellation diagram System object™.

Define the constellation.

inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2];
inphase = [inphase; -inphase];
inphase = inphase(:);
quadr = [quadr; -quadr];
quadr = quadr(:);
refConst = inphase + 1i*quadr;

Construct a constellation diagram object using name-value pairs to specify the title, the axes limits,
the reference marker type, and the reference marker color.

constDiagram = comm.ConstellationDiagram(...
 Title='Customized Constellation for QAM', ...
 XLimits=[-3 3], ...
 YLimits=[-3 3], ...
 ReferenceConstellation=refConst, ...
 ReferenceMarker='*', ...
 ReferenceColor=[0 1 0]);

24 Visual Analysis

24-12

Plot the customized constellation.

constDiagram(refConst)
release(constDiagram)

See Also
“View Constellation of Modulator Block” on page 24-2

 Plot Signal Constellations

24-13

Eye Diagram Analysis

In digital communications, an eye diagram provides a visual indication of how noise might impact
system performance.

Use the Eye Diagram block to examine the eye diagram of signals.

You can obtain the following measurements on an eye diagram:

• Amplitude Measurements

• Eye Amplitude
• Eye Crossing Amplitude
• Eye Crossing Percentage
• Eye Height
• Eye Level
• Eye SNR
• Quality Factor
• Vertical Eye Opening

• Time Measurements

• Deterministic Jitter
• Eye Crossing Time
• Eye Delay
• Eye Fall Time
• Eye Rise Time
• Eye Width
• Horizontal Eye Opening
• Peak-to-Peak Jitter
• Random Jitter
• RMS Jitter
• Total Jitter

Measurements assume that the eye diagram object has valid data. A valid eye diagram has two
distinct eye crossing points and two distinct eye levels.

The deterministic jitter, horizontal eye opening, quality factor, random jitter, and vertical eye opening
measurements utilize a dual-Dirac algorithm. Jitter is the deviation of a signal’s timing event from its
intended (ideal) occurrence in time [1]. Jitter can be represented with a dual-Dirac model. A dual-
Dirac model assumes that the jitter has two components: deterministic jitter (DJ) and random jitter
(RJ). The DJ PDF comprises two delta functions, one at μL and one at μR. The RJ PDF is assumed to be
Gaussian with zero mean and variance σ.

The Total Jitter (TJ) PDF is the convolution of these two PDFs, which is composed of two Gaussian
curves with variance σ and mean values μL and μR.

24 Visual Analysis

24-14

The dual-Dirac model is described in [5] in more detail. The amplitude of the two Dirac functions may
not be the same. In such a case, the analyze method estimates these amplitudes, ρL and ρR.

Amplitude Measurements
You can use the vertical histogram to obtain a variety of amplitude measurements. For complex
signals, measurements are done on both in-phase and the quadrature components, unless otherwise
specified.

Note For amplitude measurements, at least one bin per vertical histogram must reach 10 hits before
the measurement is taken, ensuring higher accuracy.

Eye Amplitude (EyeAmplitude)

Eye Amplitude, measured in Amplitude Units (AU), is defined as the distance between two
neighboring eye levels. For an NRZ signal, there are only two levels: the high level (level 1 in figure)
and the low level (level 0 in figure). The eye amplitude is the difference of these two values.

 Eye Diagram Analysis

24-15

Eye Crossing Amplitude (EyeCrossingLevel)

Eye crossing amplitudes are the amplitude levels at which the eye crossings occur, measured in
Amplitude Units (AU). The analyze method calculates this value using the mean value of the vertical
histogram at the crossing times [3].

24 Visual Analysis

24-16

The next figure shows the vertical histogram at the first eye crossing time.

Eye Crossing Percentage (EyeOpeningVer)

Eye Crossing Percentage is the location of the eye crossing levels as a percentage of the eye
amplitude.

Eye Height (EyeHeight)

Eye Height, measured in Amplitude Units (AU), is defined as the 3σ distance between two
neighboring eye levels.

For an NRZ signal, there are only two levels: the high level (level 1 in figure) and the low level (level
0 in figure). The eye height is the difference of the two 3σ points. The 3σ point is defined as the point
that is three standard deviations away from the mean value of a PDF.

 Eye Diagram Analysis

24-17

Eye Level (EyeLevel)

Eye Level is the amplitude level used to represent data bits, measured in Amplitude Units (AU).

For an ideal NRZ signal, there are two eye levels: +A and –A. The analyze method calculates eye
levels by estimating the mean value of the vertical histogram in a window around the EyeDelay, which
is also the 50% point between eye crossing times [3]. The width of this window is determined by the
EyeLevelBoundary property of the eye measurement setup object.

The analyze method calculates the mean value of all the vertical histograms within the eye level
boundaries. The mean vertical histograms show two distinct PDFs, one for each eye level.

Eye SNR (EyeSNR)

Eye signal-to-noise ratio is defined as the ratio of the eye amplitude to the sum of the standard
deviations of the two eye levels. It can be expressed as:

SNR =
L1− L0
σ1 + σ0

24 Visual Analysis

24-18

where L1 and L0 represent eye level 1 and 0, respectively, and σ1 and σ2 are the standard deviation of
eye level 1 and 0, respectively.

For an NRZ signal, eye level 1 corresponds to the high level, and the eye level 0 corresponds to low
level.

Quality Factor (QualityFactor)

The analyze method calculates Quality Factor the same way as the eye SNR. However, instead of
using the mean and standard deviation values of the vertical histogram for L1 and σ1, the analyze
method uses the mean and standard deviation values estimated using the dual-Dirac method. For
more detail, see dual-Dirac section in [2].

Vertical Eye Opening (EyeOpeningVer)

Vertical Eye Opening is defined as the vertical distance between two points on the vertical histogram
at EyeDelay that corresponds to the BER value defined by the BERThreshold property of the eye
measurement setup object. The analyze method calculates this measurement taking into account the
random and deterministic components using a dual-Dirac model [5] (see the Dual Dirac Section). A
typical BER value for the eye opening measurements is 10-12, which approximately corresponds to the
7σ point assuming a Gaussian distribution.

Time Measurements
You can use the horizontal histogram of an eye diagram to obtain a variety of timing measurements.

Note For time measurements, at least one bin per horizontal histogram must reach 10 hits before
the measurement is taken.

Deterministic Jitter (JitterDeterministic)

Deterministic Jitter is the deterministic component of the jitter. You calculate it using the tail mean
value, which is estimated using the dual-Dirac method as follows [5]:

DJ = μL — μR

where μL and μR are the mean values returned by the dual-Dirac algorithm.

Eye Crossing Time (EyeCrossingTime)

Eye crossing times are calculated as the mean of the horizontal histogram for each crossing point,
around the reference amplitude level. This value is measured in seconds. The mean value of all the
horizontal PDFs is calculated in a region defined by the CrossingBandWith property of the eye
measurement setup object.

The region is from -Atotal* BW to +Atotal* BW, where Atotal is the total amplitude range of the eye
diagram (i.e., A total = A max — Amin) and BW is the crossing band width.

 Eye Diagram Analysis

24-19

Because this example assumes two symbols per trace, the average PDF in this region indicate there
are two crossing points.

Note When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval, the time
measurement wraps to the end of the eye diagram, i.e., the measurement wraps by 2*Ts seconds
(where Ts is the symbol time). For a complex signal case, the analyze method issues a warning if the
crossing time measurement of the in-phase branch wraps while that of the quadrature branch does
not (or vice versa).

To avoid the time-wrapping or a warning, add a half-symbol duration delay to the current value in the
MeasurementDelay property of the eye diagram object. This additional delay repositions the eye in
the approximate center of the scope.

24 Visual Analysis

24-20

Eye Delay (EyeDelay)

Eye Delay is the distance from the midpoint of the eye to the time origin, measured in seconds. The
analyze method calculates this distance using the crossing time. For a symmetric signal, EyeDelay is
also the best sampling point.

Eye Fall Time (EyeFallTime)

Eye Fall Time is the mean time between the high and low threshold values defined by the
AmplitudeThreshold property of the eye measurement setup object. The fall time is calculated from
10% to 90% of the eye amplitude.

 Eye Diagram Analysis

24-21

Eye Rise Time (EyeRiseTime)

Eye Rise Time is the mean time between the low and high threshold values defined by the
AmplitudeThreshold property of the eye measurement setup object. The rise time is calculated from
10% to 90% of the eye amplitude.

Eye Width (EyeWidth)

Eye Width is the horizontal distance between two points that are three standard deviations (3σ) from
the mean eye crossing times, towards the center of the eye. The value for Eye Width measurements is
seconds.

24 Visual Analysis

24-22

Horizontal Eye Opening (EyeOpeningHor)

Horizontal Eye Opening is the horizontal distance between two points on the horizontal histogram
that correspond to the BER value defined by the BERThreshold property of the eye measurement
setup object. The measurement is take at the amplitude value defined by the ReferenceAmplitude
property of the eye measurement setup object. It is calculated taking into account the random and
deterministic components using a dual-Dirac model [5] (see the Dual Dirac Section).

A typical BER value for the eye opening measurements is 10-12, which approximately corresponds to
the 7σ point assuming a Gaussian distribution.

Peak-to-Peak Jitter (JitterP2P)

Peak-To-Peak Jitter is the difference between the extreme data points of the histogram.

Random Jitter (JitterRandom)

Random Jitter is defined as the Gaussian unbounded component of the jitter. The analyze method
calculates it using the tail standard deviation estimated using the dual-Dirac method as follows [5]:

RJ = (QL + QR) * σ

where

QL = 2 * erfc−1 2 * BER
ρL

and

QR = 2 * erfc−1 2 * BER
ρR

 Eye Diagram Analysis

24-23

BER is the bit error ratio at which the random jitter is calculated. It is defined with the BERThreshold
property of the eye measurement setup object.

RMS Jitter (JitterRMS)

RMS Jitter is the standard deviation of the jitter calculated from the horizontal histogram.

Total Jitter (JitterTotal)

Total Jitter is the sum of the random jitter and the deterministic jitter [5].

References
[1] Nelson Ou, et al, Models for the Design and Test of Gbps-Speed Serial Interconnects,IEEE Design

& Test of Computers, pp. 302-313, July-August 2004.

[2] HP E4543A Q Factor and Eye Contours Application Software, Operating Manual, http://
agilent.com

[3] Agilent 71501D Eye-Diagram Analysis, User’s Guide, http://www.agilent.com

[4] 4] Guy Foster, Measurement Brief: Examining Sampling Scope Jitter Histograms, White Paper,
SyntheSys Research, Inc., July 2005.

[5] Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale, White Paper, Agilent Technologies,
December 2004, http://www.agilent.com

See Also
eyediagram

24 Visual Analysis

24-24

Scatter Plots and Constellation Diagrams
Scatter plots and constellation diagrams display the constellation of digitally modulated signals in the
IQ-plane. Specifically, the IQ-plane displays the in-phase and quadrature components of the
modulated signal on the real and imaginary axis of an xy-plot.

To produce a scatter plot from a signal, use the scatterplot function, the
comm.ConstellationDiagram System object, or the Constellation Diagram block. A scatter plot or
constellation diagram can be useful when comparing system performance and the effects of channel
and RF impairments.

View Signals Using Constellation Diagrams

This example shows how to use constellation diagrams to view QPSK transmitted and received
signals which are pulse shaped with a raised cosine filter.

Create a QPSK modulator.

qpsk = comm.QPSKModulator;

Create a raised cosine transmit filter with samples per symbol, sps, equal to 16.

sps = 16;
txfilter = comm.RaisedCosineTransmitFilter('Shape','Normal', ...
 'RolloffFactor',0.22, ...
 'FilterSpanInSymbols',20, ...
 'OutputSamplesPerSymbol',sps);

Generate data symbols, apply QPSK modulation, and pass the modulated data through the raised
cosine transmit filter.

data = randi([0 3],200,1);
modData = qpsk(data);
txSig = txfilter(modData);

You can display the constellation diagram of the transmitted signal using scatterplot. Since the
signal is oversampled at the filter output, you need to decimate by the number of samples per symbol
so that the scatter plot does not show the transition path between constellation points. If the signal
had a timing offset, you could provide that as an input parameter to display the signal constellation
with the timing offset corrected.

scatterplot(txSig,sps)

 Scatter Plots and Constellation Diagrams

24-25

Alternately, you can use comm.ConstellationDiagram, specifying the number of samples per
symbol, and if needed the timing offset. Also, using comm.ConstellationDiagram the reference
constellation can be shown.

Create a constellation diagram and set the SamplesPerSymbol property to the oversampling factor
of the signal. Specify the constellation diagram so that it only displays the last 100 samples. This
hides the zero values output by the RRC filter for the first FilterSpanInSymbols samples.

constDiagram = comm.ConstellationDiagram('SamplesPerSymbol',sps, ...
 'SymbolsToDisplaySource','Property','SymbolsToDisplay',100);

Display the constellation diagram of the transmitted signal.

constDiagram(txSig)

24 Visual Analysis

24-26

To match the signal to its reference constellation, normalize the filter by setting its gain to the square
root of the OutputSamplesPerSymbol property. This was previously specified as sps. The filter gain
is nontunable so the object must be released prior to changing this value.

release(txfilter)
txfilter.Gain = sqrt(sps);

Pass the modulated signal through the normalized filter.

txSig = txfilter(modData);

Display the constellation diagram of the normalized signal. The data points and reference
constellation nearly overlap.

constDiagram(txSig)

 Scatter Plots and Constellation Diagrams

24-27

To view the transmitted signal more clearly, hide the reference constellation by setting the
ShowReferenceConstellation property to false.

constDiagram.ShowReferenceConstellation = false;

Create a noisy signal by passing txSig through an AWGN channel.

rxSig = awgn(txSig,20,'measured');

Show the reference constellation and plot the received signal constellation.

constDiagram.ShowReferenceConstellation = true;
constDiagram(rxSig)

24 Visual Analysis

24-28

You can also use scatterplot to view this noisy signal but there is no built in option to add the
reference constellation using scatterplot.

scatterplot(rxSig,sps)

 Scatter Plots and Constellation Diagrams

24-29

See Also
“Visualize RF Impairments” on page 24-53 | “View Constellation of Modulator Block” on page 24-2

24 Visual Analysis

24-30

Channel Visualization

These channel modeling System objects and blocks in Communications Toolbox include an option to
visualize the characteristics of a fading channel.

System object Block
comm.MIMOChannel MIMO Fading Channel
comm.RayleighChannel and
comm.RicianChannel

SISO Fading Channel

You can use the channel visualization option to view the impulse response and frequency response
individually or side-by-side in one plot window. You can also view the Doppler spectrum. For more
information about fading channels and the features available to model them, see Fading Channels on
page 21-8.

Note

• In the plot window, the displayed and specified path gain locations can differ by as much as 5% of
the input sample time.

• For MIMO channels, when the antenna selection property is set to any value other than Off and
the specified transmit-receive pair is not selected for the current frame transmission, nothing will
be displayed. Antenna selection is not applicable for SISO channels.

• After you close channel visualization plots, the channel model executes at its normal speed.
• Code generation is available only when the visualization property is set to Off.

Impulse Response Plot

The impulse response plot displays the path gains and the channel filter coefficients. The path gains
occur at time instances that correspond to the specified path delays and might not align with the
input sampling time. The implementations interpolate the channel filter coefficients from the actual
path gains, use the coefficients to model the channel, and align the coefficients with the input
sampling time. When the path gains align with the sampling time, they overlap the channel filter
coefficients.

This plot shows the impulse response for a Rayleigh fading channel configured with path gains that
align with the sample timing. The path gains overlap with the channel filter coefficients, and the
coefficients are equally distributed.

 Channel Visualization

24-31

This plot shows the impulse response for a Rayleigh fading channel configured with path gains that
do not align with the sample timing. The path gains do not overlap with the channel filter coefficients,
but the coefficients are still equally distributed. The implementation oversamples the interpolation of
the coefficients to faithfully reproduce the desired path gains.

24 Visual Analysis

24-32

The next plot shows the impulse response for a frequency-flat channel. A frequency-flat channel is
represented by a single coefficient; no interpolation is required.

Frequency Response Plot

The frequency response plot displays the channel spectrum by taking a discrete Fourier transform of
the channel filter coefficients. For the MIMO case, this transform is performed for the specified
transmit-receive antenna pair. The default settings use a rectangular window. The window length is
set according to the channel model configuration. The y-axis limits of the plot are computed based on
the normalized and average path gain values.

This plot shows the frequency response plot for a frequency-selective channel.

 Channel Visualization

24-33

Impulse and Frequency Responses Plot

The impulse and frequency responses plot displays the path gains and the channel filter coefficients
in the left subplot and the frequency response in the right subplot.

This plot shows the impulse response and frequency response for a Rayleigh fading channel
configured with path gains that align with the sample timing.

24 Visual Analysis

24-34

 Channel Visualization

24-35

Doppler Spectrum Plot

The Doppler spectrum plot displays both the theoretical Doppler spectrum and the empirically
determined data points. When the internal buffer is completely filled with filtered Gaussian samples,
the empirical plot is updated. The empirical plot is the running mean of the spectrum calculated from
each full buffer. The samples needed before the next update is displayed is a function of the sample
rate and the maximum Doppler shift.

This plot shows a channel with Jakes Doppler spectrum.

24 Visual Analysis

24-36

For static channels, the Doppler spectrum reduces to a single point. The bottom toolbar of the plot
window displays the message Reset fading channel for next update.

 Channel Visualization

24-37

Channel Visualization Examples
Apply FSK Modulation in Various Fading Channels

Pass an FSK signal through a Rayleigh multipath fading channel. Change the signal bandwidth to
observe the impact of the fading channel on the FSK spectrum.

Flat Fading Channel

Set modulation order to 4, the modulated symbol rate to 45 bps, and the frequency separation to 200
Hz.

M = 4; % Modulation order
symbolRate = 45; % Symbol rate (bps)
freqSep = 200; % Frequency separation (Hz)

Calculate the samples per symbol parameter, sampPerSym, as a function of the modulation order,
frequency separation, and symbol rate. To avoid output signal aliasing, the product of sampPerSym
and symbolRate must be greater than the product of M and freqSep. Calculate the sample rate of
the FSK output signal.

sampPerSym = ceil(M*freqSep/symbolRate);
fsamp = sampPerSym*symbolRate;

Create an FSK modulator.

fskMod = comm.FSKModulator(M, ...
 FrequencySeparation=freqSep, ...
 SamplesPerSymbol=sampPerSym, ...
 SymbolRate=symbolRate);

24 Visual Analysis

24-38

Set the path delays and average path gains for the three-path fading channel.

pathDelays = [0 3 10]*1e-6; % Discrete delays (s)
avgPathGains = [0 -3 -6]; % Average path gains (dB)

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 m difference in path length. The path delays and path gains
specify the average delay profile of the channel.

Create a Rayleigh channel using the defined parameters. Set the Visualization property to display
the impulse and frequency responses.

channel = comm.RayleighChannel(...
 SampleRate=fsamp, ...
 PathDelays=pathDelays, ...
 AveragePathGains=avgPathGains, ...
 MaximumDopplerShift=0.01, ...
 Visualization='Impulse and frequency responses', ...
 SamplesToDisplay='10%');

Generate random data symbols and apply FSK modulation.

data = randi([0 3],2000,1);
modSig = fskMod(data);

Create a spectrum analyzer object to plot the FSK modulated signal and the received signal after flat
fading channel filtering.

sa1 = spectrumAnalyzer(...
 SampleRate=fsamp, ...
 ChannelNames=["FSK modulated signal", ...
 "Flat fading channel"]);

The modulated signal is composed of four tones, each having approximately 20 dBm peak power
separated by 200 Hz.

Pass the signal through the Rayleigh fading channel and apply AWGN having a 25 dB signal-to-noise
ratio.

snrdB = 25;
raylFadedData = channel(modSig);

 Channel Visualization

24-39

24 Visual Analysis

24-40

rxSig = awgn(raylFadedData,snrdB);

The impulse and frequency responses show that the channel behaves as though it were flat. This flat
response is because the signal bandwidth, 800 Hz, is much smaller than the coherence bandwidth, 50
kHz.

Plot the signal spectrum of the FSK-modulated signal before and after channel filtering. The four
tones comprising the FSK signal maintain the same frequency separation and peak power levels
relative to each other. The absolute peak power levels have decreased due to the fading channel.

 Channel Visualization

24-41

sa1(modSig,rxSig)
release(sa1)

Frequency-Selective Fading

Increase the symbol rate to 45 kbps and the frequency separation to 200 kHz. Calculate the new
samples per symbol and sample rate parameters. Release the FSK modulator object and update its
configuration.

symbolRate = 45e3;
freqSep = 200e3;

release(fskMod)
fskMod.SymbolRate = symbolRate;
fskMod.FrequencySeparation = freqSep;

Create a spectrum analyzer object to plot the FSK modulated signal and the received signal after
frequency-selective fading channel filtering.

sampPerSym = ceil(M*freqSep/symbolRate);
sa2 = spectrumAnalyzer(...
 SampleRate=sampPerSym*symbolRate, ...
 ChannelNames=["FSK modulated signal", ...
 "Frequecy-selective fading channel"]);

Apply FSK modulation to the transmission data.

24 Visual Analysis

24-42

modSig = fskMod(data);

Release the channel object and update the channel sample rate property. Pass the signal through the
Rayleigh fading channel and apply AWGN. The impulse and frequency responses show that the
multipath fading is frequency selective.

release(channel)
fsamp = sampPerSym*symbolRate;
channel.SampleRate = fsamp;

rxSig = awgn(channel(modSig),25);

 Channel Visualization

24-43

Plot the signal spectrum of the FSK-modulated signal before and after channel filtering. The spectrum
has the same shape as in the flat-fading case, but the four tones are now separated by 200 kHz. There
are still four identifiable tones, but their relative peak power levels differ due to the frequency-
selective fading. The 800 kHz signal bandwidth is larger than the 50 kHz coherence bandwidth.

sa2(modSig,rxSig)
release(sa2)

24 Visual Analysis

24-44

QPSK Modulation in Fading Channel

Pass a QPSK signal through a Rayleigh multipath fading channel. Change the signal bandwidth to
observe the impact of the fading channel on the QPSK constellation.

QPSK Modulation in Flat Fading

Set the symbol rate parameter to 500 bps.

symbolRate = 500;

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],10000,1);
modSig = pskmod(data,4,pi/4,'gray');

Set the path delays and average path gains for the fading channel.

pathDelays = [0 3 10]*1e-6; % Discrete delays of three-path channel (s)
avgPathGains = [0 -3 -6]; % Average path gains (dB)

By convention, the delay of the first path is typically set to zero. For subsequent paths, a 1
microsecond delay corresponds to a 300 meter difference in path length. The path delays and path
gains specify the average delay profile of the channel.

 Channel Visualization

24-45

Create a Rayleigh channel using the defined parameters. Set the Visualization property to display
the impulse and frequency responses.

fsamp = symbolRate;
channel = comm.RayleighChannel(...
 SampleRate=fsamp, ...
 PathDelays=pathDelays, ...
 AveragePathGains=avgPathGains, ...
 MaximumDopplerShift=0.01, ...
 Visualization="Impulse and frequency responses");

Pass the signal through the Rayleigh channel and apply AWGN.

rxSig = awgn(channel(modSig),25);

24 Visual Analysis

24-46

 Channel Visualization

24-47

The impulse and frequency responses show that the channel behaves as though it were flat. This is
because the signal bandwidth, 500 Hz, is much smaller than the coherence bandwidth, 50 kHz.
Alternatively, the delay span of the channel (10 microseconds) is much smaller than the QPSK symbol
period (2 milliseconds) so the resultant bandlimited impulse response is approximately flat.

Plot the constellation.

constDiagram = comm.ConstellationDiagram;
constDiagram(rxSig)

24 Visual Analysis

24-48

The QPSK constellation shows the effects of the fading channel; however, the signal still has four
identifiable states.

QPSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 500 kbps and update the related channel property. Pass the signal
through the Rayleigh channel and apply AWGN.

symbolRate = 500e3;

release(channel)
channel.SampleRate = symbolRate;

rxSig = awgn(channel(modSig),25);

 Channel Visualization

24-49

24 Visual Analysis

24-50

The impulse and frequency responses show that the multipath fading is frequency selective.

Plot the constellation.

constDiagram(rxSig)

 Channel Visualization

24-51

As the signal bandwidth is increased from 500 Hz to 500 kHz, the signal becomes highly distorted.
This distortion is due to the intersymbol interference (ISI) that comes from time dispersion of the
wideband signal. The delay span of the channel (10 microseconds) is now larger than the QPSK
symbol period (2 microseconds) so the resultant bandlimited impulse response is no longer flat.
Alternatively, the signal bandwidth is much larger than the coherence bandwidth, 50 kHz.

See Also
Blocks
MIMO Fading Channel | SISO Fading Channel

Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel

24 Visual Analysis

24-52

Visualize RF Impairments

Apply various RF impairments to a QAM signal. Observe the effects by using constellation diagrams,
time-varying error vector magnitude (EVM) plots, and spectrum plots. Estimate the equivalent signal-
to-noise ratio (SNR) by using the modulation error rate (MER) measurement.

Initialization

Set the sample rate, modulation order, and SNR. Calculate the reference constellation points.
Generate a 16-QAM signal.

fs = 1000;
M = 16;
snrdB = 30;
refConst = qammod(0:M-1,M,UnitAveragePower=true);
data = randi([0 M-1],1000,1);
modSig = qammod(data,M,UnitAveragePower=true);

Create constellation diagram and time scope objects to visualize the impairment effects.

constDiagram = comm.ConstellationDiagram(...
 ReferenceConstellation=refConst);
timeScope = timescope(...
 YLimits=[0 40], ...
 SampleRate=fs, ...
 TimeSpanSource="property", ...
 TimeSpan=1, ...
 ShowGrid=true, ...
 YLabel="EVM (%)");

Amplifier Distortion

Memoryless nonlinear impairments distort the amplitude and phase of the input signal. The
amplitude distortion is amplitude-to-amplitude modulation (AM-AM) and the phase distortion is
amplitude-to-phase modulation (AM-PM). The memoryless nonlinearity System object™ models AM-
AM and AM-PM distortion that result from amplifier gain compression and AM-PM conversion,
respectively.

Add amplifier gain compression with no AM-PM conversion impairment by using a memoryless
nonlinearity object. Amplifier gain compression is a nonlinear impairment that distorts symbols more
as the distance from the origin increases.

mnlamp= comm.MemorylessNonlinearity(...
 IIP3=38, ...
 AMPMConversion=0);

Pass the modulated signal through the nonlinear amplifier, and then plot constellation diagram. The
amplifier gain compression causes the constellation points to move toward the origin.

mnlampSig = mnlamp(modSig);
constDiagram(mnlampSig)
release(constDiagram)

Adjust the memoryless nonlinearity object configuration to add a small AM-PM conversion
impairment. AM-PM conversion is a nonlinear impairment that distorts symbols more as the distance
from the origin increases. The AM-PM conversion causes the constellation to rotate.

 Visualize RF Impairments

24-53

Pass the modulated signal through the nonlinear amplifier, and then plot constellation diagram to
show the combined AM-AM and AM-PM distortion.

mnlamp.AMPMConversion = 1;
mnlampSig = mnlamp(modSig);
constDiagram(mnlampSig)
release(constDiagram)

Configure an EVM object to input the reference signal source as an input argument and to average
results across rows of the signal. Estimating the EVM against the input signal provides more accurate
results. Averaging results across rows of the signal computes the time-varying EVM.

evm = comm.EVM(AveragingDimensions=2);

Plot the time-varying EVM of the distorted signal.

24 Visual Analysis

24-54

evmTime = evm(modSig,mnlampSig);
timeScope(evmTime)
release(timeScope)

Compute the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 35.5919

Estimate the SNR of the signal after adding the amplifier distortion by using an MER object.

mer = comm.MER;
snrEst = mer(modSig,mnlampSig)

snrEst = 8.1392

Measure the amplifier output power over a range of input power levels. Specify input power levels
ranging from 0 to 40 dBm. Convert those levels to their linear equivalent in watts. Initialize the
output power vector.

powerIn = 0:40;
pin = 10.^((powerIn-30)/10);
powerOut = zeros(length(powerIn),1);
for k = 1:length(powerIn)
 data = randi([0 15],1000,1);
 txSig = qammod(...

 Visualize RF Impairments

24-55

 data,16,UnitAveragePower=true)*sqrt(pin(k));
 mnlampSig = mnlamp(txSig);
 powerOut(k) = 10*log10(var(mnlampSig))+30;
end

Plot the power output versus power input curve. The output power levels off at 30 dBm. The amplifier
exhibits nonlinear behavior for input power levels greater than 25 dBm.

figure
plot(powerIn,powerOut,powerIn,powerIn,"--")
legend("Amplifier Output","Ideal Output",location="se")
xlabel("Power In (dBm)")
ylabel("Power Out (dBm)")
grid

IQ Imbalance

Apply an amplitude and phase imbalance to the modulated signal using the iqimbal function. The
magnitude and phase of the constellation points change linearly as a result of the IQ imbalance.

ampImb = 3;
phImb = 10;
rxSig = iqimbal(modSig,ampImb,phImb);

Plot the IQ imbalance impaired signal constellation diagram and the time-varying EVM.

constDiagram(rxSig)
release(constDiagram)

24 Visual Analysis

24-56

The time-varying EVM behavior for an IQ imbalance impaired signal is similar to but has less
variance than the time-varying EVM behavior due a nonlinear amplifier.

evmTime = evm(modSig,rxSig);
timeScope(evmTime)
release(timeScope)

 Visualize RF Impairments

24-57

Demonstrate IQ imbalance by applying it to a sine wave, and then showing the spectrum of the IQ
imbalance impaired sine wave.

Create a 100 Hz sine wave having a 1000 Hz sample rate by using a sine wave System object™.

sinewave = dsp.SineWave(...
 Frequency=100, ...
 SampleRate=1000, ...
 SamplesPerFrame=1e4, ...
 ComplexOutput=true);
x = sinewave();

Apply the same 3 dB and 10 degree IQ imbalance.

ampImb = 3;
phImb = 10;
y = iqimbal(x,ampImb,phImb);

Plot the spectrum of the imbalanced signal. The IQ imbalance introduces a second tone at -100 Hz,
which is the inverse of the input tone.

spectrum = spectrumAnalyzer(...
 SampleRate=1000, ...
 SpectrumUnits="dBW");
spectrum(y)
release(spectrum)

24 Visual Analysis

24-58

Phase Noise

Apply phase noise to the transmitted signal by using a phase noise System object™. The phase noise
introduces a rotational jitter.

pnoise = comm.PhaseNoise(...
 Level=-50, ...
 FrequencyOffset=20, ...
 SampleRate=fs);
pnoiseSig = pnoise(modSig);

Plot the phase noise impaired signal constellation diagram and the time-varying EVM.

constDiagram(pnoiseSig)
release(constDiagram)

 Visualize RF Impairments

24-59

evmTime = evm(modSig,pnoiseSig);
timeScope(evmTime)
release(timeScope)

24 Visual Analysis

24-60

Compute the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 6.3258

Filter Effects

Create a pair of raised cosine matched filters by using the raised cosine transmit and receiver filter
System objects. Specify the samples per symbol parameter.

sps = 4;
txfilter = comm.RaisedCosineTransmitFilter(...
 RolloffFactor=0.2, ...
 FilterSpanInSymbols=8, ...
 OutputSamplesPerSymbol=sps, ...
 Gain=sqrt(sps));
rxfilter = comm.RaisedCosineReceiveFilter(...
 RolloffFactor=0.2, ...
 FilterSpanInSymbols=8, ...
 InputSamplesPerSymbol=sps, ...
 Gain=1/sqrt(sps), ...
 DecimationFactor=sps);

Determine the delay through the matched filters.

 Visualize RF Impairments

24-61

fltDelay = 0.5*(...
 txfilter.FilterSpanInSymbols + ...
 rxfilter.FilterSpanInSymbols);

Pass the modulated signal through the matched filters.

filtSig = txfilter(modSig);
rxSig = rxfilter(filtSig);

To account for the delay through the filters, discard the first fltDelay samples.

rxSig = rxSig(fltDelay+1:end);

To accommodate the change in the number of received signal samples, create new constellation
diagram and time scope objects. Create an EVM object to estimate the EVM.

constDiagram = comm.ConstellationDiagram(ReferenceConstellation=refConst);
timeScope = timescope(...
 YLimits=[0 40], ...
 SampleRate=fs, ...
 TimeSpanSource="property", ...
 TimeSpan=1, ...
 ShowGrid=true, ...
 YLabel="EVM (%)");
evm = comm.EVM(...
 ReferenceSignalSource="Estimated from reference constellation", ...
 ReferenceConstellation=refConst, ...
 Normalization="Average constellation power", ...
 AveragingDimensions=2);

Plot the filtered signal constellation diagram and the time-varying EVM.

constDiagram(rxSig)
release(constDiagram)

24 Visual Analysis

24-62

evmTime = evm(rxSig);
timeScope(evmTime)
release(timeScope)

 Visualize RF Impairments

24-63

Compute the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 2.7199

Estimate the SNR by using an MER object.

mer = comm.MER;
snrEst = mer(modSig(1:end-fltDelay),rxSig)

snrEst = 31.4603

White Noise

Pass the 16-QAM signal through an AWGN channel, and then plot its constellation diagram.

noisySig = awgn(modSig,snrdB);
constDiagram(noisySig)
release(constDiagram)

24 Visual Analysis

24-64

Estimate the EVM of the noisy signal from the reference constellation points.

evm = comm.EVM(...
 ReferenceSignalSource="Estimated from reference constellation", ...
 ReferenceConstellation=refConst, ...
 Normalization="Average constellation power");
rmsEVM = evm(noisySig)

rmsEVM = 3.1941

The MER measurement corresponds closely to the SNR. Create an MER object, and estimate the
SNR. The estimate is close to the specified SNR of 30 dB.

mer = comm.MER(...
 ReferenceSignalSource="Estimated from reference constellation", ...

 Visualize RF Impairments

24-65

 ReferenceConstellation=refConst);
snrEst = mer(noisySig)

snrEst = 30.0598

Combined Effects

Combine the effects of the filters, nonlinear amplifier, IQ imbalance, phase noise, and AWGN. Display
the constellation diagram, EVM plot, and computed EVM.

Create nonlinear amplifier, phase noise, EVM, time scope, and constellation diagram objects.

mnlamp = comm.MemorylessNonlinearity(IIP3=45,AMPMConversion=0);
pnoise = comm.PhaseNoise(Level=-55,FrequencyOffset=20,SampleRate=fs);
evm = comm.EVM(...
 ReferenceSignalSource="Estimated from reference constellation", ...
 ReferenceConstellation=refConst, ...
 Normalization="Average constellation power", ...
 AveragingDimensions=2);
timeScope = timescope(...
 YLimits=[0 40], ...
 SampleRate=fs, ...
 TimeSpanSource="property", ...
 TimeSpan=1, ...
 ShowGrid=true, ...
 YLabel="EVM (%)");
constDiagram = comm.ConstellationDiagram(...
 ReferenceConstellation=refConst);

Apply transmitter filtering, and then amplify the modulated signal. Add IQ imbalance and phase
noise.

txfiltOut = txfilter(modSig);
mnlampSig = mnlamp(txfiltOut);
iqImbalSig = iqimbal(mnlampSig,ampImb,phImb);
txSig = pnoise(iqImbalSig);

Pass the impaired signal through the AWGN channel. Plot the constellation diagram.

rxSig = awgn(txSig,snrdB);
rxfiltOut = rxfilter(rxSig);

constDiagram(rxfiltOut)
release(constDiagram)

24 Visual Analysis

24-66

Calculate the time-varying EVM. Plot the result.

evmTime = evm(rxfiltOut);
timeScope(evmTime)
release(timeScope)

 Visualize RF Impairments

24-67

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS = 19.4785

Estimate the SNR. This value is approximately 16 dB worse than the specified value of 30 dB. This
level of RF impairment effects is significant and will likely degrade the bit error rate performance if it
is not corrected by impairment compensation or an advanced receiver.

mer = comm.MER(...
 ReferenceSignalSource="Estimated from reference constellation", ...
 ReferenceConstellation=refConst);
snrEst = mer(rxfiltOut)

snrEst = 14.2470

See Also
Fading Channels on page 21-8 | “Impact of RF Effects on Communication System Performance” on
page 1-63

24 Visual Analysis

24-68

C Code Generation

• “What is C Code Generation from MATLAB?” on page 25-2
• “Generate C Code from MATLAB Code” on page 25-4
• “Generate C Code from Simulink Model” on page 25-11

25

What is C Code Generation from MATLAB?
You can use Communications Toolbox together with MATLAB Coder™ to:

• Create a MEX file to speed up your MATLAB application.
• Generate ANSI®/ISO® compliant C/C++ source code that implements your MATLAB functions and

models.
• Generate a standalone executable that runs independently of MATLAB on your computer or

another platform.

In general, the code you generate using the toolbox is portable ANSI C code. In order to use code
generation, you need a MATLAB Coder license. For more information, see “Get Started with MATLAB
Coder” (MATLAB Coder).

Using MATLAB Coder
Creating a MATLAB Coder MEX file can substantially accelerate your MATLAB code. It is also a
convenient first step in a workflow that ultimately leads to completely standalone code. When you
create a MEX file, it runs in the MATLAB environment. Its inputs and outputs are available for
inspection just like any other MATLAB variable. You can then use MATLAB tools for visualization,
verification, and analysis.

The simplest way to generate MEX files from your MATLAB code is by using the codegen function at
the command line. For example, if you have an existing function, myfunction.m, you can type the
commands at the command line to compile and run the MEX function. codegen adds a platform-
specific extension to this name. In this case, the "mex" suffix is added.

codegen myfunction.m
myfunction_mex;

Within your code, you can run specific commands either as generated C code or by using the
MATLAB engine. In cases where an isolated command does not yet have code generation support,
you can use the coder.extrinsic command to embed the command in your code. This means that
the generated code reenters the MATLAB environment when it needs to run that particular
command. This is also useful if you want to embed commands that cannot generate code (such as
plotting functions).

To generate standalone executables that run independently of the MATLAB environment, create a
MATLAB Coder project inside the MATLAB Coder Integrated Development Environment (IDE).
Alternatively, you can call the codegen command in the command line environment with appropriate
configuration parameters. A standalone executable requires you to write your own main.c or
main.cpp function. See “Generating Standalone C/C++ Executables from MATLAB Code” (MATLAB
Coder) for more information.

C/C++ Compiler Setup
Before using codegen to compile your code, you must set up your C/C++ compiler. For 32-bit
Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your installation does
not include a default compiler, you can supply your own compiler. For the current list of supported
compilers, see Supported and Compatible Compilers on the MathWorks website. Install a compiler
that is suitable for your platform, then read “Setting Up the C or C++ Compiler” (MATLAB Coder).

25 C Code Generation

25-2

https://www.mathworks.com/support/requirements/supported-compilers.html

After installation, at the MATLAB command prompt, run mex -setup. You can then use the codegen
function to compile your code.

Functions and System Objects That Support Code Generation
For an alphabetized list of features supporting C/C++ code generation, see Communications Toolbox
– Functions and System Objects Supporting C Code Generation.

See Also
Functions
codegen | mex

More About
• “Code Generation Workflow” (MATLAB Coder)
• Generate C Code from MATLAB Code Video
• “Generate C Code from MATLAB Code” on page 25-4
• “Generate C Code from Simulink Model” on page 25-11

 What is C Code Generation from MATLAB?

25-3

https://www.mathworks.com/videos/generate-c-code-from-matlab-code-108233.html

Generate C Code from MATLAB Code
MATLAB Coder generates highly optimized ANSI C and C++ code from functions and System objects
in Communications Toolbox . You can deploy this code in a wide variety of applications. The workflow
described in this topic uses DSP System Toolbox features but the same workflow applies for
Communications Toolbox.

This example generates C code from the “Construct a Sinusoidal Signal Using High Energy FFT
Coefficients” example and builds an executable from the generated code.

Here is the MATLAB code for this example:
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
'PhaseOffset',10,'SampleRate',44100,'Frequency',1000);
ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW','ConjugateSymmetricInput',true);
rng(1);
numIter = 1000;
for Iter = 1:numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 FFTCoeff = ft(Input);
 FFTCoeffMagSq = abs(FFTCoeff).^2;

 EnergyFreqDomain = (1/L)*sum(FFTCoeffMagSq);
 [FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),1,'descend');

 CumFFTCoeffs = cumsum(FFTCoeffSorted);
 EnergyPercent = (CumFFTCoeffs/EnergyFreqDomain)*100;
 Vec = find(EnergyPercent > 99.99);
 FFTCoeffsModified = zeros(L,1);
 FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
 ReconstrSignal = ift(FFTCoeffsModified);
end
max(abs(Input-ReconstrSignal))
plot(Input,'*');
hold on;
plot(ReconstrSignal,'o');
hold off;

You can run the generated executable inside the MATLAB environment. In addition, you can package
and relocate the code to another development environment that does not have MATLAB installed. You
can generate code using the MATLAB Coder app or the codegen function. This example shows you
the workflow using the codegen function. For more information on the app workflow, see “Generate
C Code by Using the MATLAB Coder App” (MATLAB Coder).

Set Up the Compiler
The first step is to set up a supported C compiler. MATLAB Coder automatically locates and uses a
supported installed compiler. You can change the default compiler using mex -setup. For more
details, see “Change Default Compiler”. For a current list of supported compilers, see Supported and
Compatible Compilers.

Break Out the Computational Part of the Algorithm into a MATLAB
Function
To generate C code, the entry point must be a function. You do not have to generate code for the
entire MATLAB application. If you have specific portions that are computationally intensive, generate
code from these portions in order to speed up your algorithm. The harness or the driver that calls this
MATLAB function does not need to generate code. The harness runs in MATLAB and can contain
visualization and other verification tools that are not actually part of the system under test. For

25 C Code Generation

25-4

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

example, in the “Construct a Sinusoidal Signal Using High Energy FFT Coefficients” example, the
plot functions plot the input signal and the reconstructed signal. plot is not supported for code
generation and must stay in the harness. To generate code from the harness that contains the
visualization tools, rewrite the harness as a function and declare the visualization functions as
extrinsic functions using coder.extrinsic. To run the generated code that contains the extrinsic
functions, you must have MATLAB installed on your machine.

The MATLAB code in the for loop that reconstructs the original signal using high-energy FFT
coefficients is the computationally intensive portion of this algorithm. Speed up the for loop by
moving this computational part into a function of its own,
GenerateSignalWithHighEnergyFFTCoeffs.m.
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
 'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input);
end
max(abs(Input-ReconstrSignal))
figure(1);
plot(Input)
hold on;
plot(ReconstrSignal,'*')
hold off

function [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input)

ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW','ConjugateSymmetricInput',true);

FFTCoeff = ft(Input);
FFTCoeffMagSq = abs(FFTCoeff).^2;
L = size(Input,1);
EnergyF = (1/L)*sum(FFTCoeffMagSq);
[FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),1,'descend');

CumFFTCoeffs = cumsum(FFTCoeffSorted);
EnergyPercent = (CumFFTCoeffs/EnergyF)*100;
Vec = find(EnergyPercent > 99.99);
FFTCoeffsModified = zeros(L,1);
FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
numCoeff = Vec(1);
ReconstrSignal = ift(FFTCoeffsModified);
end

Make Code Suitable for Code Generation
Before you generate code, you must prepare your MATLAB code for code generation.

Check Issues at Design Time

The first step is to eliminate unsupported constructs and check for any code generation issues. For a
list of Communications Toolbox features supported by MATLAB Coder, see Functions and System
Objects Supported for C Code Generation. For a list of supported language constructs, see “MATLAB
Language Features Supported for C/C++ Code Generation” (MATLAB Coder).

The code analyzer detects coding issues at design time as you enter the code. To enable the code
analyzer, you must add the %#codegen pragma to your MATLAB file.

 Generate C Code from MATLAB Code

25-5

The code generation readiness tool screens MATLAB code for features that are not supported for
code generation. One of the ways to access this tool is by right-clicking on the MATLAB file in its
current folder. Running the code generation tool on
GenerateSignalWithHighEnergyFFTCoeffs.m finds no issues.

Check Issues at Code Generation Time

Before you generate C code, ensure that the MATLAB code successfully generates a MEX function.
The codegen command used to generate the MEX function detects any errors that prevent the code
for being suitable for code generation.

Run codegen on GenerateSignalWithHighEnergyFFTCoeffs.m function.

codegen -args {Input} GenerateSignalWithHighEnergyFFTCoeffs

The following message appears in the MATLAB command prompt:
??? The left-hand side has been constrained to be non-complex, but the right-hand side
is complex. To correct this problem, make the right-hand side real using the function
REAL, or change the initial assignment to the left-hand side variable to be a complex
value using the COMPLEX function.

Error in ==> GenerateSignalWithHighEnergy Line: 24 Column: 1
Code generation failed: View Error Report
Error using codegen

This message is referring to the variable FFTCoeffsModified. The coder is expecting this variable
to be initialized as a complex variable. To resolve this issue, initialize the FFTCoeffsModified
variable as complex.

FFTCoeffsModified = zeros(L,1)+0i;

Rerun the codegen function and you can see that a MEX file is generated successfully in the current
folder with a .mex extension.

25 C Code Generation

25-6

codegen -args {Input} GenerateSignalWithHighEnergyFFTCoeffs

Check Issues at Run Time

Run the generated MEX function to see if there are any run-time issues reported. To do so, replace
[ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input);

with
[ReconstrSignalMex,numCoeffMex] = GenerateSignalWithHighEnergyFFTCoeffs_mex(Input);

inside the harness.

The harness now looks like:
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
 'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 [ReconstrSignalMex,numCoeffMex] = GenerateSignalWithHighEnergyFFTCoeffs_mex(Input,L);
end
max(abs(Input-ReconstrSignalMex))
figure(1);
plot(Input)
hold on;
plot(ReconstrSignalMex,'*')
hold off

The code runs successfully, indicating that there are no run-time errors.

Compare the MEX Function with the Simulation
Notice that the harness runs much faster with the MEX function compared to the regular function.
The reason for generating the MEX function is not only to detect code generation and run-time
issues, but also to speed up specific parts of your algorithm. For an example, see “Signal Processing
Algorithm Acceleration in MATLAB”.

You must also check that the numeric output results from the MEX and the regular function match.
Compare the reconstructed signal generated by the
GenerateSignalWithHighEnergyFFTCoeffs.m function and its MEX counterpart
GenerateSignalWithHighEnergyFFTCoeffs_mex.

max(abs(ReconstrSignal-ReconstrSignalMex))

ans =

 2.2204e-16

The results match very closely, confirming that the code generation is successful.

Generate a Standalone Executable
If your goal is to run the generated code inside the MATLAB environment, your build target can just
be a MEX function. If deployment of code to another application is the goal, then generate a
standalone executable from the entire application. To do so, the harness must be a function that calls
the subfunction GenerateSignalWithHighEnergyFFTCoeffs. Rewrite the harness as a function.
function reconstructSignalTestbench()
L = 1020;

 Generate C Code from MATLAB Code

25-7

Sineobject = dsp.SineWave('SamplesPerFrame',L,...
 'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input,L);
end

Log all 1000 frames of the input and reconstructed signal and the number of FFT coefficients used to
reconstruct each frame of the signal. Write all this data to a binary file named data.bin using the
dsp.BinaryFileWriter System object. This example logs the number of coefficients, which are
scalar values, as the first element of each frame of the input signal and the reconstructed signal. The
data to be written has a frame size of M = L + 1 and has a format that looks like this figure.

N is the number of FFT coefficients that represent 99.99% of the signal energy of the current input
frame. The meta data of the binary file specifies this information. Release the binary file writer and
close the binary file at the end.

The updated harness function, reconstructSignalTestbench, is shown here:
function reconstructSignalTestbench()
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
 'SampleRate',44100,'Frequency',1000);
header = struct('FirstElemInBothCols','Number of Coefficients',...
 'FirstColumn','Input','SecondColumn','ReconstructedSignal');
bfw = dsp.BinaryFileWriter('data.bin','HeaderStructure',header);
numIter = 1000;

M = L+1;
ReSignalAll = zeros(M*numIter,1);
InputAll = zeros(M*numIter,1);
rng(1);

for Iter = 1 : numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 [ReconstrSignal,numCoeffs] = GenerateSignalWithHighEnergyFFTCoeffs(Input);
 InputAll(((Iter-1)*M)+1:Iter*M) = [numCoeffs;Input];
 ReSignalAll(((Iter-1)*M)+1:Iter*M) = [numCoeffs;ReconstrSignal];
end

bfw([InputAll ReSignalAll]);
release(bfw);

The next step in generating a C executable is to create a coder.config object for an executable and
provide a main.c function to this object.

cfg = coder.config('exe');
cfg.CustomSource = 'reconstructSignalTestbench_Main.c';

Here is how the reconstructSignalTestbench_Main.c function looks for this example.

25 C Code Generation

25-8

/*
** reconstructSignalTestbench_main.c
*
* Copyright 2017 The MathWorks, Inc.
*/
#include <stdio.h>
#include <stdlib.h>

#include "reconstructSignalTestbench_initialize.h"
#include "reconstructSignalTestbench.h"
#include "reconstructSignalTestbench_terminate.h"

int main()
{
 reconstructSignalTestbench_initialize();
 reconstructSignalTestbench();
 reconstructSignalTestbench_terminate();

 return 0;
}

For additional details on creating the main function, see “Generating Standalone C/C++ Executables
from MATLAB Code” (MATLAB Coder).

Set the CustomInclude property of the configuration object to specify the location of the main file.
In this example, the location is the current folder.

cfg.CustomInclude = ['"',pwd,'"'];

Generate the C executable by running the following command in the MATLAB command prompt:
codegen -config cfg -report reconstructSignalTestbench

MATLAB Coder compiles and links the main function with the C code that it generates from the
reconstructSignalTestbench.m.

If you are using Windows, you can see that reconstructSignalTestbench.exe is generated in
the current folder. If you are using Linux, the generated executable does not have the .exe
extension.

Read and Verify the Binary File Data
Running the executable creates a binary file, data.bin, in the current directory and writes the input,
reconstructed signal, and the number of FFT coefficients used to reconstruct the signal.

!reconstructSignalTestbench

You can read this data from the binary file using the dsp.BinaryFileReader object. To verify that
the data is written correctly, read data from the binary file in MATLAB and compare the output with
variables InputAll and ReSignalAll.

The header prototype must have a structure similar to the header structure written to the file. Read
the data as two channels.
M = 1021;
numIter = 1000;
headerPro = struct('FirstElemInBothCols','Number of Coefficients',...
 'FirstColumn','Input','SecondColumn','ReconstructedSignal');
bfr = dsp.BinaryFileReader('data.bin','HeaderStructure',...

 Generate C Code from MATLAB Code

25-9

headerPro,'SamplesPerFrame',M*numIter,'NumChannels',2);
Data = bfr();

Compare the first channel with InputAll and the second channel with ReSignalAll.

isequal(InputAll,Data(:,1))

ans =

 logical

 1

isequal(ReSignalAll,Data(:,2))

ans =

 logical

 1

The results match exactly, indicating a successful write operation.

Relocate Code to Another Development Environment
Once you generate code from your MATLAB algorithm, you can relocate the code to another
development environment, such as a system or an integrated development environment (IDE) that
does not include MATLAB. You can package the files into a compressed file using the packNGo
function at the command line or the Package option in the MATLAB Coder app. For an example that
illustrates both the workflows, see “Package Code for Other Development Environments” (MATLAB
Coder). For more information on the packNGo option, see packNGo in “RTW.BuildInfo Methods”
(MATLAB Coder). You can relocate and unpack the compressed zip file using a standard zip utility.
For an example on how to package the executable generated in this example, see “Relocate Code
Generated from MATLAB Code to Another Development Environment”.

See Also
Functions
codegen

More About
• “Relocate Code Generated from MATLAB Code to Another Development Environment”
• “What is C Code Generation from MATLAB?” on page 25-2
• “Generate C Code from Simulink Model” on page 25-11
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Code Generation Workflow” (MATLAB Coder)

External Websites
• Supported and Compatible Compilers

25 C Code Generation

25-10

https://www.mathworks.com/support/requirements/supported-compilers.html

Generate C Code from Simulink Model
Simulink Coder generates standalone C and C++ code from Simulink models for deployment in a
wide variety of applications. The workflow described in this topic uses DSP System Toolbox features
but the same workflow applies for Communications Toolbox. For a list of Communications Toolbox
features supported by Simulink Coder, see Blocks Supported for C Code Generation.

This example generates C code from the ex_codegen_dsp model and builds an executable from the
generated code. You can run the executable inside the MATLAB environment. In addition, you can
package and relocate the code to another development environment that does not have the MATLAB
and Simulink products installed.

Open the Model

Open the ex_codegen_dsp model. The model implements a simple adaptive filter to remove noise
from a signal while simultaneously identifying a filter that characterizes the noise frequency content.

Configure Model for Code Generation
You can alternatively create the model using the DSP System template. For more information, see
“Configure the Simulink Environment for Signal Processing Models”.

Prepare the model for code generation by specifying code generation settings in the Configuration
Parameters dialog box. Choose the appropriate solver and code generation target, and check the

 Generate C Code from Simulink Model

25-11

model configuration for execution efficiency. For more details on each of these steps, see “Generate C
Code for a Model” (Simulink Coder).

Simulate the Model
Simulate the model. The Time Scope shows the input and filtered signal characteristics.

The Array Plot shows the last 32 filter weights for which the LMS filter has effectively adapted and
filtered out the noise from the signal.

25 C Code Generation

25-12

These coefficients can also be accessed using the following command:

filter_wts(:,:,1201)

Generate Code from the Model
Before you generate code from the model, you must first ensure that you have write permission in
your current folder.

To generate code, you must make the following changes:

1 In the Modeling tab of the model toolstrip, click Model Settings. The Configuration
Parameters dialog opens. Navigate to the Code Generation tab, select the Generate code
only parameter, and click Apply.

2 In the Apps tab of the model toolstrip, click the drop-down arrow. Under Code Generation, click
Simulink Coder. The C Code tab appears in the model window. In the C Code tab, click the

Generate Code icon ().

After the model finishes generating code, the Code Generation Report appears, allowing you to
inspect the generated code. Note that the build process creates a new subfolder called
ex_codegen_dsp_grt_rtw in your current MATLAB working folder. This subfolder contains all the
files created by the code generation process, including those that contain the generated C source
code. For more information on viewing the generated code, see “Generate C Code for a Model”
(Simulink Coder).

 Generate C Code from Simulink Model

25-13

Build and Run the Generated Code
Set Up the C/C++ Compiler

To build an executable, you must set up a supported C compiler. For a list of compilers supported in
the current release, see Supported and Compatible Compilers.

To set up your compiler, run the following command in the MATLAB command prompt:

mex –setup

Build the Generated Code

After your compiler is setup, you can build and run the compiled code. The ex_codegen_dsp model is
currently configured to generate code only. To build the generated code, you must first make the
following changes:

1 In the Modeling tab of the model toolstrip, click Model Settings. The Configuration
Parameters dialog opens. Navigate to the Code Generation tab, clear the Generate code only
parameter, and click Apply.

2
In the C Code tab of the model toolstrip, click the Build icon ().

The code generator builds the executable and generates the Code Generation Report. The code
generator places the executable in the working folder. On Windows, the executable is
ex_codegen_dsp.exe. On Linux, the executable is ex_codegen_dsp.

Run the Generated Code

To run the generated code, enter the following command in the MATLAB command prompt:

!ex_codegen_dsp

Running the generated code creates a MAT-file that contains the same variables as those generated
by simulating the model. The variables in the MAT-file are named with a prefix of rt_. After you run
the generated code, you can load the variables from the MAT-file by typing the following command at
the MATLAB prompt:

load ex_codegen_dsp.mat

You can now compare the variables from the generated code with the variables from the model
simulation. To access the last set of coefficients from the generated code, enter the following in the
MATLAB prompt:

rt_filter_wts(:,:,1201)

Note that the coefficients in filter_wts(:,:,1201) and rt_filter_wts(:,:,1201) match.

For more details on building and running the executable, see “Generate C Code for a Model”
(Simulink Coder).

Relocate Code to Another Development Environment

Once you generate code from your Simulink model, you can relocate the code to another development
environment using the pack-and-go utility. Use this utility when the development environment does
not have the MATLAB and Simulink products.

25 C Code Generation

25-14

https://www.mathworks.com/support/requirements/supported-compilers.html
matlab:ex_codegen_dsp

The pack-and-go utility uses the tools for customizing the build process after code generation and a
packNGo function to find and package files for building an executable image. The files are packaged
in a compressed file that you can relocate and unpack using a standard zip utility.

You can package the code by either using the user interface or by using the command-line interface.
The command-line interface provides more control over the details of code packaging. For more
information on each of these methods, see “Relocate or Share Generated Code” (Simulink Coder).

For an example on how to package the C code and executable generated from this example, see
“Relocate Code Generated from a Simulink Model to Another Development Environment”.

See Also

More About
• “Generate C Code for a Model” (Simulink Coder)
• “Relocate Code Generated from a Simulink Model to Another Development Environment”
• “Relocate or Share Generated Code” (Simulink Coder)
• “Generate C Code from MATLAB Code” on page 25-4
• “How To Run a Generated Executable Outside MATLAB”

External Websites
• Supported and Compatible Compilers

 Generate C Code from Simulink Model

25-15

https://www.mathworks.com/support/requirements/supported-compilers.html

HDL Code Generation

• “Find Blocks That Support HDL Code Generation” on page 26-2
• “Wireless Communications Design for ASICs, FPGAs, and SoCs” on page 26-4

26

Find Blocks That Support HDL Code Generation

Blocks
To create a library of HDL-supported blocks from all your installed products, enter hdllib at the
MATLAB command line. This command requires an HDL Coder™ license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.

You can also use Communications Toolbox blocks with blocks from Wireless HDL Toolbox. Wireless
HDL Toolbox provides sample-based algorithms in Simulink for the design and implementation of 5G
NR, LTE, and other wireless communications subsystems on FPGAs and ASICs.

26 HDL Code Generation

26-2

https://www.mathworks.com/products/wireless-hdl.html

System Objects
You can view System objects that are supported for HDL code generation in documentation by
filtering the functions reference list. Click Functions in the blue bar at the top of the Help window,
then select the HDL code generation check box at the bottom of the left column. The System
objects are listed in their respective products. You can use the table of contents in the left column to
navigate between products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for
restrictions for HDL code generation.

 Find Blocks That Support HDL Code Generation

26-3

Wireless Communications Design for ASICs, FPGAs, and SoCs
In this section...
“From Mathematical Algorithm to Hardware Implementation” on page 26-4
“HDL-Optimized Blocks” on page 26-6
“Reference Applications” on page 26-6
“Generate HDL Code and Prototype on FPGA” on page 26-6

Deploying algorithmic models to ASIC, FPGA, or SoC hardware makes it possible to do over-the-air
testing and verification. However, designing wireless communications systems for hardware requires
design tradeoffs between hardware resources and throughput. You can speed up hardware design
and deployment by using HDL-optimized blocks that have hardware-suitable interfaces and
architectures, reference applications that implement portions of the LTE, 5G NR, satellite
communication, WLAN, and custom OFDM-based communications physical layer, and automatic HDL
code generation. You can also use hardware support packages to assist with deploying and verifying
your design on real hardware.

MathWorks HDL products, such as Wireless HDL Toolbox, allow you to start with a mathematical
model, such as MATLAB code from LTE Toolbox™, 5G Toolbox™, WLAN Toolbox™, or Satellite
Communications Toolbox and design a hardware implementation of that algorithm that is suitable for
ASICs, FPGAs, and SoCs.

From Mathematical Algorithm to Hardware Implementation
Wireless communications design often starts with algorithm development and testing using MATLAB
functions. MATLAB code, which usually operates on matrices of floating-point data, is good for
developing mathematical algorithms, manipulating large data sets, and visualizing data.

Hardware engineers typically receive a mathematical specification from an algorithm team, and
reimplement the algorithm for hardware. Hardware designs require tradeoffs of resource usage for
clock speed and overall throughput. Usually this tradeoff means operating on streaming data, and
using some logic to control the storage and flow of data. Hardware engineers usually work in
hardware description languages (HDLs), like VHDL and Verilog, that provide cycle-based modeling
and parallelism.

To bridge this gap between mathematical algorithm and hardware implementation, use the MATLAB
algorithm model as a starting point for hardware implementation. Make incremental changes to the
design to make it suitable for hardware, and progress towards a Simulink model that you can use to
automatically generate HDL code by using HDL Coder.

This diagram shows the design progression from mathematical algorithm in MATLAB, to hardware-
compatible implementation in Simulink, and then the generated VHDL code.

26 HDL Code Generation

26-4

While both MATLAB and Simulink support automatic generation of HDL code, you must construct
your design with hardware requirements in mind, and Simulink is better-suited for cycle-based
modeling for hardware. It can represent parallel data paths and streaming data with control signals
to manage the timing of the data stream. To aid in fixed-point type choices, it clearly visualizes data
type propagation in the design. It also allows for easy pipelining of mathematical operations to
improve maximum clock frequency in hardware.

While you create your hardware-ready design, use the MATLAB algorithm as a "golden reference" to
verify that each version of the design still meets the mathematical requirements. The workflow shown
in the diagram uses MATLAB and Simulink as collaboration and communication tools between the
algorithm and hardware design teams.

For instance, when designing for LTE, 5G, WLAN, and satellite communication wireless standards,
you can use LTE Toolbox, 5G Toolbox, WLAN Toolbox, and Satellite Communications Toolbox
functions to create a golden reference in MATLAB. Then transition to Simulink and create a
hardware-compatible implementation by using library blocks from Wireless HDL Toolbox and DSP
HDL Toolbox™ that support HDL code generation. You can reuse test and data generation
infrastructure from MATLAB by importing data from MATLAB to your Simulink model and returning
the output of the model to MATLAB to verify it against the "golden reference".

 Wireless Communications Design for ASICs, FPGAs, and SoCs

26-5

HDL-Optimized Blocks
Library blocks from Wireless HDL Toolbox implement encoders, decoders, modulators, demodulators,
and sequence generators for use in an LTE, 5G, WLAN, satellite communications, or custom OFDM-
based wireless communications system. These blocks use a standard streaming data interface for
hardware. This interface makes it easy to connect parts of the algorithm together, and includes
control signals that manage the flow of data and mark frame boundaries. These blocks support
automatic HDL code generation with HDL Coder. You can also use blocks from DSP HDL Toolbox that
support HDL code generation.

The blocks provide hardware-suitable architectures that optimize resource use, such as including
adder and multiplier pipelining to fit well into FPGA DSP slices. They also support automatic and
configurable fixed-point data types. Using predefined blocks also allows you to try different
parameter configurations without changing the rest of the design.

For lists of blocks that support HDL code generation, see Wireless HDL Toolbox Block List (HDL Code
Generation) and DSP HDL Toolbox Block List (HDL Code Generation).

Reference Applications
Wireless HDL Toolbox provides reference applications that contain hardware-ready implementations
of large parts of the LTE, 5G NR, Satellite, WLAN, and custom OFDM-based communications physical
layer. The subsystems in these reference applications have also been tested on hardware boards.
These designs are verified against the "golden reference" functions provided by LTE Toolbox, 5G
Toolbox, WLAN Toolbox, or Satellite Communications Toolbox. They are designed to be modular,
scalable, and extensible so you can insert additional physical channels.

These reference applications can be used as-is to deliver packet information to your unique
application and to generate synthesizable VHDL or Verilog with HDL Coder. They also serve as
examples to illustrate recommended practices for implementing communications algorithms on FPGA
or ASIC hardware.

Generate HDL Code and Prototype on FPGA
Wireless HDL Toolbox provides blocks that support HDL code generation. To generate HDL code from
designs that use these blocks, you must have an HDL Coder license. HDL Coder produces device-
independent code with signal names that correspond to the Simulink model. HDL Coder also provides

26 HDL Code Generation

26-6

a tool to drive the FPGA synthesis and targeting process, and enables you to generate scripts and test
benches for use with third-party HDL simulators.

To assist with the setup and targeting of programmable logic on a prototype board, and to verify your
wireless communications system design on hardware, download required hardware support packages
Communications Toolbox Support Package for Xilinx Zynq-Based Radio or SoC Blockset™ Support
Package for Xilinx Devices.

See Also

External Websites
• Wireless HDL Toolbox
• HDL Coder

See Also

Related Examples
• “Prototype Wireless Communications Algorithms on Hardware” (Wireless HDL Toolbox)

 Wireless Communications Design for ASICs, FPGAs, and SoCs

26-7

https://www.mathworks.com/products/wireless-hdl.html
https://www.mathworks.com/products/hdl-coder.html

Simulation Acceleration

27

Accelerate Simulation Using GPUs
In this section...
“GPU-Based System Object Construction” on page 27-2
“Process Multiple Data Frames Using GPU-Based System Objects” on page 27-3
“Pass Data to GPU-Based System Objects Using gpuarray Input” on page 27-4
“MATLAB System Block Support for GPU-Based System Objects” on page 27-5

A GPU-based System object looks and behaves much like the non-GPU-based System objects in the
Communications Toolbox product. The important difference is that the algorithm is executed on a
graphics processing unit (GPU) rather than on a CPU. Using the GPU can accelerate your simulation.

GPUs excel at processing large quantities of data and performing computations with high compute
intensity. Processing large quantities of data is one way to maximize the throughput of your GPU in a
simulation. The amount of data that the GPU processes at any one time depends on the size of the
data passed to the input of a GPU-based System object. Therefore, one way to maximize this data size
is by processing multiple frames of data.

You can use a single GPU-based System object to process multiple data frames simultaneously or in
parallel. This differs implementation from the way standard System objects are implemented. For
GPU-based System objects, the number of frames the objects process in a single call to the object
function is either implied by one of the object properties or explicitly stated using the NumFrames
property on the objects.

Passing MATLAB arrays to a GPU-based System object requires transferring the initial data from a
CPU to the GPU. Then, the GPU-based System object performs calculations and transfers the output
data back to the CPU. This process introduces latency. When you pass data in the form of a gpuArray
to a GPU-based System object, the object does not incur the latency from data transfer. Therefore, a
GPU-based System object runs faster when you supply a gpuArray as the input.

In general, you should try to minimize the amount of data transfer between the CPU and the GPU in
your simulation. For more information, see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

GPU-Based System Object Construction
System objects for the Communications Toolbox product are located in the comm package and are
constructed as:

H = comm.<object name>

For example, you construct a Viterbi decoder System object as:

H = comm.ViterbiDecoder

In cases where a corresponding GPU-based implementation of a System object exists, they are
located in the comm.gpu package and constructed as:

H = comm.gpu.<object name>

For example, you construct a GPU-based Viterbi decoder System object as:

H = comm.gpu.ViterbiDecoder

27 Simulation Acceleration

27-2

For a list of available GPU-based implementations, see GPU Arrays Support List for System Objects.

Process Multiple Data Frames Using GPU-Based System Objects

You can use a single GPU System object™ to process multiple data frames simultaneously. Some GPU-
based System objects, such as the LDPC decoder, can infer the number of frames from the object
properties. Other GPU-based System objects, such as the Viterbi decoder, include a NumFrames
property to define the number of frames present in the input data.

First, simultaneously process two data frames using a GPU-based LDPC decoder System object™. The
ParityCheckMatrix property determines the frame size. The frame size and the input data vector
length determine the number of frames processed by the LDPC decoder object.

numframes = 2;

ldpcEnc = comm.LDPCEncoder;
ldpcGPUDec = comm.gpu.LDPCDecoder;
ldpcDec = comm.LDPCDecoder;

msg = randi([0 1],32400,2);

for ii=1:numframes
 encout(:,ii) = ldpcEnc(msg(:,ii));
end

% Single ended to bipolar (for LLRs)
encout = 1-2*encout;

% Decode on the CPU
for ii=1:numframes
 cout(:,ii) = ldpcDec(encout(:,ii));
end

% Multiframe decode on the GPU
gout = ldpcGPUDec(encout(:));

% Check equality
isequal(gout,cout(:))

ans = logical
 1

Next, process multiple data frames using the NumFrames property of the GPU-based Viterbi decoder
System object. For a Viterbi decoder, the frame size of your system cannot be inferred from an object
property. Instead, you must define the number of frames present in the input data by using the
NumFrames property of the Viterbi decoder object.

numframes = 10;

convEncoder = comm.ConvolutionalEncoder(...
 TerminationMethod="Terminated");
vitDecoder = comm.ViterbiDecoder(...
 TerminationMethod="Terminated");

 Accelerate Simulation Using GPUs

27-3

Create a GPU-based Viterbi decoder System object using the NumFrames property.

vitGPUDecoder = comm.gpu.ViterbiDecoder(...
 TerminationMethod="Terminated", ...
 NumFrames=numframes);

msg = randi([0 1],200,numframes);

for ii=1:numframes
 convEncOut(:,ii) = 1-2*convEncoder(msg(:,ii));
end

% Decode on the CPU
for ii=1:numframes
 cVitOut(:,ii) = vitDecoder(convEncOut(:,ii));
end

% Decode on the GPU
gVitOut = vitGPUDecoder(convEncOut(:));

% Check equality
isequal(gVitOut,cVitOut(:))

ans = logical
 1

Pass Data to GPU-Based System Objects Using gpuarray Input

In this example, you transmit 1/2 rate convolutionally encoded 16-PSK-modulated data through an
AWGN channel, demodulate and decode the received data, and assess the error rate of the received
data. For this implementation, you use the GPU-based Viterbi decoder System object™ to process
multiple signal frames in a single call and then use gpuArray (Parallel Computing Toolbox) objects to
pass data into and out of the GPU-based System objects.

Create GPU-based System objects for PSK modulation and demodulation, convolutional encoding,
Viterbi decoding, and AWGN. Create a System object for error rate calculation.

M = 16; % Modulation order
numframes = 100;

gpuconvenc = comm.gpu.ConvolutionalEncoder;
gpupskmod = comm.gpu.PSKModulator(M,pi/16,BitInput=true);
gpupskdemod = comm.gpu.PSKDemodulator(M,pi/16,BitOutput=true);
gpuawgn = comm.gpu.AWGNChannel(...
 NoiseMethod='Signal to noise ratio (SNR)',SNR=30);
gpuvitdec = comm.gpu.ViterbiDecoder(...
 InputFormat='Hard', ...
 TerminationMethod='Truncated', ...
 NumFrames=numframes);
errorrate = comm.ErrorRate(ComputationDelay=0,ReceiveDelay=0);

Due to the computational complexity of the Viterbi decoding algorithm, loading multiple frames of
signal data on the GPU and processing them in one call can reduce overall simulation time. To enable
this implementation, the GPU-based Viterbi decoder System object contains a NumFrames property.

27 Simulation Acceleration

27-4

Instead of using an external for-loop to process individual frames of data, you use the NumFrames
property to configure the GPU-based Viterbi decoder System object to process multiple data frames.
Generate numframes of binary data frames. To efficiently manage the data frames for processing by
the GPU-based System objects, represent the transmission data frames as a gpuArray object.

numsymbols = 50;
rate = 1/2;
dataA = gpuArray.randi([0 1],rate*numsymbols*log2(M),numframes);

The error rate object does not support gpuArray objects or multichannel data, so you must retrieve
the array from the GPU by using the gather (Parallel Computing Toolbox) function to compute the
error rate on each frame of data in a for-loop. Perform the GPU-based encoding, modulation, AWGN,
and demodulation inside a for-loop.

for ii = 1:numframes
 encodedData = gpuconvenc(dataA(:,ii));
 modsig = gpupskmod(encodedData);
 noisysig = gpuawgn(modsig);
 demodsig(:,ii) = gpupskdemod(noisysig);
end

The GPU-based Viterbi decoder performs multiframe processing without a for-loop.

rxbits = gpuvitdec(demodsig(:));

errorStats = errorrate(gather(dataA(:)),gather(rxbits));
fprintf('BER = %f\nNumber of errors = %d\nTotal bits = %d', ...
 errorStats(1), errorStats(2), errorStats(3))

BER = 0.009800
Number of errors = 98
Total bits = 10000

MATLAB System Block Support for GPU-Based System Objects
If you are using MATLAB System blocks in your implementation, you can include these GPU-based
System objects in them.

• comm.gpu.AWGNChannel
• comm.gpu.BlockDeinterleaver
• comm.gpu.BlockInterleaver
• comm.gpu.ConvolutionalDeinterleaver
• comm.gpu.ConvolutionalEncoder
• comm.gpu.ConvolutionalInterleaver
• comm.gpu.PSKDemodulator
• comm.gpu.PSKModulator
• comm.gpu.TurboDecoder
• comm.gpu.ViterbiDecoder

The GPU System objects must be simulated using Interpreted execution. You must select this
option explicitly on the block mask; the default value is Code generation.

 Accelerate Simulation Using GPUs

27-5

See Also

More About
• “Code Generation and Acceleration Support”
• “GPU Computing Requirements” (Parallel Computing Toolbox)

27 Simulation Acceleration

27-6

Wireless Waveform Generator App

• “Create Waveforms Using Wireless Waveform Generator App” on page 28-2
• “Generate Wireless Waveform in Simulink Using App-Generated Block” on page 28-8

28

Create Waveforms Using Wireless Waveform Generator App
The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting modulated waveforms.

Start the app. On the Apps tab in the MATLAB toolstrip, under Signal Processing and

Communications, click the app icon . You can also start the app by entering
wirelessWaveformGenerator at the MATLAB command prompt.

These are the typical workflows when using the Wireless Waveform Generator app.

• Generate a waveform.

• Select the desired waveform type from the options available in the Waveform Type section.
Adjust the configuration parameters in the Waveform pane. For more information, see
“Waveform Type” on page 28-3.

• Select Impairments in the Generation section to open the Impairments pane. Adjust the
configuration parameters in the Impairments pane. For more information, see “Add
Impairments” on page 28-3.

• To perform signal generation, click Generate. After generation, the waveform is displayed. You
can adjust the waveform, filtering, and impairment configurations and then regenerate the
waveform.

• The default visualization plots vary based on the waveform type selected. Additional
“Visualization Options” on page 28-4 can be opened by selecting them from Visualize in the
Generation section.

28 Wireless Waveform Generator App

28-2

• After generating a waveform you can

• Export the waveform to a file by selecting the desired options from Export in the Export
section. For more information, see “Export Waveform” on page 28-4.

• Transmit the waveform by selecting and configuring the desired SDR or lab test instrument
from Transmitter Type in the Transmitter tab. For more information, see “Transmit Using
SDR” on page 28-5 and “Transmit Using Lab Test Instrument” on page 28-6.

• You can save the current session, open a previously saved session, or open a new session by
selecting the desired option in the File section. For more information, see “Waveform Generator
Session” on page 28-7.

Waveform Type
To generate the various available waveforms, the Wireless Waveform Generator app uses
Communications Toolbox features. The supported waveform types include:

• OFDM — The app uses the comm.OFDMModulator System object to generate this type of
waveform.

• QAM — The app uses the qammod function to generate this type of waveform.
• PSK — The app uses the pskmod function to generate this type of waveform.
• Sinewave — The app uses the dsp.SineWave System object to generate this type of waveform.
• 5G — If you have the 5G Toolbox, you can also generate 5G NR waveforms using features in the

“5G Toolbox”. For more information, see the 5G Waveform Generator app reference page.
• LTE — If you have the LTE Toolbox you can also generate LTE modulated waveforms using

features in the “LTE Toolbox”. For more information, see the LTE Waveform Generator app
reference page.

• WLAN — If you have the WLAN Toolbox you can also generate 802.11™ modulated waveforms
using features in the “WLAN Toolbox”. For more information, see the WLAN Waveform
Generator app reference page.

• Bluetooth® — If you have the Bluetooth Toolbox you can also generate Bluetooth modulated
waveforms using features in the “Bluetooth Toolbox”.

• FMCW, Linear FM, Rectangular, and Phased Coded — If you have the Phased Array System
Toolbox™ you can also generate radar waveforms using features in the “Phased Array System
Toolbox”.

• ZigBee and UWB (IEEE 802.15.4a/z) — If you have download the Communications Toolbox Library
for ZigBee and UWB add-on you can also generate ZigBee and UWB modulated waveforms using
features in the add-on.

By default, generated waveforms have no filtering applied. To apply filtering to the waveform, select
the desired filter option from the Filtering parameter on the Waveform pane. The available filter
options vary based on the waveform type you select.

Add Impairments
You can add these impairments to the waveform that you generate.

• AWGN — The app uses the awgn function to impair the waveform.
• Phase offset — The app impairs the waveform by applying the specified phase offset as y = xejφ,

where φ is the phase offset in radians.

 Create Waveforms Using Wireless Waveform Generator App

28-3

https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb
https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb

• Frequency offset — The app uses the comm.PhaseFrequencyOffset System object to impair the
waveform.

• Phase noise — The app uses the comm.PhaseNoise System object to impair the waveform.
• DC offset — The app impairs the waveform by applying the specified DC offset as y = x + dcOff,

where dcOff is the complex DC offset in Volts.
• IQ imbalance — The app uses the iqimbal function to impair the waveform.
• Memoryless cubic nonlinearity — The app uses the comm.MemorylessNonlinearity System

object to impair the waveform.

Visualization Options
You can use these plot types to visualize waveforms that you generate.

• Spectrum Analyzer — The app plots the waveform in the frequency domain.
• OFDM Grid — For OFDM waveforms, the app plots the resource allocation of data and control

channels.
• Time scope — The app plots the inphase and quadrature (IQ) waveform samples in the time

domain.
• Constellation diagram — The app plots the constellation points of the modulation symbols. For the

OFDM waveform type, the constellation diagram displays the signal before OFDM modulation.

Export Waveform
You can export the waveform to a runnable MATLAB script or Simulink block, to your workspace, or
to a signal file.

• Use the exported script to generate your waveform without the app from the command line.
• Use the exported block as a waveform source in a Simulink model. For more information, see

Waveform From Wireless Waveform Generator App.
• Waveforms exported to the workspace are saved as a structure containing these fields:

• type — This field is a character vector indicating the waveform type.
• config — This field is a structure or object containing fields that specify the configured

waveform type.
• Fs — This field is the signal sample rate in Hertz.
• waveform — The field is the complex waveform samples output as an NS-by-1 column vector or

an NS-by-NT matrix. NS is the number of time-domain samples, and NT is the number of
transmit antennas.

• Waveforms exported to a signal file can be saved as a .mat or .bb file.

• MAT-files are binary MATLAB files that store workspace variables. For more information, see
“MAT-File Versions”.

• The app uses the comm.BasebandFileWriter System object to save .bb files.

Transmit Signals at Full Radio Device Rates
Generate waveforms that you can transmit at full radio device rates using “Wireless Testbench”
software and a supported radio. Download and install the add-on associated with your connected

28 Wireless Waveform Generator App

28-4

radio. If you have “Wireless Testbench”, then the Wireless Waveform Generator app can transmit
your waveform at full device rates. For a list of radios that support full device rates, see “Supported
Radio Devices” (Wireless Testbench).

Select the appropriate radio icon, from Transmitter
Type in the Transmitter tab, and have the radio connected to your computer.

Transmit Using SDR
Generate a waveform that you can transmit using supported SDR hardware. Download and install the
add-on associated with your connected SDR, and then the Wireless Waveform Generator app can
transmit waveforms by using the SDR. For more information, see “Supported Hardware – Software-
Defined Radio”.

Select the appropriate SDR icon, from Transmitter Type
in the Transmitter tab, and have the SDR connected to your computer.

 Create Waveforms Using Wireless Waveform Generator App

28-5

Transmit Using Lab Test Instrument
Generate a waveform that you can transmit using your lab test instrument. The Wireless Waveform
Generator app can transmit using the rfsiggen function with instruments that support TCP/IP
interface and use either the AgRfSigGen, RsRfSigGen, AgRfSigGen_SCPI, or RsRfSigGen_SCPI driver.
For more information, see the “Quick-Control RF Signal Generator Requirements” (Instrument
Control Toolbox) topic. This feature requires “Instrument Control Toolbox”.

Select the icon from Transmitter Type in the Transmitter tab, and have your supported
lab test instrument connected to your computer.

28 Wireless Waveform Generator App

28-6

Waveform Generator Session
You can save the current session, open a previously saved session, or open a new session by selecting
the desired option in the FILE section. When you save a waveform generator session, the session
configuration is saved as a .mat file. For more information, see “MAT-File Versions”.

See Also
Apps
Wireless Waveform Generator

Functions
rfsiggen

Blocks
Waveform From Wireless Waveform Generator App

Related Examples
• “Generate Wireless Waveform in Simulink Using App-Generated Block” on page 28-8
• “Quick-Control RF Signal Generator Requirements” (Instrument Control Toolbox)
• “MAT-File Versions”

 Create Waveforms Using Wireless Waveform Generator App

28-7

Generate Wireless Waveform in Simulink Using App-Generated
Block

This example shows how to configure and use the block that is generated using the Export to
Simulink capability that is available in the Wireless Waveform Generator app.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting waveforms. You can export the waveform to your workspace or to a .mat or .bb file.
You can also export the waveform generation parameters to a runnable MATLAB® script or a
Simulink® block. You can use the exported Simulink block to reproduce your waveform in Simulink.
This example shows how to use the Export to Simulink capability of the app and how to configure
the exported block to generate waveforms in Simulink.

Although this example focuses on exporting an OFDM waveform, the same process applies for all of
the supported waveform types.

Export Wireless Waveform Configuration to Simulink

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the left-most pane
of the app, adjust any configuration parameters for the selected waveform. Then export the
configuration by clicking Export in the app toolstrip and selecting Export to Simulink.

28 Wireless Waveform Generator App

28-8

The Export to Simulink option creates a Simulink block, which outputs the selected waveform when
you run the Simulink model. The block is exported to a new model if no open models exist.

modelName = 'WWGExport2SimulinkBlock';
open_system(modelName);

The Form output after final data value by block parameter specifies the output after all of the
specified signal samples are generated. The value options for this parameter are Cyclic
repetition and Setting to zero. The Cyclic repetition option repeats the signal from the
beginning after it reaches the last sample in the signal. The Setting to zero option generates
zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
The Waveform sample rate (Fs) and Waveform length block parameters are derived from the
waveform configuration that is available in the Code tab of the Mask Editor dialog box. For further
information about the block parameters, see Waveform From Wireless Waveform Generator App. This
figure shows the parameters of the exported block.

close_system(modelName);

Connect a Spectrum Analyzer block to the exported block.

 Generate Wireless Waveform in Simulink Using App-Generated Block

28-9

modelName = 'WWGExport2SimulinkModel';
open_system(modelName);

Simulate the model to visualize the waveform using the current configuration.

sim(modelName);

The Spectrum Analyzer block inherits the Waveform sample rate (Fs) parameter, which is 64 MHz.

close_system(modelName);

Modify Wireless Waveform Configuration

When you run the Simulink model, the exported block outputs the waveform generated in the Code
tab of the Mask Editor dialog box for the block. The MATLAB code that initializes the waveform in
this tab corresponds to the configuration that you selected in the Wireless Waveform Generator
app before exporting the block. To modify the configuration of the waveform, choose one of these
options:

• Open the Wireless Waveform Generator app, select the configuration of your choice, and export
a new block. This option provides interaction with an app interface instead of MATLAB code,

28 Wireless Waveform Generator App

28-10

parameter range validation during the parameterization process, and visualization of the
waveform before running the Simulink model.

• Update the configuration parameters that are available in the Code tab of the Mask Editor dialog
box of the exported block. This option requires modifying the MATLAB code available in this tab so
that the parameter range validation occurs only when you apply the changes. This option does not
provide visualization of the waveform before running the Simulink model. Modifying the waveform
parameters using this option is not recommended if you are not familiar with the MATLAB code
that generates the selected waveform.

You can update the configuration in the Code tab of the Mask Editor. To open the Mask Editor, click
the exported block and press Ctrl+M.

Use the MATLAB code that is available in the Code tab to update the parameters of your choice. For
example, set the subcarrier spacing, scs, to 1,500,000 Hz.

 Generate Wireless Waveform in Simulink Using App-Generated Block

28-11

Click OK to apply the changes and close the Mask Editor dialog box. Simulate the model to visualize
the updated waveform.

modelName = 'WWGExport2SimulinkModelSCSModified';
sim(modelName);

28 Wireless Waveform Generator App

28-12

The Spectrum Analyzer block now shows a sample rate of 96 MHz, which is 1.5 times the previous
sample rate, as expected.

Share Wireless Waveform Configuration with Other Blocks in the Model

To access read-only block parameters and waveform configuration parameters, use the UserData
common block property, which is a structure with these fields.

• WaveformConfig: Waveform configuration
• WaveformLength: Waveform length
• Fs: Waveform sample rate

You can access the user data of the exported block by using the get_param function.

get_param([gcs '/OFDM Waveform Generator'],'UserData')

ans =

 struct with fields:

 WaveformConfig: [1x1 comm.OFDMModulator]
 WaveformLength: 8000
 Fs: 96000000

Store the structure available in the user data in a base workspace variable by using the InitFcn in
the callback. The InitFcn callback is executed during a model update and simulation. To use this
callback, click the MODELING tab, then click the Model Settings dropdown, and click the Model
Properties option. In the Callbacks pane, select the InitFcn callback. Assign the user data to a
new base workspace variable (for example, cfg).

 Generate Wireless Waveform in Simulink Using App-Generated Block

28-13

The parameters that are available in the user data of the exported block are updated every time you
apply configuration changes in the Code tab.

To demodulate the OFDM waveform, add an OFDM Demodulator block to the model. Connect an
AWGN Channel block between the OFDM Waveform Generator and OFDM Demodulator blocks to add
white Gaussian noise to the input signal. Also add a Constellation Diagram block to plot the
demodulated symbols.

modelName = 'WWGExport2SimulinkModelWithDemod';
open_system(modelName);

The parameters that are required to configure the OFDM Demodulator block must match the
parameters that are used to configure the exported block, (otherwise, demodulation fails). To access
the configuration parameters of the exported block, use the variable cfg. This figure shows the
parameters of the OFDM Demodulator block.

28 Wireless Waveform Generator App

28-14

Because the OFDM Demodulator block requires the entire OFDM waveform for demodulation, set the
Samples per frame parameter in the exported block to cfg.WaveformLength. Simulate the model.

sim(modelName);

 Generate Wireless Waveform in Simulink Using App-Generated Block

28-15

After demodulating the OFDM waveform by using the OFDM Demodulator block, the Constellation
Diagram block displays the resulting QAM symbols.

Generate Multicarrier Waveforms

For multicarrier generation, the sampling rates for all of the waveforms must be the same. To shift
the waveforms to a carrier offset and aggregate them, you can use the Multiband Combiner block.

modelName = 'WWGExport2SimulinkMulticarrier';
open_system(modelName);

28 Wireless Waveform Generator App

28-16

To shift the waveforms in frequency, you might have to increase the sampling rates. The Multiband
Combiner block provides the option to oversample the input waveforms before shifting and combining
them. This figure shows the parameters of the Multiband Combiner block.

 Generate Wireless Waveform in Simulink Using App-Generated Block

28-17

Simulate the model to visualize the waveforms that are centered at -80, 20, and 100 MHz.

sim(modelName);

28 Wireless Waveform Generator App

28-18

See Also
Apps
Wireless Waveform Generator

Blocks
Waveform From Wireless Waveform Generator App

More About
• “Create Waveforms Using Wireless Waveform Generator App” on page 28-2

 Generate Wireless Waveform in Simulink Using App-Generated Block

28-19

RF Propagation

• “Troubleshooting Site Viewer” on page 29-2
• “Access Basemaps and Terrain in Site Viewer” on page 29-3
• “Access TIREM Software” on page 29-5
• “Choose a Propagation Model” on page 29-6
• “Ray Tracing for Wireless Communications” on page 29-12

29

Troubleshooting Site Viewer
In this section...
“Internet Connection Failure” on page 29-2
“Graphics Environment” on page 29-2

Internet Connection Failure
When you create a Site Viewer, a check is made to make sure that you have an internet connection to
retrieve the default basemap and terrain data.

If Site Viewer cannot connect to the Internet the following warning messages are displayed:

• Warning: Unable to access the Internet, showing Dark Water instead of Satellites. See Access
Basemaps and Terrain in Site Viewer.

• Warning: Unable to access terrain data. See Access Basemaps and Terrain in Site Viewer.

If Site Viewer cannot connect to the Internet, then terrain data is not used and the Dark Water
basemap is selected.

Graphics Environment
When JavaScript® for WebGL™ support fails, Site Viewer issues an error message in the Command
Line, notifying you to update the graphics hardware driver. For more information, see “Resolving
Low-Level Graphics Issues”.

See Also
Functions
rendererinfo

Objects
siteviewer

More About
• “Access Basemaps and Terrain in Site Viewer” on page 29-3
• “System Requirements for Graphics”
• “Resolving Low-Level Graphics Issues”

29 RF Propagation

29-2

Access Basemaps and Terrain in Site Viewer

In this section...
“Use Installed Basemap” on page 29-3
“Download Basemaps” on page 29-3
“Add Custom Basemaps” on page 29-3
“Access Terrain” on page 29-4

Site Viewer displays data over basemaps and terrain. You can access different basemap and terrain
choices in different ways.

MathWorks offers a selection of basemaps, including two-tone maps created using Natural Earth,
high-zoom-level maps hosted by Esri®, and a street map from OpenStreetMap®. For more information
about basemap options, see the Basemap property of the siteviewer object.

Use Installed Basemap
The "darkwater" basemap is installed with MATLAB. The other basemaps are not installed with
MATLAB, but you can access them over an internet connection.

Download Basemaps
To work offline or to improve map responsiveness, you can download the basemaps created using
Natural Earth onto your local system. The other basemaps are not available for download.

Download basemaps using the Add-On Explorer.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-Ons.
2 In the Add-On Explorer, scroll to the MathWorks Optional Features section, and click Show

All to find the basemap add-ons. You can also search for the basemap add-ons by name (listed in
the following table) or click Optional Features in Filter by Type.

3 Select the basemap add-ons that you want to download.

Basemap Name Basemap Data Package Name
"bluegreen" MATLAB Basemap Data - bluegreen
"grayland" MATLAB Basemap Data - grayland
"colorterrain" MATLAB Basemap Data - colorterrain
"grayterrain" MATLAB Basemap Data - grayterrain
"landcover" MATLAB Basemap Data - landcover

Add Custom Basemaps
Add custom basemaps from a URL by using the addCustomBasemap function. MATLAB requires an
active internet connection to add and use custom basemaps from a URL.

 Access Basemaps and Terrain in Site Viewer

29-3

If you have Mapping Toolbox™, you can also create custom basemaps from MBTiles files. MATLAB
does not require internet access to add custom basemaps from MBTiles files. See
addCustomBasemap for more information.

Note If the basemap does not render correctly in Site Viewer (for example only the ocean is visible),
check if the basemap server supports CORS (cross-origin resource sharing). Site Viewer does not
support basemaps that do not support CORS.

Access Terrain
By default, Site Viewer uses terrain data hosted by MathWorks and derived from the GMTED2010
model by the USGS and NGA. You need an active internet connection to access this terrain data, and
you cannot download it.

To work offline or to improve terrain responsiveness, add custom terrain from DTED files using the
addCustomTerrain function. You do not need an active internet connection to add or use custom
terrain.

Alternatively, you can set the Terrain property of the Site Viewer to "none".

See Also
Objects
siteviewer

More About
• “Troubleshooting Site Viewer” on page 29-2
• “Use Basemaps in Offline Environments” (Mapping Toolbox)
• “System Requirements for Graphics”
• “Resolving Low-Level Graphics Issues”

29 RF Propagation

29-4

Access TIREM Software
The Terrain Integrated Rough Earth Model™ (TIREM™) is a propagation model for computing the
path loss for irregular terrain and seawater scenarios. TIREM is developed, trademarked, and
licensed by Huntington Ingalls Industries. To use TIREM, you need to acquire it from Huntington
Ingalls Industries.

TIREM is designed to calculate the reference basic median propagation loss (path loss) based on the
terrain profile along the great circle path between two antennas, for example, using digital terrain
elevation data (DTED). You can use TIREM model to calculate the point-to-point path loss between
sites over irregular terrain. The model combines physics with empirical data to provide path loss
estimates. The TIREM propagation model can predict path loss at frequencies between 1 MHz and 1
THz.

Use tiremSetup to enable TIREM access from within MATLAB. The TIREM library folder contains
the tirem3 shared library. The full library name is platform-dependent:

Platform Shared Library Name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib

See Also
Functions
tiremSetup

Objects
TIREM

Related Examples
• “Planning Radar Network Coverage over Terrain” (Antenna Toolbox)

 Access TIREM Software

29-5

https://tsd.huntingtoningalls.com/

Choose a Propagation Model
Propagation models allow you to predict the propagation and attenuation of radio signals as the
signals travel through the environment. You can simulate different models by using the
propagationModel function. Additionally, you can determine the range and path loss of radio
signals in these simulated models by using the range and pathloss functions.

The following sections describe various propagation and ray tracing models. The tables in each
section list the models that are supported by the propagationModel function and compare, for each
model, the supported frequency ranges, model combinations, and limitations.

Atmospheric
Atmospheric propagation models predict path loss between sites as a function of distance. These
models assume line-of-sight (LOS) conditions and disregard the curvature of the Earth, terrain, and
other obstacles.

Model Description Frequency Combinations Limitations
freespace
(FreeSpace)

Ideal propagation
model with clear
line of sight
between
transmitter and
receiver

No enforced range Can be combined
with rain, fog, and
gas

Assumes line of
sight

rain (Rain) Propagation of a
radio wave signal
and its path loss in
rain. For more
information, see
[3].

1 GHz to 1000 GHz Can be combined
with any other
propagation model

Assumes line of
sight

gas (Gas) Propagation of
radio wave signal
and its path loss
due to oxygen and
water vapor. For
more information,
see [5].

1GHz to 1000 GHz Can be combined
with any other
propagation model

Assumes line of
sight

fog (Fog) Propagation of the
radio wave signal
and its path loss in
cloud and fog. For
more information,
see [2].

10GHz to 1000
GHz

Can be combined
with any other
propagation model

Assumes line of
sight

Empirical
Like atmospheric propagation models, empirical models predict path loss as a function of distance.
Unlike atmospheric models, the close-in empirical model supports non-line-of-sight (NLOS)
conditions.

29 RF Propagation

29-6

Model Description Frequency Combinations Limitations
close-in (CloseIn) Propagation of

signals in urban
macro cell
scenarios. For
more information,
see [1].

No enforced range Can be combined
with rain, fog, and
gas

—

Terrain
Terrain propagation models assume that propagation occurs between two points over a slice of
terrain. Use these models to calculate the point-to-point path loss between sites over irregular
terrain, including buildings.

Terrain models calculate path loss from free-space loss, terrain and obstacle diffraction, ground
reflection, atmospheric refraction, and tropospheric scatter. They provide path loss estimates by
combining physics with empirical data.

Model Description Frequency Combinations Limitations
longley-rice
(LongleyRice)

Also known as
Irregular Terrain
Model (ITM). For
more information,
see [4].

20 MHz to 20 GHz Can be combined
with rain, fog, and
gas

• Designed for
antenna heights
from 0.5 to
3000 m

• Designed for
distances from
1 to 2000 km

tirem (TIREM) Terrain Integrated
Rough Earth
Model

1 MHz to 1000
GHz

Can be combined
with rain, fog, and
gas

• Requires access
to external
TIREM library

• Antenna height
maximum is
30000 m

Ray Tracing
Ray tracing models, represented by RayTracing objects, compute propagation paths using 3-D
environment geometry [7][8]. They determine the path loss and phase shift of each ray using
electromagnetic analysis, including tracing the horizontal and vertical polarizations of a signal
through the propagation path. The path loss calculations include free-space loss, reflection losses,
and diffraction losses. For each reflection and diffraction, the model calculates loss on the horizontal
and vertical polarizations by using the Fresnel equation, the Uniform Theory of Diffraction (UTD), the
relevant angles, and the real relative permittivity and conductivity of the interaction materials [5][6]
at the specified frequency.

While the other supported models compute single propagation paths, ray tracing models compute
multiple propagation paths.

These models support both 3-D outdoor and indoor environments.

 Choose a Propagation Model

29-7

Ray Tracing
Method

Description Frequency Combinations Limitations

shooting and
bouncing rays
(SBR)

• Supports
calculation of
propagation
paths for up to
ten path
reflections and
two edge
diffractions.

• Calculates an
approximate
number of
propagation
paths with
exact geometric
accuracy.

• Computational
complexity
increases
linearly with
the number of
reflections and
exponentially
with the
number of
diffractions.
The SBR
method is
generally faster
than the image
method.

100 MHz to 100
GHz

Can be combined
with rain, fog, and
gas

Does not include
effects from corner
diffraction,
refraction, or
diffuse scattering

29 RF Propagation

29-8

Ray Tracing
Method

Description Frequency Combinations Limitations

image • Supports
calculation of
propagation
paths for up to
two path
reflections.

• Calculates an
exact number
of propagation
paths with
exact geometric
accuracy.

• Computational
complexity
increases
exponentially
with the
number of
reflections.

100 MHz to 100
GHz

Can be combined
with rain, fog, and
gas

Does not include
effects from
diffraction,
refraction, or
diffuse scattering

SBR Method

This figure illustrates the SBR method for calculating propagation paths from a transmitter, Tx, to a
receiver, Rx.

The SBR method launches many rays from a geodesic sphere centered at Tx. The geodesic sphere
enables the model to launch rays that are approximately uniformly spaced.

Then, the method traces every ray from Tx and can model different types of interactions between the
rays and surrounding objects, such as reflections, diffractions, refractions, and scattering. Note that
the current implementation of the SBR method considers only reflections and edge diffractions.

 Choose a Propagation Model

29-9

• When a ray hits a flat surface, shown as R, the ray reflects based on the law of reflection.
• When a ray hits an edge, shown as D, the ray spawns many diffracted rays based on the law of
diffraction [9][10]. Each diffracted ray has the same angle with the diffracting edge as the incident
ray. The diffraction point then becomes a new launching point and the SBR method traces the
diffracted rays in the same way as the rays launched from Tx. A continuum of diffracted rays forms
a cone around the diffracting edge, which is commonly known as a Keller cone [10].

For each launched ray, the SBR method surrounds Rx with a sphere, called a reception sphere, with a
radius that is proportional to the distance the ray travels and the average number of degrees between
the launched rays. If the ray intersects the sphere, then the model considers the ray a valid path from
Tx to Rx. The SBR method corrects the valid paths so that the paths have exact geometric accuracy.

When you increase the number of rays by decreasing the number of degrees between rays, the
reception sphere becomes smaller. As a result, in some cases, launching more rays results in fewer or
different paths. This situation is more likely to occur with custom 3-D scenarios created from STL
files or triangulation objects than with scenarios that are automatically generated from
OpenStreetMap buildings and terrain data.

The SBR method finds paths using double-precision floating-point computations.

Image Method

This figure illustrates the image method for calculating the propagation path of a single reflection ray
for the same transmitter and receiver as the SBR method. The image method locates the image of Tx
with respect to a planar reflection surface, Tx'. Then, the method connects Tx' and Rx with a line
segment. If the line segment intersects the planar reflection surface, shown as R in the figure, then a
valid path from Tx to Rx exists. The method determines paths with multiple reflections by recursively
extending these steps. The image method finds paths using single-precision floating-point
computations.

References
[1] Sun, Shu, Theodore S. Rappaport, Timothy A. Thomas, Amitava Ghosh, Huan C. Nguyen, Istvan Z.

Kovacs, Ignacio Rodriguez, Ozge Koymen, and Andrzej Partyka. “Investigation of Prediction

29 RF Propagation

29-10

Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models
for 5G Wireless Communications.” IEEE Transactions on Vehicular Technology 65, no. 5 (May
2016): 2843–60. https://doi.org/10.1109/TVT.2016.2543139.

[2] International Telecommunications Union Radiocommunication Sector. Attenuation due to clouds
and fog. Recommendation P.840-6. ITU-R, approved September 30, 2013. https://
www.itu.int/rec/R-REC-P.840/en.

[3] International Telecommunications Union Radiocommunication Sector. Specific attenuation model
for rain for use in prediction methods. Recommendation P.838-3. ITU-R, approved March 8,
2005. https://www.itu.int/rec/R-REC-P.838/en.

[4] Hufford, George A., Anita G. Longley, and William A.Kissick. A Guide to the Use of the ITS
Irregular Terrain Model in the Area Prediction Mode. NTIA Report 82-100. National
Telecommunications and Information Administration, April 1, 1982.

[5] International Telecommunications Union Radiocommunication Sector. Effects of building materials
and structures on radiowave propagation above about 100MHz. Recommendation P.2040-1.
ITU-R, approved July 29, 2015. https://www.itu.int/rec/R-REC-P.2040/en.

[6] International Telecommunications Union Radiocommunication Sector. Electrical characteristics of
the surface of the Earth. Recommendation P.527-5. ITU-R, approved August 14, 2019. https://
www.itu.int/rec/R-REC-P.527/en.

[7] Yun, Zhengqing, and Magdy F. Iskander. “Ray Tracing for Radio Propagation Modeling: Principles
and Applications.” IEEE Access 3 (2015): 1089–1100. https://doi.org/10.1109/
ACCESS.2015.2453991.

[8] Schaubach, K.R., N.J. Davis, and T.S. Rappaport. “A Ray Tracing Method for Predicting Path Loss
and Delay Spread in Microcellular Environments.” In [1992 Proceedings] Vehicular
Technology Society 42nd VTS Conference - Frontiers of Technology, 932–35. Denver, CO,
USA: IEEE, 1992. https://doi.org/10.1109/VETEC.1992.245274.

[9] International Telecommunications Union Radiocommunication Sector. Propagation by diffraction.
Recommendation P.526-15. ITU-R, approved October 21, 2019. https://www.itu.int/rec/R-REC-
P.526/en.

[10] Keller, Joseph B. “Geometrical Theory of Diffraction.” Journal of the Optical Society of America
52, no. 2 (February 1, 1962): 116. https://doi.org/10.1364/JOSA.52.000116.

See Also
Functions
propagationModel | raytrace

Related Examples
• “Ray Tracing for Wireless Communications” on page 29-12
• “Visualize Antenna Coverage Map and Communication Links” on page 3-12
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 3-20

 Choose a Propagation Model

29-11

Ray Tracing for Wireless Communications

Introduction
Wireless communication systems use radio waves to transmit signals. Propagation modeling enables
you to estimate the strength of signals based on system parameters such as frequency, antenna
height, terrain properties, and building properties.

Theoretical and empirical models estimate path loss based on range, and are valid only for those
environments that resemble the modeling environment. As a result, these models usually do not
provide accurate temporal or spatial information. Unlike these models, ray tracing models are
specific to the 3-D environment, and are therefore appropriate for scenarios such as urban
environments.

For propagation modeling, a ray is an individual radio signal that [1]:

• Travels in a straight line through a homogeneous medium.
• Obeys the laws of reflection, refraction, and diffraction.
• Carries energy. Propagation models treat rays like tubes, where the energy density on the cross

section becomes smaller as the ray interacts with the environment.

For a given 3-D environment, ray tracing models use numerical simulations to:

• Predict the paths of rays from transmitters to receivers. The models can find many rays from a
transmitter to a receiver. The models derive the angle of departure, angle of arrival, and time of
arrival from the paths.

• Estimate the path loss and phase change for each ray. Total path loss is the sum of interaction
losses, free space loss, and, optionally, atmospheric loss.

A ray interacts with the environment in several ways [1].

Interaction Description
Line of sight (LOS) The ray travels directly from the transmitter to

the receiver.
Reflection The ray reflects off a surface according to the law

of reflection.
Refraction (transmission) The ray refracts as it moves into a new medium,

according to the law of refraction.
Diffraction The ray diffracts off a surface according to the

law of diffraction. One ray can spawn many
diffracted rays.

Diffuse scattering The ray interacts with a rough surface such as
the ocean or a building facade.

Use these functions to create ray tracing models, predict propagation paths, and calculate path losses
and phase shifts.

• propagationModel — Create a ray tracing model as a RayTracing object. Specify options such
as the ray tracing method, the maximum number of reflections and diffractions, and the
interaction materials. You can use ray tracing models as inputs when conducing RF analysis, such

29 RF Propagation

29-12

as when generating coverage maps by using the coverage function or when calculating total
received power by using the sigstrength function.

• raytrace — Display propagation paths (rays) on a map or return propagation paths as comm.Ray
objects. Each object represents the full path from the transmitter to the receiver, and contains
information such as the path loss, phase shift, and types of surface interactions.

• raypl — Calculate the path loss and phase shift for a propagation path based on surface
materials and antenna polarization types.

For examples that show ray tracing in indoor and urban environments, see “Indoor MIMO-OFDM
Communication Link using Ray Tracing” on page 1-39 and “Urban Link and Coverage Analysis Using
Ray Tracing” on page 3-20, respectively.

Ray Tracing Methods
The propagationModel and raytrace functions use a ray tracing model that finds LOS and non-
line-of-sight (NLOS) paths.

• The model finds LOS paths by shooting a ray from the transmitter toward the receiver. If the ray
does not interact with a surface before reaching the receiver, then an LOS path exists.

• The model finds NLOS paths by using either the shooting and bouncing rays (SBR) method [2] or
the image method. You can specify the method by using the propagationModel function.

Choose a method based on the types of interactions you want to model, the computation speed, and
the accuracy.

Method Interaction Types Computation Speed Computation
Accuracy

SBR (the default) Includes effects from
reflection and edge
diffraction. Does not
include effects from
corner diffraction,
refraction, or diffuse
scattering.

For each path, supports
up to ten path
reflections and two
edge diffractions.

Computational
complexity increases
linearly with the
number of reflections
and exponentially with
the number of
diffractions. The SBR
method is generally
faster than the image
method.

Calculates an
approximate number of
propagation paths with
exact geometric
accuracy.

Image Includes effects from
reflection. Does not
include effects from
diffraction, refraction,
or diffuse scattering.

For each path, supports
up to two path
reflections.

Computational
complexity increases
exponentially with the
number of reflections.

Calculates an exact
number of propagation
paths with exact
geometric accuracy.

When both the image and SBR methods find the same path, the points along the path are the same
within a tolerance of machine precision for single-precision floating-point values.

 Ray Tracing for Wireless Communications

29-13

SBR Method

This figure illustrates the SBR method for calculating propagation paths from a transmitter, Tx, to a
receiver, Rx.

The SBR method launches many rays from a geodesic sphere centered at Tx. The geodesic sphere
enables the model to launch rays that are approximately uniformly spaced.

Then, the method traces every ray from Tx and can model different types of interactions between the
rays and surrounding objects, such as reflections, diffractions, refractions, and scattering. Note that
the current implementation of the SBR method considers only reflections and edge diffractions.

• When a ray hits a flat surface, shown as R, the ray reflects based on the law of reflection.
• When a ray hits an edge, shown as D, the ray spawns many diffracted rays based on the law of
diffraction [3][4]. Each diffracted ray has the same angle with the diffracting edge as the incident
ray. The diffraction point then becomes a new launching point and the SBR method traces the
diffracted rays in the same way as the rays launched from Tx. A continuum of diffracted rays forms
a cone around the diffracting edge, which is commonly known as a Keller cone [4].

For each launched ray, the SBR method surrounds Rx with a sphere, called a reception sphere, with a
radius that is proportional to the distance the ray travels and the average number of degrees between
the launched rays. If the ray intersects the sphere, then the model considers the ray a valid path from
Tx to Rx. The SBR method corrects the valid paths so that the paths have exact geometric accuracy.

When you increase the number of rays by decreasing the number of degrees between rays, the
reception sphere becomes smaller. As a result, in some cases, launching more rays results in fewer or
different paths. This situation is more likely to occur with custom 3-D scenarios created from STL
files or triangulation objects than with scenarios that are automatically generated from
OpenStreetMap buildings and terrain data.

The SBR method finds paths using double-precision floating-point computations.

29 RF Propagation

29-14

Image Method

This figure illustrates the image method for calculating the propagation path of a single reflection ray
for the same transmitter and receiver as the SBR method. The image method locates the image of Tx
with respect to a planar reflection surface, Tx'. Then, the method connects Tx' and Rx with a line
segment. If the line segment intersects the planar reflection surface, shown as R in the figure, then a
valid path from Tx to Rx exists. The method determines paths with multiple reflections by recursively
extending these steps. The image method finds paths using single-precision floating-point
computations.

Propagation Loss
RayTracing objects calculate reflection and diffraction losses by tracking the horizontal and vertical
polarizations of signals through the propagation path. Total power loss is the sum of free space loss,
reflection loss, and diffraction loss.

Effect of Surface Materials

When a ray interacts with a surface, the surface material impacts the reflection losses.

The ray tracing model incorporates building and surface materials into the propagation loss
calculations by using the complex relative permittivity of the surface, εr. The ITU-R P.2040-1 [5] and
ITU-R P.527 [6] recommendations include methods, equations, and values used to calculate εr for a
range of frequencies.

The equations for εr are:

εr = εr′ + jεr′′

εr′′ = σ
2πε0f ,

where:

 Ray Tracing for Wireless Communications

29-15

• εr' is the real relative permittivity.
• σ is the conductivity in S/m.
• ε0 is the permittivity of free space (electric constant).
• f is the frequency in Hz.

For building materials, the ray tracing model calculates εr' and σ as:

εr′ = af b

σ = cf d,

where a, b, c, and d are constants determined by the surface material. For readability, this table
shows the frequency range in GHz.

Material Class Real Part of Relative
Permittivity

Conductivity (S/m) Frequency
Range (GHz)

a b c d
Vacuum (~ air) 1 0 0 0 [0.001, 100]
Concrete 5.31 0 0.0326 0.8095 [1, 100]
Brick 3.75 0 0.038 0 [1, 10]
Plasterboard 2.94 0 0.0116 0.7076 [1, 100]
Wood 1.99 0 0.0047 1.0718 [0.001, 100]
Glass 6.27 0 0.0043 1.1925 [0.1, 100]
Ceiling board 1.50 0 0.0005 1.1634 [1, 100]
Chipboard 2.58 0 0.0217 0.78 [1, 100]
Floorboard 3.66 0 0.0044 1.3515 [50, 100]
Metal 1 0 107 0 [1, 100]
Very dry ground 3 0 0.00015 2.52 [1, 10] only(a)

Medium dry
ground

15 – 0.1 0.035 1.63 [1, 10] only(a)

Wet ground 30 – 0.4 0.15 1.30 [1, 10] only(a)

Note (a): For the three ground types (very dry, medium dry, and wet), the noted frequency limits
cannot be exceeded.

For earth surfaces such as water, sea water, dry or wet ice, dry or wet soil, and vegetation, the ray
tracing model calculates εr using the methods and equations presented in ITU-R P.527 [6].

Reflection Loss

This image shows a reflection path from a transmitter site tx to a receiver site rx.

29 RF Propagation

29-16

The model determines polarization and reflection loss using these steps.

1 Track the propagation of the ray in 3-D space by calculating the propagation matrix P. The matrix
is a repeating product, where i is the number of reflection points.

P = ∏
i

Pi

For each reflection, calculate Pi by transforming the global coordinates of the incident
electromagnetic field into the local coordinates of the reflection plane, multiplying the result by a
reflection coefficient matrix, and transforming the coordinates back into the original global
coordinate system [7]. The equations for Pi and P0 are:

Pi = sout pout kout i

RV α 0 0
0 RH α 0
0 0 1 i

sin pin kin i
−1

P0 =
1 0 0
0 1 0
0 0 1

where:

• s, p, and k form a basis for the plane of incidence (the plane created by the incident ray and
the surface normal of the reflection plane). s and p are perpendicular and parallel,
respectively, to the plane of incidence.

 Ray Tracing for Wireless Communications

29-17

• kin and kout are the directions (in global coordinates) of the incident and exiting rays,
respectively.

• sin and sout are the directions (in global coordinates) of the horizontal polarizations for the
incident and exiting rays, respectively.

• pin and pout are the directions (in global coordinates) of the vertical polarizations for the
incident and exiting rays, respectively.

• RH and RV are the Fresnel reflection coefficients for the horizontal and vertical polarizations,
respectively. α is the incident angle of the ray and εr is the complex relative permittivity of the
material.

RH(α) =
cos(α)− (εr − sin2(α))/εr2

cos(α) + (εr − sin2(α))/εr2

RV(α) =
cos(α)− εr − sin2(α)
cos(α) + εr − sin2(α)

2 Project the propagation matrix P into a 2-by-2 polarization matrix R. The model rotates the
coordinate systems for the transmitter and receiver so that they are in global coordinates.

R =
Hin ⋅ Hrx Vin ⋅ Hrx
Hin ⋅ Vrx Vin ⋅ Vrx

Hin = P(Vtx × ktx)

Vin = PVtx

where:

• Hrx and Vrx are the directions (in global coordinates) of the horizontal (Eθ) and vertical (Eϕ)
polarizations, respectively, for the receiver.

• Hin and Vin are the directions (in global coordinates) of the propagated horizontal and vertical
polarizations, respectively.

• Vtx is the direction (in global coordinates) of the nominal vertical polarization for the ray
departing the transmitter.

• ktx is the direction (in global coordinates) of the ray departing the transmitter.
3 Specify the normalized horizontal and vertical polarizations of the electric field at the transmitter

and receiver by using the 2-by-1 Jones polarization vectors Jtx and Jrx, respectively. If either the

transmitter or receiver are unpolarized, then the model assumes Jtx = Jrx = 2
2

1
1

.

4 Calculate the polarization and reflection loss IL by combining R, Jtx, and Jrx.

IL = − 20log10 Jrx
−1R Jtx

Diffraction Loss

The model calculates diffraction loss by using computations based on the Uniform Theory of
Diffraction (UTD) [8].

For a first order signal diffraction, the equation for path loss, PLD, is:

29 RF Propagation

29-18

PLD = JVrx′Hdif f1 JVtx,

where:

• JVrx and JVtx are polarization vectors for the receiver and transmitter, respectively, specified as
Jones vectors.

• Hdiff1 is the diffraction matrix.

The equation for the diffraction matrix contains three terms.

• The first term is a geometric coupling matrix that rotates the polarization vector from the basis of
the ray coordinates to the basis of the edge-fixed incidence plane. The edge-fixed incidence plane
contains the ray and the edge.

• The second term is a polarization matrix containing diffraction coefficients for the local horizontal
and vertical polarizations, D⟂ and D∥, and an amplitude scaling factor. For more information about
the diffraction coefficients and amplitude scaling factor, see [3] and [8].

• The third term is a geometric coupling matrix that rotates the polarization vector from the basis of
the edge-fixed incidence plane to the basis of the edge-fixed diffraction plane. The edge-fixed
diffraction plane contains the diffracted ray and the edge.

References
[1] Yun, Zhengqing, and Magdy F. Iskander. “Ray Tracing for Radio Propagation Modeling: Principles

and Applications.” IEEE Access 3 (2015): 1089–1100. https://doi.org/10.1109/
ACCESS.2015.2453991.

[2] Schaubach, K.R., N.J. Davis, and T.S. Rappaport. “A Ray Tracing Method for Predicting Path Loss
and Delay Spread in Microcellular Environments.” In [1992 Proceedings] Vehicular
Technology Society 42nd VTS Conference - Frontiers of Technology, 932–35. Denver, CO,
USA: IEEE, 1992. https://doi.org/10.1109/VETEC.1992.245274.

[3] International Telecommunications Union Radiocommunication Sector. Propagation by diffraction.
Recommendation P.526-15. ITU-R, approved October 21, 2019. https://www.itu.int/rec/R-REC-
P.526/en.

[4] Keller, Joseph B. “Geometrical Theory of Diffraction.” Journal of the Optical Society of America 52,
no. 2 (February 1, 1962): 116. https://doi.org/10.1364/JOSA.52.000116.

[5] International Telecommunications Union Radiocommunication Sector. Effects of building materials
and structures on radiowave propagation above about 100MHz. Recommendation P.2040-1.
ITU-R, approved July 29, 2015. https://www.itu.int/rec/R-REC-P.2040/en.

[6] International Telecommunications Union Radiocommunication Sector. Electrical characteristics of
the surface of the Earth. Recommendation P.527-5. ITU-R, approved August 14, 2019. https://
www.itu.int/rec/R-REC-P.527/en.

[7] Chipman, Russell A., Garam Young, and Wai Sze Tiffany Lam. "Fresnel Equations." In Polarized
Light and Optical Systems. Optical Sciences and Applications of Light. Boca Raton: Taylor &
Francis, CRC Press, 2019.

[8] McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe. Introduction to the Uniform
Geometrical Theory of Diffraction. Boston: Artech House, 1990.

 Ray Tracing for Wireless Communications

29-19

See Also
Functions
propagationModel | raytrace | raypl | buildingMaterialPermittivity |
earthSurfacePermittivity

Objects
RayTracing | comm.Ray

Related Examples
• “Indoor MIMO-OFDM Communication Link using Ray Tracing” on page 1-39
• “Urban Link and Coverage Analysis Using Ray Tracing” on page 3-20
• “Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning”

(WLAN Toolbox)
• “CDL Channel Model Customization with Ray Tracing” (5G Toolbox)

29 RF Propagation

29-20

Guidance for Discouraged Features

• “Source blocks output frames of contiguous time samples but do not use frame attribute”
on page 30-2

• “AGC object and block have simplified interfaces, better dynamic range, and faster convergence
times” on page 30-3

30

Source blocks output frames of contiguous time samples but
do not use frame attribute

Source blocks output frames of contiguous time samples but do not use the frame attribute. Frame
processing is still supported. Starting in R2020a:

• The Bernoulli Binary Generator and Random Integer Generator blocks now enable you to use the
Upgrade Advisor. Use the Upgrade Advisor to update existing models that include the Bernoulli
Binary Generator or Random Integer Generator block. You can update to the block version
introduced in R2015b or keep the block version available in releases before to R2015b.

• Simulink no longer enables you to use versions of the Poisson Integer Generator, Barker Code
Generator, Gold Sequence Generator, Hadamard Code Generator, Kasami Sequence Generator,
OVSF Code Generator, PN Sequence Generator, or Walsh Code Generator blocks available in
releases before to R2015b. Existing models automatically update to load the block version
introduced in R2015b. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

Compatibility Considerations
The behavior of the random number generator for the Bernoulli Binary Generator and Poisson Integer
Generator block has changed. The statistics have been improved.

For the Bernoulli Binary Generator, Poisson Integer Generator, and the Random Integer Generator
blocks, the following changes were made:

• Removed Frame-based outputs and Interpret vector parameters as 1–D parameters. Blocks
always output a sample-based 2-D vector.

• Introduced Source of initial seed parameter.

To use the default MATLAB random number generator, leave the Source of initial seed
parameter set to Auto. To set an initial seed, set Source of initial seed to Parameter and then
set the Initial seed value.

• Behavior of the random number generator is changed. The statistics are improved.

For the Poisson Integer Generator block, the Lambda parameter is now Poisson parameter
(lambda). For the Random Integer Generator block, the M-ary number parameter is now Set size.

The Frame-based outputs parameter was removed for these blocks:

• Barker Code Generator
• Gold Sequence Generator
• Hadamard Code Generator
• Kasami Sequence Generator
• OVSF Code Generator
• PN Sequence Generator
• Walsh Code Generator

They always output sample-based 2-D vectors. These blocks can be upgraded using the Upgrade
Advisor.

30 Guidance for Discouraged Features

30-2

AGC object and block have simplified interfaces, better
dynamic range, and faster convergence times

The AGC System object and block are improved to incorporate a simplified interface, tolerate a
significantly larger input signal power range, and converge more quickly.

Compatibility Considerations
The algorithm and some properties changed in release R2015b. The properties and behavior of the
previous releases can be accessed by setting the hidden LegacyMode property to true. By default,
LegacyMode is false. The properties associated with the two legacy mode states are summarized.

Property LegacyMode = true LegacyMode = false
AdaptationStepSize X
ReferenceLevel X
AveragingLength X
MaximumGain X X
DetectorMethod X
LoopMethod X
UpdatePeriod X
StepSize X
GainOutputPort X

Note For Simulink models in which the output gain port is enabled, the legacy mode is automatically
enabled. This is required because the port is not available from the updated AGC block.

 AGC object and block have simplified interfaces, better dynamic range, and faster convergence times

30-3

	Communications Toolbox Featured Examples
	SC-FDMA vs. OFDM Modulation
	OFDM Transmitter and Receiver
	Simulate and Verify Power Amplifier Backoff
	Indoor MIMO-OFDM Communication Link using Ray Tracing
	Effect of a High-Power Interferer on ADC Performance
	Impact of RF Effects on Communication System Performance
	Interference Modeling
	Multiband Signal Generation
	Ship Tracking Using AIS Signals
	Link Budget Analysis
	Parallel Concatenated Convolutional Coding: Turbo Codes
	Tail-Biting Convolutional Coding
	Log-Likelihood Ratio (LLR) Demodulation
	FBMC vs. OFDM Modulation
	F-OFDM vs. OFDM Modulation
	UFMC vs. OFDM Modulation
	P25 Spectrum Sensing with Synthesized and Captured Data
	LLR vs. Hard Decision Demodulation in Simulink
	Passband Modulation
	256-Channel ADSL
	Simultaneous Simulation of Multiple Fading Channels with WINNER II Channel Model
	802.11ac Multiuser MIMO Precoding with WINNER II Channel Model
	End-to-End QAM Simulation with RF Impairments and Corrections
	HF Ionospheric Channel Models
	GSM, CDMA and WiMAX Channel Models
	GSM Multiframe Generation in Simulink
	Multipath Fading Channel
	Adjacent and Co-Channel Interference
	Multipath Fading Channel in Simulink
	RF Satellite Link
	Introduction to MIMO Systems
	Spatial Multiplexing
	OSTBC Transmission with Antenna Coupling
	Concatenated OSTBC with TCM
	Concatenated OSTBC with TCM in Simulink
	BER Performance of Different Equalizers
	OFDM Synchronization
	QPSK Transmitter and Receiver
	QPSK Transmitter and Receiver in Simulink
	Raised Cosine Filtering
	CORDIC-Based QPSK Carrier Synchronization
	Defense Communications: US MIL-STD-188-110A Receiver
	cdma2000 Waveform Generation
	1xEV-DO Waveform Generation
	cdma2000 Physical Layer in Simulink
	Near Field Communication (NFC)
	NFC Application Layer
	DOCSIS Upstream TDMA Link Simulation
	ATSC Digital Television
	DVB-S.2 Link, Including LDPC Coding
	DVB-S.2 Link, Including LDPC Coding in Simulink
	5G LDPC Block Error Rate Simulation Using the Cloud or a Cluster
	Digital Video Broadcasting - Cable (DVB-C)
	Digital Video Broadcasting - Cable (DVB-C) in Simulink
	Digital Video Broadcasting - Terrestrial
	Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link
	WCDMA End-to-End Physical Layer
	BER Simulations with Parallel Computing Toolbox
	End to End System Simulation Acceleration Using GPUs
	Simulation Acceleration Using MATLAB Coder and Parallel Computing Toolbox
	Using GPUs to Accelerate Turbo Coding Bit Error Rate Simulations
	DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System Object
	HDL Code Generation for Viterbi Decoder
	Using HDL Optimized CRC Library Blocks
	Using HDL Optimized RS Encoder/Decoder Library Blocks
	Frequency Offset Calibration for Receivers
	Spectrum Analysis of Signals
	Spectrum Analysis of Signals in Simulink
	Airplane Tracking Using ADS-B Signals
	Automatic Meter Reading
	Packetized Modem with Data Link Layer
	FM Broadcast Receiver
	RDS/RBDS and RadioText Plus (RT+) FM Receiver
	RDS/RBDS and RadioText Plus (RT+) FM Receiver in Simulink
	FRS/GMRS Walkie-Talkie Receiver
	Frequency Offset Calibration for Receivers in Simulink
	Airplane Tracking Using ADS-B Signals in Simulink
	Airplane Tracking Using ADS-B Signals with Raspberry Pi and RTL-SDR
	Automatic Meter Reading in Simulink
	FM Broadcast Receiver in Simulink
	FM Reception with RTL-SDR Radio on Raspberry Pi Hardware with Simulink
	FRS/GMRS Receiver in Simulink
	ALOHA and CSMA/CA Packetized Wireless Networks
	Multicore Simulation of Comparing Demodulation Types

	Shared comm_simrf Examples
	Idealized Baseband Amplifier with Nonlinearity and Noise
	Power Amplifier Characterization
	Top-Down Design of an RF Receiver
	Digital Predistortion to Compensate for Power Amplifier Nonlinearities
	RF Noise Modeling
	Impact of Thermal Noise on Communication System Performance
	Architectural Design of a Low IF Receiver System

	Shared spc_channel Examples (comm/antenna/phased)
	RF Propagation and Visualization
	Visualize Outdoor Wireless Coverage
	Visualize Indoor Propagation Paths

	Visualize Antenna Coverage Map and Communication Links
	Urban Link and Coverage Analysis Using Ray Tracing

	Shared deeplearning_shared Examples (comm/deeplearning)
	OFDM Autoencoder for Wireless Communications
	Train DQN Agent for Beam Selection
	CSI Feedback with Autoencoders
	Modulation Classification by Using FPGA
	Neural Network for Digital Predistortion Design - Online Training
	Neural Network for Digital Predistortion Design - Offline Training
	Neural Network for Beam Selection
	Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals
	Autoencoders for Wireless Communications
	Training and Testing a Neural Network for LLR Estimation
	Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation
	Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation
	Modulation Classification with Deep Learning

	Shared phased_comm Examples (comm/phased)
	Massive MIMO Hybrid Beamforming
	MIMO-OFDM Precoding with Phased Arrays

	HDL Coder Featured Examples
	Airplane Tracking with ADS-B Captured Data
	HDL QAM Transmitter and Receiver
	HDL QPSK Transmitter and Receiver

	Communications Toolbox Library for ZigBee and UWB - Featured Examples
	HRP UWB IEEE 802.15.4a/z Waveform Generation
	End-to-End Simulation of HRP UWB IEEE 802.15.4a/z PHY
	UWB Localization Using IEEE 802.15.4z
	UWB Ranging Using IEEE 802.15.4z
	Recovery of IEEE 802.15.4z UWB Signals
	UWB Channel Models
	End-to-End IEEE 802.15.4 PHY Simulation
	Recovery of IEEE 802.15.4 OQPSK Signals
	IEEE 802.15.4 - MAC Frame Generation and Decoding
	IEEE 802.15.4 - Asynchronous CSMA MAC
	ZigBee NET Frame Generation and Decoding
	ZigBee Home Automation Frame Generation and Decoding
	ZigBee Light Link Frame Generation and Decoding
	ZigBee Frame Generation and Decoding for General Commands
	ZigBee Smart Energy Frame Generation and Decoding
	Measure EVM for 802.15.4 (ZigBee) System

	Communications Toolbox Wireless Network Simulation Library - Featured Examples
	Generate and Visualize FTP Application Traffic Pattern

	Input, Output, and Display
	Signal Terminology
	Matrices, Vectors, and Scalars

	Export Data to MATLAB
	Use a To Workspace Block
	Configure the To Workspace Block
	View Error Rate Data in Workspace
	Send Signal and Error Data to Workspace
	View Signal and Error Data in Workspace
	Analyze Signal and Error Data

	Sources and Sinks
	Data Sources
	Noise Sources
	Sequence Generators
	Scopes
	View a Sinusoid
	View a Modulated Signal

	Spreading Sequences
	Orthogonal Spreading for Multiuser System in Single-Path Channel
	Orthogonal Spreading for Single-User System in Multipath Channel
	PN Spreading for Single-User System in Multipath Channel
	PN Spreading for Multiuser System in Multipath Channel
	Benefits of Diversity Combining for Nonorthogonal Sequence Spreading
	Kasami Spreading for Multiuser System in Multipath Channel

	Data and Signal Management
	Matrices, Vectors, and Scalars
	Processing Rules

	Sample-Based and Frame-Based Processing
	Floating-Point and Fixed-Point Data Types
	Access the Block Support Table

	Delays
	Section Overview
	Sources of Delays
	ADSL Example Model
	Punctured Coding Model
	Use the Find Delay Block

	Digital Modulation
	Digital Baseband Modulation
	Modulation Methods
	Modeling Concepts
	Signal Upsampling and Rate Changes
	Delays in Digital Demodulation
	Hard- vs. Soft-Decision Demodulation
	Accessing Digital Modulation Blocks
	References

	Symbol Mapping Examples
	Compare Error Rate for Gray- and Binary-Coded Ordering
	Gray-Coded M-PSK Modulation Error Rate in AWGN Channel Using Simulink
	Gray Encode Modulated Signal

	Demodulation Delay Examples
	Delays from OQPSK Demodulation Using Simulink

	Modulation with Pulse Shaping and Filtering Examples
	Rectangular Pulse Shaping
	Pulse Shaping Using a Raised Cosine Filter

	Hard- vs. Soft-Decision Demodulation Examples
	Log-Likelihood Ratio (LLR) Demodulation
	LLR vs. Hard Decision Demodulation in Simulink

	Amplitude Modulation
	PAM
	QAM

	Amplitude Modulation Examples
	Compute Symbol Error Rate
	Plot Noisy 16-QAM Constellation in Simulink

	Estimate Symbol Rate for General QAM Modulation in AWGN Channel
	Amplitude and Phase Modulation
	APSK
	DVBS APSK
	MIL-STD-188-110

	Amplitude and Phase Modulation Examples
	Apply APSK Modulation Modifying Symbol Ordering
	Demodulate MIL-STD-188-110C Specific 64-QAM Signal
	Plot Noisy DVB-S APSK Constellation using Simulink
	Demodulate Noisy 16-APSK Signal Using Simulink

	Continuous-Phase Modulation
	CPM
	CPFSK
	GMSK
	MSK

	Continuous Phase Modulation Examples
	Plot Phase Tree for Continuous Phase Modulation
	View CPM Phase Tree Using Simulink
	Compare Filtered QPSK and MSK Signals in Simulink
	Compare GMSK and MSK Signals in Simulink
	Soft Decision GMSK Demodulator

	Frequency Modulation
	FSK
	Frequency Modulation Examples

	Orthogonal Frequency Division Multiplexing Modulation
	OFDM
	OFDM Modulation Examples

	Apply OFDM in MIMO Simulation
	Phase Modulation
	BPSK
	QPSK
	Higher-Order PSK
	DPSK
	OQPSK

	Phase Modulation Examples
	Compare Phase Noise Effects on PSK and PAM Signals
	Compare DQPSK Signal Constellation Points and Transitions
	GPU-Based Convolutionally Encode and Viterbi Decode 8-PSK Modulated Data

	Trellis-Coded Modulation
	General QAM TCM
	PSK TCM
	Rectangular QAM TCM

	Trellis Coded Modulation Examples
	Modulate and Demodulate Data Using QAM TCM
	Demodulate Noisy PSK TCM Data
	Modulate and Demodulate Using Rectangular 16-QAM TCM

	Analog Modulation
	Analog Baseband Modulation
	Modulation Methods
	FM
	FM Broadcast
	Accessing Analog Baseband Modulation Blocks
	References

	Analog Baseband Modulation Examples
	Modulate and Demodulate Sinusoidal Signal Using FM Method
	Modulate and Demodulate Streaming Audio Signals Using FM Broadcast Method
	Modulate and Demodulate FM Signals in Simulink

	Analog Passband Modulation
	Modulation Methods
	Filter Design Decisions
	DSB AM
	DSB-SC AM
	SSB AM
	FM
	PM
	Accessing Analog Passband Modulation Blocks
	References

	Analog Passband Modulation Examples
	Represent Analog Signals for Amplitude Modulation in MATLAB
	Phase-Modulate Analog Signals in AWGN Channel
	Analog Modulation Filtering Examples

	Equalization
	Equalization
	Equalizer Structure Options
	Selected References for Equalizers

	Adaptive Equalizers
	Number of Taps
	Symbol Tap Spacing
	Linear Equalizers
	Decision-Feedback Equalizers
	Reference Signal and Operating Modes
	Error Calculation
	Updating Tap Weights
	Configuring Adaptive Equalizers
	Using Adaptive Equalizers in Simulink
	Adaptive Equalization with Filtering and Fading Channel

	MLSE Equalizers
	Equalize a Vector Signal in MATLAB
	Equalizing Signals in Continuous Operation Mode
	Use a Preamble or a Postamble
	Using MLSE Equalizers in Simulink
	MLSE Equalization with Dynamically Changing Channel

	Equalizer Examples (new & old)
	DF Equalize QPSK-Modulated Signal in Simulink
	Linearly Equalize QPSK-Modulated Signal in Simulink
	Adaptive Equalization with Filtering and Fading Channel
	MLSE Equalization with Dynamically Changing Channel
	Equalize BSPK Signal

	Various User Guide Topic Examples
	Create a Standalone GSM Waveform Explorer Application with MATLAB Compiler
	GSM TDMA Frame Parameterization for Waveform Generation
	Compensate for Frequency Offset Using Coarse and Fine Compensation
	Correct Symbol Timing and Doppler Offsets
	Random Noise Generators in Simulink
	Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization
	Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset
	Modulate and Demodulate 8-PSK Signal

	System Design
	Source Coding
	Represent Partitions
	Represent Codebooks
	Determine Which Interval Each Input Is In
	Optimize Quantization Parameters
	Differential Pulse Code Modulation
	Optimize DPCM Parameters
	Compand a Signal
	Huffman Coding
	Arithmetic Coding
	Quantize a Signal

	Error Detection and Correction
	Cyclic Redundancy Check Codes
	Block Codes
	Convolutional Codes
	Linear Block Codes
	Hamming Codes
	BCH Codes
	Reed-Solomon Codes
	LDPC Codes
	Galois Field Computations
	Galois Fields of Odd Characteristic

	Interleaving
	Block Interleaving
	Convolutional Interleaving
	Selected Bibliography for Interleaving

	Phase-Locked Loops
	Voltage-Controlled Oscillator Blocks
	Overview of PLL Simulation
	Implementing an Analog Baseband PLL
	Implementing a Digital PLL
	Selected Bibliography for Synchronization

	Multiple-Input Multiple-Output (MIMO)
	Orthogonal Space-Time Block Codes (OSTBC)
	MIMO Fading Channel
	Spherical Decoding
	Selected Bibliography for MIMO Systems

	Differential Pulse Code Modulation
	Section Overview
	DPCM Terminology
	Represent Predictors
	Example: DPCM Encoding and Decoding
	Optimize DPCM Parameters

	Quantize and Compand an Exponential Signal
	Quantization
	Represent Partitions
	Represent Codebooks
	Determine Which Interval Each Input Is In
	Optimize Quantization Parameters
	Quantize a Signal

	MSK
	MSK Signal Recovery
	MSK Signal Recovery
	Exploring the Model
	Results and Displays
	Experimenting with the Example

	Reed-Solomon Coding
	Reed-Solomon Coding with Erasures, Punctures, and Shortening in Simulink
	Representation of Polynomials in Communications Toolbox
	Estimate BER of QPSK in AWGN with Reed-Solomon Coding
	Transmit and Receive Shortened Reed-Solomon Codes

	Galois Fields
	Working with Galois Fields
	ElGamal Public Key Cryptosystem

	Error Detection and Correction
	High Rate Convolutional Codes for Turbo Coding
	Punctured Convolutional Coding
	Punctured Convolutional Coding in Simulink
	Rate 2/3 Convolutional Code in AWGN
	Estimate BER for Hard and Soft Decision Viterbi Decoding
	Creation, Validation, and Testing of User Defined Trellis Structure
	Create User Defined Trellis Structure
	Convolutional Encoder with Uncoded Bits and Feedback

	Channel Modeling and RF Impairments
	AWGN Channel
	Section Overview
	AWGN Channel Noise Level

	Configure Eb/No for AWGN Channels with Coding
	Using AWGN Channel Block for Coded Signals
	Fading Channels
	Overview of Fading Channels
	Methodology for Simulating Multipath Fading Channels
	Specify Fading Channels
	Specify Doppler Spectrum of Fading Channel
	Configure Channel Objects
	Use Fading Channels
	Rayleigh Fading Channel
	Rician Fading Channel

	Using Channel Visualization
	WINNER II Channel
	Mapping of WINNER II Open Source Download to WINNER II Channel Model for Communications Toolbox

	Measurements
	Bit Error Rate Analysis Techniques
	Computation of Theoretical Error Statistics
	Theoretical Performance Results
	Performance Results via Simulation
	Performance Results via Semianalytic Technique
	Error Rate Plots

	Analyze Performance with Bit Error Rate Analysis App
	Open Bit Error Rate Analysis App
	Bit Error Rate Analysis App Environment
	Compute Theoretical BERs Using Bit Error Analysis App
	Run MATLAB Simulations in Monte Carlo Tab
	Requirements for Using MATLAB Functions with Bit Error Rate Analysis App
	Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis App
	Run Simulink Simulations in Monte Carlo Tab
	Requirements for Using Simulink Models with Bit Error Rate Analysis App
	Manage BER Data

	Mathematical Expressions and Notations Used in BER Analysis
	Common Notation

	Analytical Expressions Used in BER Analysis
	Analytical Expressions Used in berawgn Function and Bit Error Rate Analysis App
	M-PSK
	DE-M-PSK
	OQPSK
	DE-OQPSK
	M-DPSK
	M-PAM
	M-QAM
	Orthogonal M-FSK with Coherent Detection
	Nonorthogonal 2-FSK with Coherent Detection
	Orthogonal M-FSK with Noncoherent Detection
	Nonorthogonal 2-FSK with Noncoherent Detection
	Precoded MSK with Coherent Detection
	Differentially Encoded MSK with Coherent Detection
	MSK with Noncoherent Detection (Optimum Block-by-Block)
	CPFSK Coherent Detection (Optimum Block-by-Block)

	Analytical Expressions Used in berfading Function and Bit Error Rate Analysis App
	Notation
	M-PSK with MRC
	DE-M-PSK with MRC
	M-PAM with MRC
	M-QAM with MRC
	M-DPSK with Postdetection EGC
	Orthogonal 2-FSK, Coherent Detection with MRC
	Nonorthogonal 2-FSK, Coherent Detection with MRC
	Orthogonal M-FSK, Noncoherent Detection with EGC
	Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity

	Analytical Expressions Used in bercoding Function and Bit Error Rate Analysis App
	Common Notation
	Block Coding
	Convolutional Coding

	Analytical Expressions Used in bersync Function and Bit Error Rate Analysis App
	Timing Synchronization Error
	Carrier Synchronization Error

	Measure Modulation Accuracy
	Modulation Accuracy Examples

	Adjacent Channel Power Ratio (ACPR)
	Obtain ACPR Measurements

	Complementary Cumulative Distribution Function CCDF
	Selected Bibliography for Measurements

	Filtering Section
	Filtering
	Filter Features
	Selected Bibliography Filtering

	Group Delay
	Implications of Delay for Simulations

	Pulse Shaping Using a Raised Cosine Filter
	Design Raised Cosine Filters Using MATLAB Functions
	Section Overview
	Example Designing a Square-Root Raised Cosine Filter

	Filter Using Simulink Raised Cosine Filter Blocks
	Combining Two Square-Root Raised Cosine Filters

	Design Raised Cosine Filters in Simulink
	Reduce ISI Using Raised Cosine Filtering
	Find Delay for Encoded and Filtered Signal

	Visual Analysis
	View Constellation of Modulator Block
	Plot Signal Constellations
	Create 16-PSK Constellation Diagram
	Create 32-QAM Constellation Diagram
	Create 8-QAM Gray Coded Constellation Diagram
	Plot a Triangular Constellation for QAM

	Eye Diagram Analysis
	Amplitude Measurements
	Time Measurements

	Scatter Plots and Constellation Diagrams
	View Signals Using Constellation Diagrams

	Channel Visualization
	Impulse Response Plot
	Frequency Response Plot
	Impulse and Frequency Responses Plot
	Doppler Spectrum Plot
	Channel Visualization Examples

	Visualize RF Impairments

	C Code Generation
	What is C Code Generation from MATLAB?
	Using MATLAB Coder
	C/C++ Compiler Setup
	Functions and System Objects That Support Code Generation

	Generate C Code from MATLAB Code
	Set Up the Compiler
	Break Out the Computational Part of the Algorithm into a MATLAB Function
	Make Code Suitable for Code Generation
	Compare the MEX Function with the Simulation
	Generate a Standalone Executable
	Read and Verify the Binary File Data
	Relocate Code to Another Development Environment

	Generate C Code from Simulink Model
	Open the Model
	Configure Model for Code Generation
	Simulate the Model
	Generate Code from the Model
	Build and Run the Generated Code

	HDL Code Generation
	Find Blocks That Support HDL Code Generation
	Blocks
	System Objects

	Wireless Communications Design for ASICs, FPGAs, and SoCs
	From Mathematical Algorithm to Hardware Implementation
	HDL-Optimized Blocks
	Reference Applications
	Generate HDL Code and Prototype on FPGA

	Simulation Acceleration
	Accelerate Simulation Using GPUs
	GPU-Based System Object Construction
	Process Multiple Data Frames Using GPU-Based System Objects
	Pass Data to GPU-Based System Objects Using gpuarray Input
	MATLAB System Block Support for GPU-Based System Objects

	Wireless Waveform Generator App
	Create Waveforms Using Wireless Waveform Generator App
	Waveform Type
	Add Impairments
	Visualization Options
	Export Waveform
	Transmit Signals at Full Radio Device Rates
	Transmit Using SDR
	Transmit Using Lab Test Instrument
	Waveform Generator Session

	Generate Wireless Waveform in Simulink Using App-Generated Block

	RF Propagation
	Troubleshooting Site Viewer
	Internet Connection Failure
	Graphics Environment

	Access Basemaps and Terrain in Site Viewer
	Use Installed Basemap
	Download Basemaps
	Add Custom Basemaps
	Access Terrain

	Access TIREM Software
	Choose a Propagation Model
	Atmospheric
	Empirical
	Terrain
	Ray Tracing

	Ray Tracing for Wireless Communications
	Introduction
	Ray Tracing Methods
	Propagation Loss

	Guidance for Discouraged Features
	Source blocks output frames of contiguous time samples but do not use frame attribute
	AGC object and block have simplified interfaces, better dynamic range, and faster convergence times

